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Foreword

The International Workshop on Spoken Language Translation (IWSLT) is an annually
scientific workshop, associated with an open evaluation campaign on Spoken Language
Translation, where both scientific papers and system descriptions are presented. Since
2004, the annual workshop has been held in Kyoto, Pittsburgh, Kyoto, Trento, Hon-
olulu, Tokyo, Paris, San Francisco, Hong Kong, Heidelberg and Lake Tahoe and this
year, the 12th International Workshop on Spoken Language Translation takes place in
Da Nang, Vietnam on Dec. 03 and 04, 2015.

The IWSLT includes scientific papers in dedicated technical sessions, either in oral
or poster form. The contributions cover theoretical and practical issues in the field
of Machine Translation (MT), in general, and Spoken Language Translation (SLT),
including Automatic Speech Recognition (ASR), Text-to-Speech Synthesis (TTS) and
MT, in particular:

• Speech and text MT
• Integration of ASR and MT
• MT and SLT approaches
• MT and SLT evaluation
• Language resources for MT and SLT
• Open source software for MT and SLT
• Adaptation in MT
• Simultaneous speech translation
• Speech translation of lectures
• Spoken language summarization
• Efficiency in MT
• Stream-based algorithms for MT
• Multilingual ASR and TTS
• Rich transcription of speech for MT
• Translation of on-verbal events

Submitted manuscripts were carefully peer-reviewed by members of the program
committee and papers were selected based on their technical merit and relevance to
the conference. The large number of submissions as well as the high quality of the
submitted papers indicates the interest on Spoken Language Translation as a research
field and the growing interest in these technologies and their practical applications. In
addition to core statistical machine translation papers, the technical program covers a
wide spectrum of topics related to Spoken Language Translation, ranging from issues
related to real-time interpretation to more practical issues related to the integration of
speech and translation technologies.

The results of the spoken language translation evaluation campaigns organized in
the framework of the workshop are also an important part of IWSLT. Those evaluations
are organized in the manner of competition. While participants compete for achieving
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the best result in the evaluation, they come together afterwards and discuss and share
their techniques that they used in their systems. In this respect, IWSLT proposes chal-
lenging research tasks and an open experimental infrastructure for the scientific com-
munity working on spoken and written language translation. This year the IWSLT is
organized in Vietnam and one of the purposes is to promote Spoken Language Transla-
tion research activities in Asian countries. More languages are added in this scientific
program of IWSLT including Vietnamese-to-English, Filipino-to-English bidirectional
statistical Machine Translation Systems.

For each task, monolingual and bilingual language resources, as needed, are pro-
vided to participants in order to train their systems, as well as sets of manual and auto-
matic speech transcripts (with n-best and lattices) and reference translations, allowing
researchers working only on written language translation to also participate. More-
over, blind test sets are released and all translation outputs produced by the participants
are evaluated using several automatic translation quality metrics. For the primary sub-
missions of all MT and SLT tasks a human evaluation was carried out as well. Each
participant in the evaluation campaign has been requested to submit a paper describing
his system, the utilized resources. A survey of the evaluation campaigns is presented
by the organizers.

Apart from the technical content of the workshop, beautiful beaches, fresh sea food,
authentic local cuisines, world class service and the artistic ocean front villas of Da
Nang will welcome all participants to the third largest city in Vietnam.

Welcome to Da Nang!
Luong Chi Mai
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Dedication

The organisers wish to dedicate this workshop to the memory of Gianni Lazzari, who
left us on the 26th of November. Gianni was among the initial promoters of IWSLT,
and actively participated to its organisation in the first years. From 1985 to 2007, Gi-
anni was research division director at ITC-IRST in Trento (Italy) and oversaw, over
the years, IRST’s research efforts in speech recognition, speech translation, signal pro-
cessing, computer vision, and predictive models. In these fields he collaborated in and
coordinated a number of international projects. In few years he was able to position
his organisation as a point of excellence at national level. With his strong inclination
for innovation, he also fostered the creation of several successful spin-off companies.
His natural cordiality allowed him to make many friends around the world and in his
beloved Trentino. In 2007, he took on a new challenge as CEO of Habitech, the new
provincial district for energy and environment, which he developed as an exemplar
bridge between innovation and industry. In 2013, he was diagnosed with blood cancer,
but after long treatments he was able to go back to work. Until few weeks ago, when
the disease hit him definitely. He leaves behind his beloved wife Chiara and daughter
Cecilia. We all miss a good friend, who greatly contributed to our research field and,
more importantly, enriched our personal lives.
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Keynotes

Improving SMT by Model Filtering and Phrase Embed-
ding
Chengqing Zong, National Laboratory of Pattern Recognition

Abstract
In phrase-based and hierarchical phrase-based statistical machine translation sys-

tems, translation performance is heavily dependent on the size and quality of the trans-
lation table. To meet the requirements of enabling real-time responses, some research
has focused upon filtering (pruning) of the translation table. However, most existing
filtering methods have been based on application of one or two constraints that act as
hard rules, such as disallowing phrase-pairs with low translation probabilities. These
approaches sometimes result in rigid constraints because they consider only a single
factor instead of composite factors. In view of the above considerations, I will in-
troduce a machine learning-based framework that integrates multiple features when
pruning translation models. In addition, to improve the performance of phrase-based
translation models, I will propose Bilingually-constrained Recursive Auto-encoders
(BRAEs) for learning semantic phrase embeddings (compact vector representations
for phrases), capable of distinguishing phrases with different semantic meanings. This
method has been evaluated on two end-to-end SMT tasks and shows remarkable effec-
tiveness on both tasks.

Bio
Chengqing Zong received his Ph.D. from the Institute of Computing Technology

of the Chinese Academy of Sciences, in March, 1998. From May, 1998 to April, 2000
he worked as a post-doctoral researcher at the National Laboratory of Pattern Recog-
nition (NLPR) in the Institute of Automation of the Chinese Academy of Sciences. He
joined the NLPR in April, 2000, and is now a professor. In 1999 and 2001 he vis-
ited Japan’s Advanced Telecommunications Research Institute International (ATR) as
a guest researcher. From October, 2004 to February, 2005 he visited CLIPS-IMAG in
France. His research interests include machine translation, natural language process-
ing, and sentiment classification. He has authored a book and published more than 100
papers. He is a member of the International Committee on Computational Linguis-
tics (ICCL) and the chair of Special Interest Group on Chinese Language Processing
(SIGHAN) of the Association for Computational Linguistics (ACL). He is an asso-
ciate editor of ACM Transactions on Asian and Low-Resource Language Information
Processing (TALLIP) and an editorial board member of IEEE Intelligent Systems, Ma-
chine Translation, Journal of Computer Science and Technology. He also served the

xv



ACL-IJCNLP 2015 conference as a programming committee co-chair, and has helped
organize many other conferences, including IJCAI, COLING, EMNLP and WWW etc.,
as a programming committee member or in other leadership positions.
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The IWSLT 2015 Evaluation Campaign

M. Cettolo(1) J. Niehues(2) S. Stüker(2) L. Bentivogli(1) R. Cattoni(1) M. Federico(1)

(1) FBK - Via Sommarive 18, 38123 Trento, Italy
(2) KIT - Adenauerring 2, 76131 Karlsruhe, Germany

Abstract
The IWSLT 2015 Evaluation Campaign featured three
tracks: automatic speech recognition (ASR), spoken lan-
guage translation (SLT), and machine translation (MT). For
ASR we offered two tasks, on English and German, while
for SLT and MT a number of tasks were proposed, involving
English, German, French, Chinese, Czech, Thai, and Viet-
namese. All tracks involved the transcription or translation
of TED talks, either made available by the official TED web-
site or by other TEDx events. A notable change with respect
to previous evaluations was the use of unsegmented speech in
the SLT track in order to better fit a real application scenario.
Thus, from one side participants were encouraged to develop
advanced methods for sentence segmentation, from the other
side organisers had to cope with the automatic evaluation of
SLT outputs not matching the sentence-wise arrangement of
the human references. A new evaluation server was also de-
veloped to allow participants to score their MT and SLT sys-
tems on selected dev and test sets. This year 16 teams partici-
pated in the evaluation, for a total of 63 primary submissions.
All runs were evaluated with objective metrics, and submis-
sions for two of the MT translation tracks were also evaluated
with human post-editing.

1. Introduction
We present the results of the 2015 evaluation campaign
organized by the International Workshop of Spoken Lan-
guage Translation. The IWSLT evaluation has been run-
ning for twelve years and has been offering a variety of
speech recognition, speech translation and text translation
tasks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

The 2015 IWSLT evaluation focused on the automatic
transcription and translation of TED and TEDx talks, i.e.
public speeches covering many different topics. The eval-
uation included three tracks:

• Automatic speech recognition (ASR), i.e. the conver-
sion of a speech signal into a transcript,

• Spoken language translation (SLT), that addressed the
conversion and translation of a speech signal into a
transcript in another language,

• Machine translation (MT), i.e. the translation of a pol-
ished transcript into another language.

As a major difference from the previous editions, not only
participants in the ASR track but also those participating in
the SLT track had to cope with unsegmented speech instead
of pre-segmented speech. Thus, both ASR and SLT systems
had to face the more realistic working condition of transcrib-
ing and translating a speech signal corresponding to an entire
talk rather than a sequence of isolated speech segments, as in
the past editions.

This year, the ASR track was on two languages, namely
English and German. The SLT track included German to En-
glish and English to Chinese, Czech, French, German, Thai,
and Vietnamese; the MT track offered the same tasks as SLT
but in both directions.

For all tasks, all permissible training data sets were spec-
ified and instructions for the submissions of test runs were
given together with the detailed evaluation schedule. This
year, parallel data made available to the participants included
an updated version of the WIT3 [12] corpus of TED talks,
data from the WMT 2015 shared tasks, the MULTIUN cor-
pus, and Wikipedia translations kindly made available by
PJAIT[13].

The test sets used for this year’s evaluation (tst2015) in-
clude new TED or TEDx talks not previously released. Fur-
thermore, for the ASR and MT tasks offered both in 2014 and
2015, progresses were assessed by asking participants to run
their systems also on the test sets of edition 2014 (tst2014),
which were specifically released again to this purpose.

All runs submitted by participants were evaluated with
automatic metrics. In particular, for the SLT and MT tracks,
an evaluation server was set up so that participants could au-
tonomously score their runs on different dev and test sets.
For two MT tasks, English-German and Vietnamese-English,
systems were also evaluated by calculating HTER values on
post-edits created by professional translators.

This year, 16 groups participated in the evaluation (see
Table 1) submitting a total of 63 primary runs: 18 to the ASR
track (9 for tst2015 and 9 for tst2014), 5 to the SLT track, and
40 to the MT track (26 for tst2015 and 14 for tst2014).

In the following, we overview each of the offered tracks
(Sections 2, 3, 4), whose detailed results are provided in Ap-
pendix A. We also report on human evaluation (Section 5 and
Appendix B), and finally draw some conclusions.
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Table 1: List of Participants

UNETI University Of Economic And Technical Industries, Vietnam [14]
IOIT Institute of Information Technology, Vietnam [15]
HLT-I2R Institute for Infocomm Research, Singapore [16]
JAIST Japan Advanced Inst. of Sc. and Technology; U. of Eng. and Technology; MITI [17]
PJAIT Polish-Japanese Academy of Information Technology, Poland [13]
NAIST Nara Institute of Science and Technology, Japan [18]
TUT Toyohashi University of Technology, Japan [19]
RWTH Rheinisch-Westfälische Technische Hochschule Aachen, Germany [20]
MITLL-AFRL MIT Lincoln Laboratory and Air Force Research Laboratory, USA [21]
UEDIN University of Edinburgh, United Kingdom [22]
MLLP Machine Learning and Language Processing Research Group, Spain [23]
HDU Dept. of Computational Linguistics, Heidelberg University, Germany [24]
LIUM Laboratoire d’Informatique de l’Université du Maine, France [25]
UMD University of Maryland, USA [26]
KIT Karlsruhe Institute of Technology, Germany [27, 28]
SU Stanford University, USA [29]

2. ASR Track
2.1. Definition

The goal of the Automatic Speech Recognition (ASR) track
for IWSLT 2015 was to transcribe English TED and Ger-
man TEDx talks. The speech in TED lectures is in general
planned, well articulated, and recorded in high quality. Ac-
tually TED talks are often rehearsed rigorously for several
days with experts advising on and designing the presenta-
tion. Thus, to a certain degree, they almost resemble a stage
performance. The main challenges for ASR in these talks are
to cope with a large variability of topics, the presence of non-
native speakers, and the rather informal speaking style that is
often used in order to make talks entertaining. For the TEDx
talks the recording conditions are often more difficult than
for the English TED talks, as recording is usually done with
a lower budget with worse equipment and less trained per-
sonnel. While the TEDx talks aim to mimic the TED talks,
they are not as well prepared and well rehearsed as the TED
lectures, thus portraying a more difficult to recognize speak-
ing style and more adverse recording conditions for ASR.

The result of the recognition of the talks is used for two
purposes. It is used to measure the performance of ASR sys-
tems on the talks and it is used as input to the spoken lan-
guage translation evaluation (SLT), see Section 3.

2.2. Evaluation

Participants had to submit the results of the recognition of
the tst2015 set in CTM format. The word error rate was
measured case-insensitive. After the end of the evaluation
a preliminary scoring was performed with the first set of
references. This was followed by an adjudication phase in
which participants could point out errors in the reference
transcripts. The adjudication results were collected and com-
bined into the final set of references with which the official

scores were calculated.
For German, the transcriptions of the talks were gener-

ated manually by trained transcribers at KIT, while the initial
English transcripts were derived from the subtitles available
via TED by performing a forced alignment of the subtitles to
the audio file. Then, a fast manual check was performed by
listening to the talk and simultaneously scanning the aligned
transcripts. In this way major deviations of the subtitles from
the audio were detected. The subtitles were then either man-
ually corrected or the affected portions of the audio were ex-
cluded from scoring. The more subtle differences between
the subtitles and the actual spoken words were left for detec-
tion during the adjudication phase.

In order to measure the progress of the systems over the
years, participants also had to provide results on the test set
from 2014, i.e. tst2014.

2.3. Submissions

For this year’s evaluation we received primary submissions
from seven sites. For English we received six primary runs
on tst2015 and six on tst2014, while for German we received
3+3 primary submissions. For English we further received a
total of five contrastive submissions from three sites.

2.4. Results

The detailed results of the primary submissions of the eval-
uation in terms of word error rate (WER) can be found in
Appendix A. The word error rates of the submitted systems
on tst2015 are in the range of 6.6%–13.8% for English and
17.6%–43.3% for German.

In German, the fact that TEDx talks sometimes worse
recording conditions than TED talks was reflected by the fact
that one talk in the German tst2015 set had WERs above 45%
and another above 30%, while for all other talks WERs were
in the range from 10% to 23%.
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Three participants of this year’s English ASR track
also participated last year. All of them showed significant
progress on tst2014, absolute WER improvements ranging
from 1.7–5.8 percentage points. This year the lowest WER
on tst2014 was 7.1% as compared to 8.4% last year.

Only one participant from this year’s German ASR eval-
uation also participated last year and did not show any
progress on tst2014.

3. SLT Track

3.1. Definition

The SLT track required participants to translate the English
and German talks of tst2015 from the audio signal (see Sec-
tion 2). The challenge of this translation task over the MT
track is the necessity to deal with automatic, and in general
error prone, transcriptions of the audio signal, instead of cor-
rect human transcriptions. Furthermore, in contrast to the
previous years, this year no manual segmentation into sen-
tences was provided. Therefore, participants needed to de-
velop methods to automatically segment the text and insert
punctuation marks.

For German as a source language, participants had to
translate into English. For English as source language, par-
ticipants could choose to translate into one or more lan-
guages between Chinese, Czech, French, German, Thai,
Vietnamese.

3.2. Evaluation

For the evaluation, participants could choose to either use
their own ASR technology, or to use ASR output provided
by the conference organizers.

For English, the ASR output provided by the organizers
was a single system output from one of the five submissions
to the ASR track. For German we also used the a single best
scored submissions from a different participant.

The results of the translation had to be submitted in NIST
XML format, the same format used in the MT track (see Sec-
tion 4).

Since the participants needed to segment the input into
sentences, the segmentation of the reference and the auto-
matic translation was different. In order to calculate the au-
tomatic evaluation metric, we need to realign the sentences
of the reference and the automatic translation. This was done
by minimizing the WER between the automatic translation
and reference as described in [30].

3.3. Submissions

We received 5 primary and 9 contrastive submissions from
nine participants, German to English receiving the most sub-
missions.

3.4. Results

The detailed results of the automatic evaluation in terms of
BLEU and TER can be found in Appendix A.1.

4. MT Track
4.1. Definition

The MT TED track basically corresponds to a subtitling
translation task. The natural translation unit considered by
the human translators volunteering for TED is indeed the sin-
gle caption — as defined by the original transcript — which
in general does not correspond to a sentence, but to fragments
of it that fit the caption space. While translators can look at
the context of the single captions, arranging the MT task in
this way would make it particularly difficult, especially when
word re-ordering across consecutive captions occurs. For this
reason, we preprocessed all the parallel texts to re-build the
original sentences, thus simplifying the MT task.

As already stated in the Introduction, for each transla-
tion direction, in-domain training and development data were
supplied through the website of the WIT3 [12], while out-of-
domain training data were made available through the work-
shop’s website. With respect to edition 2014 of the evalua-
tion campaign, some of the talks added to the TED repository
during the last year have been used to define the new evalu-
ation sets (tst2015), while the remaining talks have been in-
cluded in the training sets. For reliably assessing progress of
MT systems over the years, the evaluation set of edition 2014
(tst2014) were distributed as progressive test set, when avail-
able. Development sets are either the same of past editions
or have been built upon the same talks; tst2013 sets were in-
cluded into the list of development sets.

With respect to all the other directions, the DeEn MT
task is an exception; in fact, its evaluation sets (tst2014 and
tst2015) derive from those prepared for the ASR/SLT tracks,
which consist of TEDx talks delivered in German language;
therefore, no overlap exists with TED talks involved in other
tasks. Both TEDx- and TED-based development sets have
been released for this direction.

Table 2 provides statistics on in-domain texts supplied
for training and evaluation purposes for each MT task. Texts
are pre-processed (tokenization, Chinese and Thai segmenta-
tion) with the tools used for setting-up baseline systems (see
below). Statistics on most development sets can be found in
the overview paper of the 2014 edition [11].

MT baselines were trained from TED data only, i.e. no
additional out-of-domain resources were used. The standard
tokenization via the tokenizer script released with the Eu-
roparl corpus [31] was applied to all languages, with the ex-
ception of Chinese and Thai; the former was preprocessed
by means of the Stanford Chinese Segmenter [32], while the
Thai texts were segmented according to the guidelines1 de-

1http://hltshare.fbk.eu/IWSLT2015/InterBEST2009Guidelines-2.pdf
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Table 2: Bilingual training and evaluation corpora statistics.

task data sent tokens talksset En foreign
En↔ Zh train 210k 4.27M 4.02M 1718

tst2014 1,068 20,3k 20,0k 12
tst2015 1,080 20,8k 20,7k 12

En↔ Cs train 106k 2.09M 1.76M 918
tst2015 1,080 20,8k 17,9k 12

En↔ Fr train 208k 4.23M 4.51M 1711
tst2014 1,305 24,8k 27,5k 15
tst2015 1,080 20,8k 22,0k 12

En↔ De train 194k 3.94M 3.68M 1597
→ tst2014 1,305 24,8k 23,8k 15
→ tst2015 1,080 20,8k 19,7k 12
← tst2014TEDx 1,414 28,1k 27,6k 10
← tst2015TEDx 2,809 41,0k 38.8k 14

En↔ Th train 84k 1.66M 2.84M 746
tst2015 756 15,1k 25,7k 9

En↔ V i train 131k 2.63M 3.32M 1192
tst2015 1,080 20,8k 24,6k 12

fined at InterBEST 2009.2

Translation and lexicalized reordering models were
trained on the parallel training data by means of the Moses
toolkit; 5-gram LMs with improved Kneser-Ney smoothing
were estimated on the target side of the training data with
the IRSTLM toolkit [33]. The weights of the log-linear in-
terpolation model were optimized on tst2010 with the MERT
procedure provided with Moses.

Reference results from baseline MT systems on evalua-
tion sets have been shared among participants after the Eval-
uation Period, in order to allow them to assess their scores.

4.2. Evaluation

The participants to the MT track had to provide the automatic
translation of the test sets in NIST XML format. The out-
put had to be case-sensitive, detokenized and had to contain
punctuation.

The quality of the translations was measured both auto-
matically, against the human translations created by the TED
open translation project, and via human evaluation (Sec-
tion 5).

Case sensitive scores were calculated for the three au-
tomatic standard metrics BLEU, NIST, and TER, as imple-
mented in mteval-v13a.pl3 and tercom-0.7.254, by calling:

• mteval-v13a.pl -c

• java -Dfile.encoding=UTF8 -jar
tercom.7.25.jar -N -s

2http://thailang.nectec.or.th/interbest/
3http://www.itl.nist.gov/iad/mig/tests/mt/2009/
4http://www.cs.umd.edu/ snover/tercom/

Detokenized texts were passed, since the two scorers ap-
ply an internal tokenizer. Before the evaluation, Chinese
texts were segmented at char level, keeping non-Chinese
strings as they are.

In order to allow participants to evaluate their pro-
gresses automatically and in identical conditions, an evalu-
ation server was developed. Participants could submit the
translation of any development set to either a REST Webser-
vice or through a GUI on the web, receiving as output the
three scores BLEU, NIST and TER computed as above. The
core of the evaluation server is a shell script wrapping the
mteval and tercom scorers. The REST service is a PHP
script running over Apache HTTP, while the GUI on the web
is written in HTML with AJAX code. The evaluation server
was utilized by the organizers for the automatic evaluation
of the official submissions. After the evaluation period, the
evaluation on test sets was enabled to all participants as well.

4.3. Submissions

We received submissions from 11 different sites. The to-
tal number of primary runs is 40: 26 on tst2015 and 14 on
tst2014; 16 primary runs regard the EnDe pair in either one
or the other direction, 10 EnV i, 6 EnFr, 6 EnZh and 2
EnCs; in addition, we were asked to evaluate 33 contrastive
runs. No submission were received for Thai.

4.4. Results

The results on the 2015 official test set for each participant
are shown in Appendix A.1. Scores of baseline systems de-
veloped as described in Section 4.1 are reported as well.

For all language pairs but one, we show the case-sensitive
BLEU, NIST and TER scores. The exception is the English
to Chinese task, for which character-level scores are given.

On three language pairs out of five (En-{Zh,Cs,Fr}), too
few submissions were received to make general comments;
we can just observe that all systems setup by participants out-
performed the baselines. The tasks involving German and
Vietnamese attracted more attention. On German, which is a
language notoriously difficult to process, the better systems
largely beat the basic methods featured in the baselines (the
BLEU scores of the best ranked runs are higher than base-
lines by about 50%); the SU MT English-German system
deserves to be mentioned since its approach outclasses even
the runner-up. On Vietnamese tasks, participant scores vary
a lot as well; differently than on German, submitted runs
hardly provided higher quality than baselines; in particular,
on Vietnamese-to-English direction, none was able to im-
prove the baseline translation: despite a deep analysis, we
were unable to find a plausible explanation for this surpris-
ing outcome.

In Appendix A.2 the results on the progress test sets
test2014 are shown. For each task, the baseline perfor-
mance is provided again, together with the score of the best
tst2014 run submitted in 2014 edition of the Evaluation Cam-
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paign. The latter scores can slightly differ from those of-
ficially disclosed last year because they have been recom-
puted by means of the Evaluation Server. Only tasks involv-
ing Chinese, French and German are considered here since
Czech and Vietnamese languages were not proposed in edi-
tion 2014.

In comparing the 2015 results to the best 2014 submis-
sions, different remarks can be done depending on the lan-
guage. On Chinese tasks, no improvement is observed with
respect to last year, when four participants sent primary runs:
likely, the larger number of attendees increases the chance
of measuring good scores. If on the English-to-French task
the 2014 best system is definitely better than the unique par-
ticipant to the 2015 edition, in the opposite direction both
2015 runs outperform the 2014 best run: therefore, we can
softly state that some progress has been made on French, at
least in translating it into English. On the contrary, no doubts
that the German 2015 systems (in both directions) definitely
improved over the 2014 edition, especially noting that the
two best 2014 runs were a Rover combination of some of the
other best runs. Therefore, the systems by SU, on English-
German, and by RWTH and KIT, for German-English, re-
sulted outstandingly effective.

5. Human Evaluation
Human evaluation was carried out on primary runs submit-
ted by participants to two of the MT TED tasks, namely
the MT English-German (EnDe) task and MT Vietnamese-
English (V iEn) task. Following the methodology intro-
duced in 2013, human evaluation was based on Post-Editing
and systems were ranked according to the HTER (Human-
mediated Translation Edit Rate) evaluation metric.

Post-Editing, i.e. the manual correction of machine trans-
lation output, has long been investigated by the translation in-
dustry as a form of machine assistance to reduce the costs of
human translation. Nowadays, Computer-aided translation
(CAT) tools incorporate post-editing functions, and a num-
ber of studies [34, 35] demonstrate the usefulness of MT to
increase translators’ productivity. The MT TED task offered
in IWSLT can be seen as an interesting application scenario
to test the utility of MT systems in a real subtitling task.

From the point of view of the evaluation campaign, our
goal is to adopt a human evaluation framework able to maxi-
mize the benefit for the research community, both in terms
of information about MT systems and data and resources
to be reused. With respect to other types of human assess-
ment, such as judgments of translation quality (i.e. ade-
quacy/fluency and ranking tasks), the post-editing task has
the double advantage of producing (i) a set of edits pointing
to specific translation errors, and (ii) a set of additional refer-
ence translations. Both these byproducts are very useful for
MT system development and evaluation.5 Furthermore, the
HTER metric [36] - which consists of measuring the mini-

5All the data produced for human evaluation are publicly available
through the WIT3 repository (wit3.fbk.eu).

Table 3: EnDe task: Post-editing information for each Post-
editor. PE effort is estimated with HTER. Scores are given in
percentage (%).

PEditor PE Effort std-dev Sys TER std-dev
PE 1 22.49 16.44 56.43 20.77
PE 2 42.68 26.51 55.59 20.82
PE 3 29.21 22.18 56.00 20.49
PE 4 27.66 15.50 55.77 21.17
PE 5 22.19 17.62 56.38 20.85

mum edit distance between the MT output and its manually
post-edited version (targeted reference) - has been shown to
correlate quite well with human judgments of MT quality.

The human evaluation dataset and the collected post-edits
are described in Section 5.1, whereas the results of the eval-
uation are presented in Section 5.2.

5.1. Evaluation Data

The human evaluation (HE) datasets contain around 10,000
words each and include subsets of the 12 TED Talks compos-
ing the IWSLT 2015 official test sets. We selected around the
initial 56% of each talk for the EnDe HE dataset, and around
45% for the V iEn one.6 This choice of selecting a consec-
utive block of sentences for each talk was determined by the
need of realistically simulating a caption post-editing task on
several TED talks. The resulting HE sets are composed of
600 segments for EnDe and 500 segments for V iEn.

This year we received five primary submissions both for
the EnDe task and the V iEn task. For each task, the output
of the five systems on the HE set was assigned to five profes-
sional translators to be post-edited. To cope with translators’
variability, an equal number of outputs from each MT sys-
tem was assigned randomly to each translator (for all the de-
tails about data preparation and post-editing see [11] and Ap-
pendix B). The resulting evaluation data for each task consist
of five new reference translations for each of the sentences in
the HE set. Each one of these five references represents the
targeted translation of the system output from which it was
derived, and four additional translations are available as well
for the evaluation of each MT system.

The main characteristics of the work carried out by post-
editors are presented in Tables 3 and 4. In the tables, the
post-editing effort for each translator is given. Post-editing
effort is to be interpreted as the number of actual edit opera-
tions performed to produce the post-edited version and - con-
sequently - it is calculated as the HTER of all the sentences
post-edited by each single translator.

As we can see from the tables, PE effort is highly variable
among post-editors, even though in different proportions de-
pending on the task (from 22.19% to 42.68% for EnDe, and

6This different percentage is due to the fact that the number of words for
each HE dataset was fixed to 10,000 but the Vietnamese source texts contain
a higher number of words with respect to English.
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Table 4: V iEn task: Post-editing information for each Post-
editor. PE effort is estimated with HTER. Scores are given in
percentage (%).

PEditor PE Effort std-dev Sys TER std-dev
PE 1 37.14 21.25 61.38 20.96
PE 2 40.38 20.46 60.34 20.94
PE 3 44.76 23.57 61.66 21.74
PE 4 46.39 25.71 61.69 21.59
PE 5 38.57 26.64 60.14 20.43

Table 5: EnDe Task: human evaluation results. Scores are
given in percentage (%). The system name next to the HTER
score indicates the first system in the ranking with respect to
which differences are statistically significant at p < 0.01.

System HTER HTER TER TER
Ranking HE Set HE Set HE Set Test Set

all PErefs tgt PEref ref ref
SU 16.16UEDIN 21.09 51.15 51.13
UEDIN 21.84PJAIT 27.99 56.39 56.05
KIT 22.67PJAIT 28.98 55.82 55.52
HDU 23.42PJAIT 29.93 57.32 56.94
PJAIT 28.18 35.68 59.51 59.03
Rank Corr. 1.00 0.90 0.90

from 37.14% to 46.39% for V iEn). Data about weighted
standard deviation confirm post-editor variability, showing
that translators produced quite different post-editing effort
distributions.

To further study post-editors’ behaviour, we exploited the
official reference translations available for the two MT tasks
and we calculated the TER of the MT outputs assigned to
each translator for post-editing (Sys TER Column in Tables 3
and 4), as well as the related standard deviation. As we can
see from the tables, the documents presented to translators
(composed of segments produced by different systems) are
very homogeneous, as they show very similar TER scores
and standard deviation figures. This also confirms that the
procedure followed in data preparation was effective.

The variability observed in post-editing effort - despite
the similarity of the input documents - is most probably due
to translators’ subjectivity in carrying out the post-editing
task. These results are in line with those observed in IWSLT
2013 and 2014 for different datasets and language pairs.

5.2. Results

The outcomes of the two previous rounds of human evalua-
tion through post-editing [10, 11] demonstrated that HTER
computed against all the references produced by all post-
editors allow a more reliable and consistent evaluation of MT
systems with respect to HTER calculated against the targeted
reference only. In light of these findings, also this year sys-
tems were officially ranked according to HTER calculated on

Table 6: V iEn Task: human evaluation results. Scores are
given in percentage (%). The system name next to the HTER
score indicates the first system in the ranking with respect to
which differences are statistically significant at p < 0.01 (the
asterisk indicates significance at p < 0.05).

System HTER HTER TER TER
Ranking HE Set HE Set HE Set Test Set

all PErefs tgt PEref ref ref
JAIST 32.24TUT 37.25 60.10 62.35
UMD 32.71TUT 37.99 58.92 59.19
PJAIT 34.27TUT* 40.50 59.48 62.20
TUT 38.50 43.42 62.49 62.69
UNETI 41.42 47.97 64.21 66.33
Rank Corr. 1.00 0.70 0.70

all the collected post-edits.
Official results and rankings are presented in bold in Ta-

bles 5 and 6, which also present HTER scores calculated on
the targeted reference only and TER results – both on the HE
set and on the full test set – calculated against the official ref-
erence translation used for automatic evaluation (see Section
4.2 and Appendix A).7

To establish the reliability of system ranking, for all pairs
of systems we calculated the statistical significance of the
observed differences in performance. Statistical significance
was assessed with the approximate randomization method
[37], a statistical test well-established in the NLP community
[38] and that, especially for the purpose of MT evaluation,
has been shown [39] to be less prone to type-I errors than
the bootstrap method [40]. In this study, the approximate
randomization test was based on 10,000 iterations. For the
EnDe task, we can see in Table 5 that the top-ranked system
(SU) is significantly better than all the other systems, while
UEDIN, KIT, and HDU are not significantly different from
each other but only with respect to PJAIT. For the V iEn
task, Table 6 shows that a winning system cannot be indi-
cated, as there is no system that is significantly better than all
other systems; the three top-ranking systems (JAIST, UMD,
PJAIT) are significantly better than the two bottom-ranking
systems (TUT, UNETI).

Some additional observations can be drawn by compar-
ing HTER and TER results given in the tables, which largely
confirm previous years’ findings. First, we observe a consid-
erable HTER reduction when using all collected post-edits
(all PErefs) with respect to both the HTER obtained using
the targeted post-edit (tgt PEref ) and the TER obtained using
the independent reference (ref ). This reduction clearly con-
firms that exploiting all the available reference translations is
a viable way to control and overcome post-editors’ variabil-
ity, giving an HTER which is more informative about the real
performances of the systems. Moreover, the correlation be-
tween evaluation metrics is measured using Spearman’s rank

7Note that since HTER and TER are edit-distance measures, lower num-
bers indicate better performances.
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correlation coefficient ρ∈ [-1.0, 1.0]. We can see from the ta-
bles that TER rankings correlate well with the official HTER.
Also, the observed shifts in the ranking occur only where the
differences between systems are not statistically significant.

To conclude, the post-editing task introduced for man-
ual evaluation brought benefit to the IWSLT community, and
in general to the MT field. Indeed, producing post-edited
versions of the participating systems’ outputs allowed us to
carry out a quite informative evaluation which minimizes the
variability of post-editors, who naturally tend to diverge from
the post-editing guidelines and personalize their translations.
Furthermore, a number of additional reference translations
are made available to the community for further development
and evaluation of MT systems.

6. Conclusions
In this paper, we presented the organisation and outcomes of
the 2015 IWSLT Evaluation Campaign. The IWSLT eval-
uation provides a venue where core technologies for spo-
ken language translation can be evaluated on many differ-
ent languages and compared not only across research teams
but also over time. This year the evaluation was attended
by 16 groups – i.e. 6 from Asia, 7 from Europe, and 3
from America. To honor the local organizer of this year, we
added among the offered translation directions also English-
Vietnamese, which finally attracted several participants. In
order to simulate a real subtitling use case, the ASR and SLT
tracks were run this year without providing any segmenta-
tion of the input speech. Then, in order to improve the auto-
matic evaluation of the MT and SLT tracks, a new evaluation
server was developed where participants could submit pri-
mary and contrastive runs at any time. Finally, for the two
most popular MT runs, a manual evaluation was carried out
with professional translators aiming at measuring MT quality
in terms of post-editing effort required to fix the MT outputs.
Concerning future plans, we are considering to extend the
translation task, which now focus on TED talks only, to two
other application scenarios: video conferences and lectures.
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Appendix A. Automatic Evaluation
A.1. Official Testset (tst2015)

· All the sentence IDs in the IWSLT 2015 testset were used to calculate the automatic scores for each run submission.
· MT systems are ordered according to the BLEU metrics.
· WER, BLEU and TER scores are given as percent figures (%).

TED : ASR English (ASREN )
System WER (# Errors)

HLT-I2R 7.7 (1,403)

IOIT 13.8 (2,523)

KIT 9.2 (1,689)

NAIST 12.0 (2,197)

MITLL-AFRL 6.6 (1,201)
MLLP 13.3 (2,421)

TED : ASR German (ASRDE )
System WER (# Errors)

KIT 20.3 (6,931)

LIUM 17.6 (6,010)
MLLP 43.3 (14,787)

TED : SLT English-Chinese (SLTEnZh)

System character-based
BLEU TER

MITLL-AFRL 18.02 75.75

TED : SLT English-French (MTEnFr)

System case sensitive case insensitive
BLEU TER BLEU TER

LIUM 18.51 79.06 20.02 76.41

TED : SLT English-German (MTEnDe)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 0.1618 78.28 16.92 76.71

TED : SLT German-English (MTDeEn)

System case sensitive case insensitive
BLEU TER BLEU TER

KIT 19.64 62.22 20.83 60.23
RWTH 18.79 65.18 20.23 62.62

TED : MT English-Chinese (MTEnZh)

System character-based
BLEU NIST TER

UEDIN 25.39 6.3985 60.83

MITLL-AFRL 24.31 6.4136 59.00

BASELINE 21.86 5.8640 65.94

TED : MT Chinese-English (MTZhEn)

System case sensitive
BLEU NIST TER

MITLL-AFRL 16.86 5.2565 67.31

BASELINE 13.59 4.8918 68.01

TED : MT English-Czech (MTEnCs)

System case sensitive
BLEU NIST TER

PJAIT 17.17 5.1056 63.00

BASELINE 14.74 4.7458 65.80

TED : MT Czech-English (MTCsEn)

System case sensitive
BLEU NIST TER

PJAIT 25.07 6.4026 55.74

BASELINE 22.44 6.1186 57.99

TED : MT English-French (MTEnFr)

System case sensitive
BLEU NIST TER

PJAIT 32.79 7.3222 49.15

BASELINE 30.54 6.9957 51.51

TED : MT French-English (MTFrEn)

System case sensitive
BLEU NIST TER

PJAIT 32.75 7.2769 48.41

UMD 32.59 7.3708 47.12

BASELINE 31.94 7.3415 47.55
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TED : MT English-German (MTEnDe)

System case sensitive
BLEU NIST TER

SU 30.85 6.9898 51.13
KIT 26.18 6.4640 55.52

UEDIN 26.02 6.4518 56.05

HDU 24.96 6.3170 56.94

PJAIT 22.51 6.0412 59.03

BASELINE 20.08 5.7613 61.37

TEDX : MT German-English (MTDeEn)

System case sensitive
BLEU NIST TER

RWTH 31.50 7.7932 47.11
KIT 31.08 7.7471 47.24

PJAIT 26.08 7.0350 52.34

BASELINE 21.78 6.4984 55.45

TED : MT English-Vietnamese (MTEnV i)

System case sensitive
BLEU NIST TER

PJAIT 28.39 6.6650 56.01

JAIST 28.17 6.7092 55.84

KIT 26.60 6.4014 58.26

SU 26.41 6.5986 55.60
UNETI 22.93 6.0218 60.33

BASELINE 27.01 6.4716 58.42

TED : MT Vietnamese-English (MTV iEn)

System case sensitive
BLEU NIST TER

PJAIT 23.46 5.7314 62.20

UMD 21.57 5.7831 59.19
JAIST 21.53 5.6413 62.35

UNETI 20.18 5.1443 66.33

TUT 19.78 5.4559 62.69

BASELINE 24.61 5.9259 59.32
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A.2. Progress Testset (tst2014)
· All the sentence IDs in the IWSLT 2014 testset were used to calculate the automatic scores for each run submission.
· MT systems are ordered according to the BLEU metric.
· WER, BLEU and TER scores are given as percent figures (%).

TED : ASR English (ASREN )
System WER (# Errors)

HLT-I2R 8.9 (1,950)

IOIT 13.9 (3,036)

KIT 9.7 (1,689)

NAIST 10.4 (2,268)

MITLL-AFRL 7.1 (1,549)
MLLP 19.5 (4,258)

TED : ASR German (ASRDE )
System WER (# Errors)

KIT (24.0) (5,660)
LIUM 26.5 (6,254)

MLLP 49.4 (11,657)

TED : MT English-Chinese (MTEnZh)

System character-based
BLEU NIST TER

UEDIN 19.63 5.5483 68.05

MITLL-AFRL 18.51 5.5294 66.73

BASELINE 17.74 5.2514 71.23

BEST IWSLT2014 21.64 5.8732 65.66

TED : MT Chinese-English (MTZhEn)

System case sensitive
BLEU NIST TER

MITLL-AFRL 14.14 4.6736 72.55

BASELINE 11.43 4.3935 72.65

BEST IWSLT2014 15.63 4.9138 69.67

TED : MT English-French (MTEnFr)

System case sensitive
BLEU NIST TER

PJAIT 31.88 7.4901 47.92

BASELINE 30.31 7.2488 50.18

BEST IWSLT2014 36.99 7.9127 45.20

TED : MT French-English (MTFrEn)

System case sensitive
BLEU NIST TER

UMD 33.20 7.4807 46.32
PJAIT 32.92 7.3747 48.25

BASELINE 32.20 7.3677 47.60

TED : MT English-German (MTEnDe)

System case sensitive
BLEU NIST TER

SU 27.58 6.8218 52.50
UEDIN 24.01 6.3821 57.04

KIT 23.31 6.4106 56.51

HDU 23.22 6.2500 57.81

PJAIT 20.68 5.9978 59.78

BASELINE 18.49 5.7409 61.66

BEST IWSLT2014 23.25 6.3415 57.27

TEDX : MT German-English (MTDeEn)

System case sensitive
BLEU NIST TER

RWTH 26.18 6.7160 55.15
KIT 25.18 6.5795 55.76

PJAIT 21.92 6.0407 60.59

BASELINE 17.99 5.5186 64.36

BEST IWSLT2014 25.80 6.7011 55.07
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Appendix B. Human Evaluation

Interface used for the bilingual post-editing task

Post-editing was carried out using MateCat8 [41], which is a web-based open-source professional CAT tool developed within the
EU funded project Matecat.

Post-editing instructions given to professional translators

In this task you are presented with automatic translations of TED Talks captions.

You are asked to post-edit the given automatic translation by applying the minimal edits required to transform the system output
into a fluent sentence with the same meaning as the source sentence.

While post-editing, remember that the post-edited sentence is to be intended as a transcription of spoken language. Also,
depending on the style of the source language talk, you can use the corresponding style in the target language (e.g. if the talk
uses a friendly/colloquial style you can use informal words too).

Note also that the focus is the correctness of the single sentence within the given context, NOT the consistency of a group of
sentences. Hence, surrounding segments should be used to understand the context but NOT to enforce consistency on the use of
terms. In particular, different but correct translations of terms across segments should not be corrected.

The document you have to post-edit is composed of around the first half of 12 different talks. Below you can find the name of
the speaker and the title of each talk.

1. Alex Wissner-Gross: A new equation for intelligence.
2. Ash Beckham: We’re all hiding something let’s find the courage to open up.
3. Mary Lou Jepsen: Could future devices read images from our brains?
4. Ziauddin Yousafzai: My daughter Malala.
5. Geena Rocero: Why I must come out.
6. Kevin Briggs: The bridge between suicide and life.
7. Chris Kluwe: How augmented reality will change sports and build empathy.
8. Stella Young: I’m not your inspiration thank you very much.
9. Zak Ebrahim: I am the son of a terrorist here’s how I chose peace.
10. David Chalmers: How do you explain consciousness.
11. Meaghan Ramsey: Why thinking you’re ugly is bad for you.
12. Marc Kushner: Why the buildings of the future will be shaped by you.

8www.matecat.com
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Abstract

This work describes the statistical machine translation
(SMT) systems of RWTH Aachen University developed for
the evaluation campaign of the International Workshop on
Spoken Language Translation (IWSLT) 2015. We partici-
pated in the MT and SLT tracks for the German→English
language pair. We employ our state-of-the-art phrase-based
and hierarchical phrase-based baseline systems for the MT
track. The phrase-based system is augmented with joint
translation and reordering model and maximum expected
BLEU training for phrasal, lexical and reordering models.
Furthermore, we apply feed-forward and recurrent neural
language and translation models for reranking. We also train
attention-based neural network models and utilize them in
reranking the n-best lists for both phrase-based and hierar-
chical setups. On top of all our systems, we use system com-
bination to enhance the translation quality by combining in-
dividually trained systems. In the SLT track, we additionally
perform punctuation prediction on the automatic transcrip-
tions employing hierarchical phrase-based translation.

1. Introduction
We describe the statistical machine translation (SMT) sys-
tems developed by RWTH Aachen University for the eval-
uation campaign of IWSLT 2015. We participated in the
machine translation (MT) track and the spoken language
translation (SLT) track for the German→English language
pair. A combination of several single machine translation
engines has proven to be highly effective on previous joint
submission, e.g. [1, 2], and a similar approach is used for
this task. We train individual systems using state-of-the-art
phrase-based and hierarchical phrase-based translation en-
gines. Each single system is a pipeline including either a
phrase-based or a hierarchical decoder with additional mod-
els such as hierarchical reordering models, word class (clus-
ter) language models, joint translation and reordering mod-
els, discriminative phrase training and reranking with differ-
ent neural network models. For the spoken language trans-
lation task, the ASR output is enriched with punctuation and
case information. The enrichment is performed by a hierar-

chical phrase-based translation system.
This paper is organized as follows. In Sections 2.1

through 2.3 we describe our translation software and base-
line setups. Sections 2.4 and 2.5 provide further details about
our joint translation and reordering models and discrimina-
tive phrase training, and sections 2.6, 2.7, and 2.8 describe
the neural network models used in our translation systems,
which are very effective in the shared task. Sections 2.9 ex-
plains the system combination pipeline applied on the indi-
vidual systems for obtaining the combined system. Our ex-
periments for each track are summarized in Section 3 and we
conclude with Section 4.

2. SMT Systems

For the IWSLT 2015 evaluation campaign, RWTH utilizes
state-of-the-art phrase-based and hierarchical translation sys-
tems. GIZA++ [3] is employed to train word alignments. We
used MultEval [4] to evaluate our systems on the BLEU [5]
and TER [6] measures. Due to using MultEval, BLEU scores
are case-sensitive and TER scores are case-insensitive.

2.1. Phrase-based Systems

Our phrase-based decoder is the implementation of the
source cardinality synchronous search (SCSS) procedure de-
scribed in [7] in RWTH’s open-source SMT toolkit, Jane
2.31 [8], which is freely available for non-commercial use.
We use the standard set of models with phrase translation
probabilities and lexical smoothing in both directions, word
and phrase penalty, distance-based reordering model, n-gram
target language models and enhanced low frequency feature
[9]. The parameter weights are optimized with MERT [10]
towards the BLEU metric. Additionally, we make use of a hi-
erarchical reordering model (HRM) [11], a high-order word
class language model (wcLM) [12], a joint translation and re-
ordering model (cf. Section 2.4), a maximum expected BLEU
training scheme (cf. Section 2.5) and reranking with different
neural network models (cf. Sections 2.6, 2.7 and 2.8).

1http://www-i6.informatik.rwth-aachen.de/jane/
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2.2. Hierarchical Phrase-based System

For our hierarchical setups, we also employ the open source
translation toolkit Jane 2.3 [13]. In hierarchical phrase-based
translation [14], a weighted synchronous context-free gram-
mar is induced from parallel text. In addition to contigu-
ous lexical phrases, hierarchical phrases with up to two gaps
are extracted. The search is carried out with a parsing-based
procedure. The standard models integrated into our Jane sys-
tems are phrase translation probabilities and lexical smooth-
ing probabilities in both translation directions, word and
phrase penalty, binary features marking hierarchical phrases,
glue rule, and rules with non-terminals at the boundaries,
enhanced low frequency feature and n-gram language mod-
els. We utilize the cube pruning algorithm [15] for decod-
ing. Reranking the n-best lists using neural network models
is also employed for our hierarchical systems.

2.3. Backoff Language Models

Both phrase-based and hierarchical translation systems use
three backoff language models that are estimated with the
KenLM toolkit [16] and are integrated into the decoder as
separate models in the log-linear combination: A large gen-
eral domain 5-gram LM, an in-domain 5-gram LM and a 7-
gram word class language model (wcLM). All of them use
interpolated Kneser-Ney smoothing. For the general domain
LM, we first select 1

2 of the English Shuffled News, French
Shuffled News and both the English and French Gigaword
corpora by the cross-entropy difference criterion described
in [17]. The selection is then concatenated with all available
remaining monolingual data and used to build an unpruned
language model. The in-domain language model is estimated
on the TED data only. For the word class LM, we train 200
classes on the target side of the bilingual training data using
an in-house tool similar to mkcls. With these class defini-
tions, we apply the technique shown in [12] to compute the
wcLM on the same data as the general-domain LM.

2.4. Joint Translation and Reordering Models in Phrase-
Based System

Joint translation and reordering (JTR) model [18] is intro-
duced into the log-linear framework of our phrase-based sys-
tem in order to include lexical and reordering dependencies
beyond phrase-boundaries. The JTR model allows for more
context than the previously developed extended translation
model [19]. The unique JTR sequences are obtained by con-
verting the full bilingual data and the corresponding Viterbi
alignments. We train count-based 7-gram models with modi-
fied Kneser-Ney smoothing [20] on the JTR sequences using
the KenLM toolkit [16].

In order to have the necessary information about the
JTR sequences available during decoding, we annotate each
phrase-table entry with the corresponding JTR sequence.
Within the phrase-based decoder, we extend each search state
such that it additionally stores the JTR model history. Dur-

ing decoding, a reordering token has to be appended to the
beginning of the hypothesized JTR sequence, if the align-
ment step from the previous JTR token in the history to the
current token is non-monotone.

Including the JTR model improved our phrase-based
baseline system by 0.7 BLEU on tst2013.

2.5. Maximum Expected BLEU Training

Discriminative training is a powerful method to learn a large
number of features with respect to a given error metric. In
this work we learn two types of features under a maximum
expected BLEU objective [21]. We used the TED portion of
the data for discriminative training, since it is high quality
in-domain data of reasonable size. This makes training fea-
sible while at the same time providing an implicit domain
adaptation effect. For our gradient based update method we
generate 100-best lists on the training data which are used as
training samples similar to [21]. A leave-one-out heuristic
[22] is applied to circumvent over-fitting. Here, we follow
an approach similar to [23]. Each feature type is first dis-
criminatively trained, then condensed into a single feature
for the log-linear model combination and finally optimized
with MERT. We simultaneously train phrase pair features and
phrase-internal word pair features, adding two models to the
log-linear combination. In the tables in Section 3 we denote
the maximum expected BLEU training as MaxExpBleu.

2.6. Feed-Forward Neural Network Models

We use four feed-forward neural network (FFNN) models
with similar structure as the models used by [24, 25]. The
models and following neural network models are applied for
reranking 1000-best lists. The new weights are trained with
one additional MERT iteration.

All networks are trained with different input features or
layers:

• Language model (LM), the 7 last words on the target
side, with two hidden layers (1000 and 500 nodes)

• Joint model (JM), the 5 source words around the
aligned source word (2 before the aligned word, and
2 after it) and the 4 last words on the target side, with
two hidden layers (1000 and 500 nodes)

• Translation model (TM), the 5 source words around
the aligned source word, with two hidden layers (1000
and 500 nodes)

• Translation model (TM), the 5 source words around
the aligned source word, with three hidden layers
(2000, 2000, and 1000 nodes)

The output layer in all cases is a softmax layer with a short
list of 10000. All remaining words are clustered into 1000
classes, and the corresponding class probabilities are pre-
dicted. The neural network was implemented using Theano
[26, 27].
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Figure 1: Architecture of the deep recurrent (a) language model, and (b) bidirectional translation model. By (+) and (−), we
indicate a processing in forward and backward time directions, respectively. A single source projection matrix is used for the
forward and backward branches.

2.7. Recurrent Neural Network Models

Our systems apply reranking on 1000-best lists using recur-
rent language and translation models. The recurrency is han-
dled with the long short-term memory (LSTM) architecture
[28] and we use a class-factored output layer for increased
efficiency as described in [29]. All neural networks are
trained using 2000 word classes. In addition to the recur-
rent language model (RNN-LM), we apply the deep bidirec-
tional word-based translation model (RNN-BTM) described
in [30]. This requires a one-to-one word alignment, which is
generated by introducing ε tokens and using an IBM1 trans-
lation table. We apply the bidirectional version of the trans-
lation model, which uses both forward and backward recur-
rency in order to take the full source context into account
for each translation decision. Two language models are used
for reranking, one is trained on the in-domain data, and the
other on the entire monolingual data. The in-domain lan-
guage model is set up with 300 nodes in both the projection
and the hidden LSTM layer, while the general-domain lan-
guage model is set up with 500 nodes in both layers. The
general-domain language model is the same model which
was used in the IWSLT 2014 evaluations [31]. For the BTM,
the in-domain bilingual data is used for training. Further-
more, we use 200 nodes in all layers, namely the forward
and backward projection layers, the first hidden layers for
both forward and backward processing and the second hid-
den layer, which joins the output of the directional hidden
layers. The architecture of the LM and BTM networks are
shown in Figure 1. The neural network was implemented
using the RWTHLM toolkit.2

2https://www-i6.informatik.rwth-aachen.de/web/
Software/rwthlm.php
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Figure 2: System A: the large building; System B: the large
home; System C: a big house; System D: a huge house; Ref-
erence: the big house.

2.8. Attention Based Recurrent Neural Network

The neural network models described in Section 2.6 and Sec-
tion 2.7 are either used as pure language models or rely on
the alignments given by the underlying system. To avoid this
dependency on the alignment while maintaining the transla-
tion model we also use an attention-based recurrent neural
network model as proposed in [32]. The model uses gated
recurrent units as proposed by [33]. They have comparable
properties to the LSTM architecture used by the recurrent
neural networks in Section 2.7. We use a bidirectional layer
on the source side with 1000 nodes for each direction and a
unidirectional model with 1000 nodes for the target side. The
GroundHog toolkit3 was used to train two models, one on the
in-domain data and one on the full data.

2.9. System Combination

System combination is applied to produce consensus trans-
lations from multiple hypotheses which are obtained from
different translation approaches. The consensus translations
outperform the individual hypotheses in terms of translation
quality. A system combination implementation which has
been developed at RWTH Aachen University [34] is used to

3https://github.com/lisa-groundhog/GroundHog
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combine the outputs of different engines.
The first step in system combination is generation of con-

fusion networks (CN) from I input translation hypotheses.
We need pairwise alignments between the input hypotheses,
and the alignments are obtained by METEOR [35]. The hy-
potheses are then reordered to match a selected skeleton hy-
pothesis in terms of word ordering. We generate I different
CNs, each having one of the input systems as the skeleton
hypothesis, and the final lattice will be the union of all I gen-
erated CNs. In Figure 2 an example of a confusion network
with I = 4 input translations is depicted. The decoding of a
confusion network is finding the shortest path in the network.
Each arc is assigned a score of a linear model combination
of M different models, which include word penalty, 3-gram
language model trained on the input hypotheses, a binary pri-
mary system feature that marks the primary hypothesis, and
a binary voting feature for each system. The binary voting
feature for a system is 1 iff the decoded word is from that
system, otherwise 0. The different model weights for system
combination are trained with MERT.

3. Experimental Evaluation

3.1. Machine Translation (MT) Track

For the German→English machine translation task, the word
alignment is trained with GIZA++ and we apply the phrase-
based decoder, as well as the hierarchical phrase-based de-
coder implemented in Jane. We use all permissible parallel
data for the IWSLT 2015 systems in training the translation
model. In a preprocessing step the German source is decom-
pounded [36] and part-of-speech-based long-range verb re-
ordering rules [37] are applied. The baseline contains three
backoff language models, namely a general-domain LM, an
in-domain LM and a word class LM as described in Section
2.3, and the hierarchical reordering model (HRM). In addi-
tion, we tune our systems on the development set dev2012,
which contains manual transcriptions from German talks and
is more similar to the evaluation data. As tst2013 is also
a manual transcription of TED talks, we will focus on the re-
sults for the dev2012-tuned system on this evaluation data
set. The performance of the individual MT systems based on
phrase-based and hierarchical phrase-based decoders is sum-
marized in Table 1.

The phrase-based baseline reaches a performance of 28.0
BLEU on tst2013. Adding the joint translation and re-
ordering (JTR) models to baseline increases the BLEU scores
to 28.7 on tst2013. Introducing maximum expected BLEU
training on top of JTR improves the translation quality by 0.5
BLEU on tst2013. We also apply different neural network
models for reranking the 1000-best lists obtained by phrase-
based system which is augmented with JTR. We use the four
feed-forward models described in Section 2.6, and they each
improve the JTR system by 0.1 to 0.3 BLEU. Moreover, we
employ recurrent models described in Section 2.7, and de-
pending on the model they can also improve the performance

by up to 0.4 BLEU. Introducing the attention-based recurrent
model (cf. Section 2.8), enhances the translation quality of
the phrase-based system with JTR by 0.8 BLEU. So far all
the neural network models were applied individually. In the
last two rows of the phrase-based section in Table 1, we use
all the above neural networks simultaneously for reranking
the n-best lists of the phrase-based system including JTR,
and we improve the translation quality by 1.1 and 1.2 BLEU
on tst2013 in two different optimization runs.

The hierarchical baseline system reaches a performance
of 28.8 BLEU on tst2013. We tried to add source reorder-
ing to the hierarchical baseline. Athough it does not improve
the translation quality of tst2013, we keep it as an in-
dividual system for our system combination pipeline. Ap-
plying a feed-forward neural network language model and a
recurrent neural network language model for reranking the
1000-best lists obtained by hierarchical baseline system im-
proves the translation quality by 0.1 and 0.2 BLEU, respec-
tively. We also use the attention-based recurrent neural net-
work in reranking, and it boosts the BLEU scores by 1 and 1.2
points in two different optimization runs. Using attention-
based networks trained on the in-domain data also enhances
the translation quality of baseline by 0.5 BLEU. Furthermore,
we use all the above neural networks at the same time for
reranking the n-best lists of the hierarchical baseline system,
and the improvement on tst2013 is 1.1 BLEU.

The final submission system for the MT track of IWSLT
2015 German→English task is the combination of all single
systems in Table 1 using the methods described in Section
2.9. In total, 20 systems are combined, and the parameters
are tuned on dev2012. The performance of the combined
system is summarized in Table 2. Comparing to our 2014
submission system, we have an improvement of 1.2 BLEU
on tst2014.

3.2. Spoken Language Translation (SLT) Track

RWTH participated in the German→English SLT task.
Punctuation marks and case information are reintroduced by
applying a monolingual hierarchical phrase-based translation
system as described in [38]. In such a system, hierarchical
phrases with a maximum of one non-terminal symbol are ex-
tracted and the feature weights can be tuned with MERT. In
addition, we add a word class language model (wcLM) to the
log-linear model combination.

Table 3 shows a comparison of monolingual phrase-
based [39] and hierarchical translation systems tuned on dif-
ferent optimization criteria.

For this task, tuning a monolingual hierarchical transla-
tion system on BLEU seems to work better than optimizing
towards F2-Score. In any case it outperforms the phrase-
based system. Furthermore, applying a word class language
model (wcLM) seems to help as well in terms of BLEU and
TER.

Since punctuation prediction and recasing are applied be-
fore the actual translation, our translation system can be kept
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Table 1: Results of the individual systems for the German→English MT task. BLEU scores are case-sensitive and TER scores
are case-insensitive.

dev2012 tst2010 tst2011 tst2012 tst2013
Individual Systems BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

SCSS Baseline 25.3 59.6 29.8 48.8 35.4 43.4 29.7 48.9 28.0 51.1
+ JTR model 26.4 58.6 30.0 48.4 36.2 42.6 30.3 48.1 28.7 50.3

+ MaxExpBleu 26.8 57.7 30.9 47.2 37.0 41.8 30.7 47.5 29.2 49.9
+ FFNN-LM 26.6 58.3 30.4 48.4 36.6 42.4 30.6 48.3 29.0 50.1
+ FFNN-JM 26.7 58.2 30.1 48.4 36.3 42.4 30.7 48.0 28.8 50.4
+ FFNN-TM 26.7 58.2 30.1 48.4 36.4 42.2 30.4 48.1 28.9 50.1
+ FFNN-TM* 26.4 58.3 31.3 47.6 37.4 41.7 31.6 47.3 29.0 50.1
+ RNN-LM 26.8 58.3 30.0 48.4 36.1 42.6 30.4 48.3 29.1 50.0
+ RNN-LM-InDomain 26.3 58.4 30.4 48.3 36.6 42.3 30.5 48.1 28.2 50.9
+ RNN-BTM 26.7 57.8 30.8 47.7 37.3 41.7 31.2 47.2 29.1 49.9
+ RNN-Attention 27.0 57.9 31.5 47.1 38.0 41.2 31.8 46.8 29.5 49.6
+ AllAboveNNs 27.4 57.1 31.2 47.2 36.7 42.0 31.6 47.2 29.9 49.0
+ AllAboveNNs† 27.9 56.5 31.8 46.5 37.6 41.1 31.5 46.7 29.8 48.9

Hierarchical Baseline 25.3 60.0 30.2 49.3 35.3 44.0 30.1 49.0 28.8 51.6
+ SrcReordering 25.7 59.2 30.0 49.1 35.7 43.6 30.0 48.9 28.4 51.1
+ FFNN-LM 25.4 60.3 30.1 49.4 35.5 43.8 30.0 49.3 28.9 51.7
+ RNN-LM 25.9 60.0 29.9 49.4 35.2 43.7 30.1 49.2 29.0 51.4
+ RNN-Attention 26.4 59.3 31.4 48.2 36.5 42.9 31.4 47.8 30.0 50.5
+ RNN-Attention† 26.4 59.3 30.6 48.9 35.8 43.6 30.6 48.6 29.8 50.6
+ RNN-Attention-InDomain 26.3 59.0 30.8 48.5 36.0 43.2 30.8 48.3 29.3 50.9
+ AllAboveNNs 26.7 58.6 31.9 47.6 36.9 42.4 31.8 47.3 29.9 50.4

* This FFNN-TM has three hidden layers. The other FFNNs have two hidden layers. (cf. Section 2.6)
† A different optimization run.

Table 2: Results of the combined system for the German→English MT task submission. tst2014 and tst2015 results are
computed by the task organizers. BLEU scores are case-sensitive and TER scores are case-insensitive.

dev2012 tst2013 tst2014 tst2015
System BLEU TER BLEU TER BLEU TER BLEU TER

Best Individual System 27.4 57.1 29.9 49.0 25.2 56.4 31.1 48.3
Combined System (2015 Submission) 28.2 57.0 30.5 49.0 26.2 55.2 31.5 47.1
2014 Submission 27.0 57.2 27.6 52.1 25.0 55.5 - -

Table 3: Results of the German→English SLT task. Scores for tst2015 (case-sensitive) are computed by the task organizers.

Prediction Optimization dev2012 tst2013 tst2015
System Method Criterion BLEU TER BLEU TER BLEU TER

SCSS Baseline phrase-based F2 20.5 62.6 18.6 63.7 - -
BLEU 20.0 65.1 18.4 65.8 - -

hierarchical F2 20.9 62.1 18.7 63.4 - -
BLEU 20.9 62.5 19.0 63.4 - -

+ wcLM BLEU 21.3 61.7 19.1 62.8 - -
+ AllAboveNNs + wcLM BLEU 21.6 61.1 19.8 62.4 18.8 65.2
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completely unchanged and we are able to use our final sys-
tem from the MT track directly. We use SCSS Baseline +
AllAboveNNs (cf. Table 1) for our final submission.

4. Conclusion
RWTH participated in the MT and SLT tracks for the
German→English IWSLT 2015 evaluation campaign.

The baseline systems for the MT track utilize our state-
of-the-art phrase-based and hierarchical translation decoders
and we were able to improve them by applying maximum
expexted BLEU training and employing several neural net-
work models for reranking the n-best lists. We built sev-
eral single machine translation engines which are based on
either phrase-based or hierarchical decoders, and combined
all the built systems using our system combination pipeline.
We achieve a performance of 26.2 in BLEU and 55.2 in
TER for tst2014 and 31.5 in BLEU and 47.1 in TER for
tst2015, and we improve the BLEU scores by 1.2 point on
the tst2014 compared to our 2014 system.

For the SLT track, the ASR output was enriched with
punctuation and casing information by a hierarchical trans-
lation system.
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Abstract
This report summarizes the MITLL-AFRL MT, ASR

and SLT systems and the experiments run using them
during the 2015 IWSLT evaluation campaign. We build
on the progress made last year, and additionally experi-
mented with neural MT, unknown word processing, and
system combination. We applied these techniques to
translating Chinese to English and English to Chinese.
ASR systems are also improved by reining improve-
ments developed last year. Finally, we combine our ASR
and MT systems to produce a English to Chinese SLT
system.

1. Introduction
During the evaluation campaign for the 2015 Interna-
tional Workshop on Spoken Language Translation (IWSLT
’15) [1] our experimental eforts in machine translation
(MT) centered on 1) the addition of hierarchical decod-
ing systems 2) reranking n-best lists with a neural net
encoder-decoder 3) post-processing of unknown words
in translation output and 4) system combination.

Experimental eforts for the automatic speech recog-
nition (ASR) task focused on using cutting edge neural
net techniques and the combination of HTK and Kaldi-
based ASR systems.

We combine both eforts to produce a system for
the spoken language translation (SLT) task. Various
segmentation and punctuation strategies were explored.

This paper is structured as follows. Section 2 presents
our work on the MT task, and discusses each of the
techniques mentioned above, ending with a discussion
of submitted systems. Our work on the ASR task is dis-
cussed in Section 3. Finally, our work on the SLT task
is discussed in Section 4.

†This material is based upon work supported by the Air Force
Research Laboratory under Air Force Contract No. (FA8721-05-
C-0002 and/or FA8702-15-D-0001). Any opinions, indings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily relect the views
of the Air Force Research Laboratory.

2. Machine Translation
2.1. Data Usage

Unless otherwise noted, data described in this section
originates from the WMT15 website1. We used the par-
allel in-domain data supplied by WIT3 [2]. In Chinese–
English, we additionally used the Yandex corpus2, Com-
mon Crawl, Wiki Headlines, News Crawl, and the LDC
Gigaword corpus as sources of monolingual English data
for language model training. In English–Chinese we uti-
lized the Chinese portion of the MultiUN corpus as an
additional source of language model training data.

2.2. Data Preprocessing and Cleanup

As in past years, we applied a cleaning process to the
training data as previously described in [3]. Chinese was
segmented with the Stanford Segmenter [4] using both
Chinese Treebank (CTB) and Peking University (PKU)
models.

2.3. Training

2.3.1. Phrase and Rule Table Training

We used the default Moses scripts when training phrase
and rule tables. For Chinese to English, we increased
the size of the training corpus by concatenating out-
put from both the CTB and PKU segmentation models
while simply repeating the English portion of the corpus.
This allows us to extract phrases for a greater number
of phrases than one segmentation alone. We also experi-
mented with outputting the k-best segmentation choices
for a model while repeating the English portion.

Phrase and rule tables are trained with default Moses
scripts or our custom MT pipeline driver. Good-Turing
smoothing[5] was applied to both rule and phrase tables.

1http://www.statmt.org/wmt15/translation-task.html
2https://translate.yandex.ru/corpus?lang=en
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2.3.2. Language Model Training

We reuse our BigLM15 from our WMT15 shared trans-
lation task submission[6] as our main English machine
translation language model. The English data sources
listed in Section 2.1 were used to train a very large 6-
gram language model. For Chinese, we take a similar
approach to English, using the TED in-domain parallel
training data and the Chinese portion of the MultiUN
corpus. kenlm [7] was used to train 6-gram models in
both languages. These models were then binarized and
stored on local solid-state disks for each machine in our
cluster to improve load time and reduce ileserver traic.

2.4. Baseline MT System

Our system implements a fairly standard statistical ma-
chine translation (SMT) architecture. It consists of the
following:

• Moses phrase-based [8] or hierarchical decoding
with the incremental-search algorithm [9]

• Stanford Chinese character segmentation [4]
• Hierarchical mslr lexical reordering [10] for phrase-

based systems
• Minimal phrase table [11]
• 7-gram brown-cluster language model with 80 classes
• BigLM15 [6] for English, consisting of WMT newscrawl

data, europarl, news commentary
• Drem optimization [12]
• Recurrent neural net language model (RNNLM)

rescoring [13]

2.5. Neural MT methods

2.5.1. Chinese to English

We reranked our n-best lists using an end-to-end neural
MT system: our own in-house Torch7 [14] implementa-
tion of Sutskever et al [15]’s LSTM encoder-decoder ap-
proach. This system was trained using varying amounts
of out-of-domain UN data, followed by training on TED
data. In the following table, the UN sentences were
ranked according to bilingual cross-entropy diference
[16] (using RNNLM for the language model component)
and the top N were chosen to pretrain the network.
Once validation error settled down, the networks were
then trained over the 200,000 TED training examples.
The diferent models that have been trained can be seen
in Table 1. In common among all of them were vocab
selection: vocab entries were taken if they appeared at
least 10 times in TED, or 100 times in UN, or 5 times
in TED and 20 times in UN. Reranking results for in-
dividual systems, as well as pairwise combinations, can
be seen in Tables 1 and 2.5.1.

Using the best scoring encoder-decoder (#3), and
the best scoring combination, we were able to rerank the

id d N dev ppl BLEU
0 4 2.5M 27.15 16.89
1 1 1M 30.01 16.68
2 2 5M 25.54 16.92
3 2 1M 28.26 16.97
4 1 2.5M 27.98 16.62
5 2 2.5M 24.21 16.73

Table 1: Perplexity on dev2010 (network validation
cost), and cased BLEU on tst2013. d = LSTM depth
and N = cross-entropy ilter size for UN data.

0 2 3 4 5
0 - 16.90 16.89 16.77 16.93
2 - 17.00 16.69 16.96
3 - 16.75 16.89
4 - 16.84
5 -

Table 2: Cased BLEU on tst2013 for combinations of
encoder-decoders, numbered as in Table 1.

n-best list from our best hierarchical moses system, and
achieved signiicant gains. In particular, we increased
the score from 16.94 to 17.60 cased BLEU on tst2013
for our best hierarchical system (see Table 4).

2.5.2. English to Chinese

For the English to Chinese task, we achieved gains by
using the Neural Network Joint Model (NNJM [17]),
and additionally by reranking using RNNsearch [18],
the Montreal LISA-lab attention model system. The
NNJM was trained using our own in-house implemen-
tion in Theano [19]. We integrated NNJM decoding into
Moses as a feature function, utilizing self-normalization
and precomputation to allow reasonable runtimes. This
gave us a gain of approximately 0.2 BLEU over a strong
baseline including factored models and RNN rescoring.
For RNNsearch, we used GroundHog3 to train a model,
and to compute scores over an n-best list produced by
our conventional MT systems. The network sizes used
were GroundHog defaults. Like our Chinese to English
Torch system, the GroundHog system used MultiUN
data in the same way. This gave us an additional 0.4
BLEU gain. A summary of results can be seen in Table
3.

2.6. System combination

This year we experimented with system combination
techniques based on Rosti et al [20], a well established
technique in machine translation. Our only additional

3https://github.com/lisa-groundhog/GroundHog
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En-Zh System char BLEU
Baseline 20.37
+ 400 Class Factored LM 20.52
+ RNNLM 21.23
+ NNJM 21.42
+ GroundHog 2M 21.64
-/+ GroundHog 4M 21.85

Table 3: English–Chinese system additions

id Description BLEU
0 Hiero, 6-iter Drem Dev10, CLM 16.50
1 (0) + ixed wide beam 16.88
2 (0) + bigdev 16.94
3 (2) + enc-dec 17.60
4 (2) + 3-iter Drem variation 16.60
5 (2) + 6-iter Drem variation 16.66
6 Hiero Incsearch, bigdev, no rescoring 15.58
7 PB, bigdev, no rescoring 14.38
8 PB, ted+nyt CLMs, enc-dec 17.06

Table 4: Some notes on the systems: CLM = brown
cluster language model, bigdev = dev2010 + tst2010
+ tst2011 + tst2012. TED factored LM has 80 classes,
nyt (LDC English Gigaword) has 600. All used a varia-
tion of LMs trained on WMT’15 data.

contribution was in sub-selecting systems with which
to perform system combination. Among our diferent
collaborators, we managed to produce over 30 systems
with 400+ decode outputs. With the goal of choos-
ing only 9, we irst iltered out systems with scores less
than some minimum acceptable value (in our case, 16.50
cased BLEU on tst2013). Then, we constructed a dis-
tance metric as 1−BLEU(x, y) and performed k-medoids
clustering to choose systems that were suiciently dif-
ferent from each other.

Table 4 lists diferent systems used for combination,
and Table 5 lists a sampling of combinations tried and
their case-sensitive BLEU scores on tst2013.

Combo id Systems Used tst2013 BLEU
0 0+1+2+4+8 17.62
1 0+1+3+5+8 17.64
2 0+1+2+4+5+8 17.64
3 0+1+3+4 17.66
4 0+1+5+8 17.74

Table 5: Top 5 systems out of system combination

2.7. Unknown Word Processing

As in our WMT15 submission [6], we employed unknown
word post-processing to handle any unknown words in
the translation instead of simply dropping these words.
To test the efectiveness of this approach, we decode all
test sets where references are available with a bare-bones
Moses hierarchical decoding system where no rescoring
features are employed. The resulting gains measured
in uncased BLEU are shown in Table 6. We note that
the improvements in BLEU are smaller for the Chinese–
English language pair when compared to our eforts in
processing unknown words in other language pairs, such
as Russian–English[6], but we feel that employing these
processes are still worthwhile due to the positive impact
on readability of the machine translation output. Our
technique adapted to Chinese–English is described in
the following section.

2.7.1. Chinese to English post-processing

The named entity list used for named entity post-processing
comes from manual translations of named entities found
in train 2014. It was expanded by adding versions of
the Chinese name with the common nouns stripped of.
A list of 29 typical common nouns endings of named
entity phrases was compiled. Common nouns like: 病
(disease),县 (county),族 (race/people),实验室 (labora-
tory), 湖 (lake), 集团 (corporation), 群岛 (archipelago)
can sometimes be optionally included or omitted by the
speaker or optionally split of of entities by word seg-
menters or named entity taggers.

The output is searched for words containing any Chi-
nese characters. Any unknown word consisting of a
single character is deleted since single-character entities
are rare in this domain (and segmentation errors are a
more common explanation for unknown single-character
words). If the word is not found in the named entity
word list, the list is searched again for the entity with
common nouns stripped. Remaining unknown words are
deleted from the output.

Test Set base. BLEU post. BLEU ∆ BLEU
tst2013 16.09 16.19 +0.10
tst2012 13.64 13.65 +0.01
tst2011 15.21 15.29 +0.08
tst2010 12.43 12.50 +0.07

Table 6: NE post-processing improvement measured in
uncased BLEU.

2.8. Submission

Our primary Chinese–English MT submission is system
#3 in Table 4. We submitted system #4 in Table 5 as
contrastive. For English–Chinese, the primary system
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was the last entry in Table 3.
These systems were used to decode the tst2014 and

tst2015 test sets. Results from scoring performed by
the workshop organizers are listed in Table 7 including
baseline system scores as determined by the organizers.

System Lang Pair Test Set BLEU
Baseline Zh-En tst2014 11.43
Primary Zh-En tst2014 14.13
Contrastive Zh-En tst2014 13.35
Baseline Zh-En tst2015 13.59
Primary Zh-En tst2015 16.86
Contrastive Zh-En tst2015 15.05
Baseline En-Zh tst2014 17.74
Primary En-Zh tst2014 18.51
Baseline En-Zh tst2015 21.86
Primary En-Zh tst2015 24.31

Table 7: Oicial results measured in cased BLEU.

3. ASR
Acoustic training data for our ASR sytems were har-
vested from 1787 TED talks. We applied the same align-
ment and closed caption iltering process as we did in
IWSLT 2013 [21], yielding 336 hours of audio.

An i-vector system was irst developed on the TED
data using Hidden Markov Model Toolkit(HTK)4 Mel-
Frequency Cepstral Coeiect (MFCC) features and the
MIT-LL i-vector software. The elements of the 50 di-
mensional MFCC vector were based on those used by the
ALIZE toolkit [22]. Non-speech frames were removed
using the word alignments from the closed caption il-
tering process, and the features were normalized to zero
mean and unit variance on a per-speaker basis. The uni-
versal background model included 1024 Gaussians with
diagonal covariances, and the i-vector dimension was set
to 100. Lastly, the Eigen Factor Radial method [22] was
applied to normalize the i-vectors.

A hybrid deep neural-net(DNN) - hidden Markov
model(HMM) speech recognition system was developed
using Theano and a version of HTK that we modiied
according to the method of [23]. A context window
of 9 frames was used on the input, and the speaker-
speciic i-vector was appended to each set of stacked fea-
tures [24]. The feature set consisted of 24 log ilterbank
outputs with delta and acceleration coeicients; the fea-
tures were normalized to zero mean and unit variance
on a per-speaker basis. The DNN included 5 hidden
layers with 1024 rectiied linear units per hidden layer
and 8000 output units. The network weights were ini-
tialized as suggested in [25]. Cross-entropy training was

4http://htk.eng.cam.ac.uk

performed using a minibatch size of 512 and an initial
learning rate of 0.0005 that was adjusted according to
the QuickNet newbob algorithm.5

LM data selection was implemented using the same
procedure as our IWSLT 2014 system. Interpolated tri-
gram and 4-gram LMs were estimated on TED, 1/8 of
Gigaword, and 1/8 of News 2007–2014 using the SRILM
Toolkit. A RNN maximum entropy LM was estimated
on the same set of training texts using the RNNLM
Toolkit. The network included 160 hidden units, 300
classes in the output layer, 4-gram features for the direct
connections, and a hash size of 109. The LM vocabulary
included 100,000 words.

Automatic segmentation of the test data was per-
formed using the same procedure as in IWSLT 2014[3],
except that we padded the speech end points by 0.25
seconds (instead of 0.15 seconds). Recognition lattices
were produced using HDecode with the trigram LM and
then rescored with the 4-gram LM. Next, 1000-best lists
were extracted from each lattice and rescored with the
RNN LM. The inal LM scores were obtained by linearly
interpolating the log probabilites from the 4-gram and
RNN LM. Interpolation weights of 0.25 for the 4-gram
and 0.75 for the RNN were chosen based on results from
previous experiments.

Adaptation data was selected for each speaker us-
ing conidence scores [26]. In our work, we estimated
conidence scores at the acoustic frame level by aligning
the 20-best hypotheses for each utterance and count-
ing the number of matching HMM shared states. Next,
speaker-dependent DNNs were estimated on frames with
a conidence score of 0.9 or higher. For each speaker,
the initial DNN was updated using a learning rate of
0.0000625 and a single epoch of training. The test set
was then decoded a second time and LM rescoring was
reapplied.

A second ASR system was built using the Kaldi open
source speech recognition toolkit [27]. This system was
based on the LIUM recipe as released with Kaldi un-
der egs/tedlium/s5. The details of the particular sys-
tem used for the IWSLT 2015 Kaldi-based ASR sys-
tem are as follows. The acoustic model training data
and LM data matched exactly what was used as previ-
ously described in the HTK ASR system. The irst step
was to build a network to produce bottleneck (BN) fea-
tures [28]. MFCCs from 40 ilterbanks and 3 pitch fea-
tures were used as input to a neural network of 2 hidden
layers each of dimension 1500 with a 40 dimension BN
layer producing the output features. These 40 BN fea-
tures were then used to build a GMM-HMM. Speaker
adaptive training was then conducted on this GMM-
HMM using feature-space maximum likelihood linear re-
gression (fMLLR) transforms. These models were then
used to train a DNN of the Deep Belief Network (DBN)

5http://www.icsi.berkeley.edu/Speech/faq/nn-train.html
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ASR System Decode 4-gram 4-gram+RNN
HTK irst-pass 13.7 13.0 11.9
HTK 11.3 10.9 10.0
Kaldi 13.3 12.6 11.4

Table 8: English tst2013 WER.

variety described as having 6 hidden layers with 2048
neurons per layer. Four additional iterations using the
state-level Minimum Bayes Risk (sMBR) discriminative
crierion were then executed. This system was evaluated
using the trigram LM to produce recognition lattices,
which were then rescored with the 4-gram and RNN
LMs as described for the HTK system.

Table 8 shows the WER of each system on tst2013
after evaluating the decoder, rescoring with the 4-gram
LM, and interpolating the 4-gram and RNN LM scores.
For comparison purposes, we included the results of the
HTK system prior to updating the weights of the DNN
(denoted as HTK irst-pass). The inal hypothesis was
selected by applying N-best ROVER to the output from
the HTK system and the Kaldi system. This yielded a
9.4% WER on tst2013 and a 6.6% WER on tst2015.

4. SLT
New for this year, we combine our eforts in ASR and
MT to produce an entry to the SLT task for the English-
Chinese language pair. We use the rover output from
system combination from the ASR task and translate
it with a variant of our best English-Chinese MT sys-
tem. For segmenting the output, we used the segmenta-
tions produced by the ASR system, based on lengths of
pauses. To repunctuate the ASR output, we created a
classiier based on a recurrent neural network. For each
word, the classiier reports which punctuation, if any,
follows it. The output layer is a softmax over a limit
set (period, comma, question mark, exclamation point,
and no punctuation). The inputs to the classiier are
a gated recurrent unit [29] hidden state for the word in
question, as well as its word vector and the word vectors
for the following two words after. Our experimentation
was quite limited, but we observed that (a) having the
word vector as well as the recurrent state for the current
word was helpful, and (b) three layer deep gated recur-
rent unit worked best out of 1-4. The system was trained
on the English side of TED data, with 600-dimensional
word vector size, and vocabulary of about 60K words.
We did not try any other repunctuation techniques.

One of our alternate approaches for adapting ASR
output to MT involves taking the output of the ASR sys-
tem when decoding dev2010 then using the mwerAlign[30]
program to then it the ASR output segments to the En-
glish portion of the dev2010 tuning set. We then tune
the MT system with this new dev set in order to better

match the ASR English output to the English–Chinese
MT system. We submitted this as a contrastive system.

5. Future Research
For future research, we are beginning to look at the
metadata for the individual TED talks. We have looked
at the distribution of dev, test and training talks by date
posted, for example. We are particularly interested in
the way diferent translators may afect the quality of
the translations. The TED website assigns a translator
ID to each translator, which can be used to isolate his
or her talks. The IWSLT iles provide the translator
metadata for the training iles; for the dev and test iles,
it was necessary to look up the translator annotations
in the source iles on the TED Talks website.

We looked at the output for each talk in the test iles
individually, and compared scores for diferent transla-
tors. For example, the scores in cased BLEU for tst2011
are shown in Tables 9 and 10 respectively.

BLEU translator ID Set of Talk ID’s
13.62 221131 1137, 1176, 1160, 1165
16.33 495543 1104, 1115, 1107
16.72 220760 1102, 1171

Table 9: tst2011 scores for multiple talks by a single
translator measured in BLEU.

The individual scores cover a surprising range; one
question we want to explore is whether this relects dif-
iculty in the topic, expertise of the translator, or some
combination of these. In Table 10, we see that a single
translator can have a wide range of BLEU scores over
diferent talks.

Next, we looked at the distribution of these trans-
lators in the training data. For the translators who
did at least two talks in the test sets (tst2010 through
tst2014), we found that some had translated only a few
of the training documents, while others had translated
twenty or more documents as shown in Table 11.

While there is not enough training data by translator
to train an entire system, there is enough data to try
to create an MT system that is tuned to a particular
translator. We compared a system adapted from System
0 from Table 4 with a variant system in which we held
out training iles from a particular translator to use as
a dev set.

This creates four possibilities, as shown in Table
12. We can train on the original training iles, or hold
out the training documents by the speciied translator;
we can tune on dev2010, or on the held out training
documents. We tested this approach using translator
495543 and translator 354776. Translator 495543 had
three talks in tst2011 that scored well in the original
system; translator 364776 had 1 talk in tst2011 that
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BLEU talkid URL translator ID
20.65 1104 eythor_bender_demos_human_exoskeletons 495543
9.95 1096 mark_bezos_a_life_lesson_from_a_volunteer_ireighter 193561

16.66 1102 isabel_behncke_evolution_s_gift_of_play_from... 220760
12.36 1166 alice_dreger_is_anatomy_destiny 831361
11.21 1161 jessi_arrington_wearing_nothing_new 925579
11.64 1137 carlo_ratti_architecture_that_senses_and_responds 221131
15.57 1171 camille_seaman_haunting_photos_of_ice 220760
17.01 1115 mick_ebeling_the_invention_that_unlocked_a_locked... 495543
17.24 1176 jok_church_a_circle_of_caring 221131
13.53 1107 ralph_langner_cracking_stuxnet_a_21st_century... 495543
10.02 1114 morgan_spurlock_the_greatest_ted_talk_ever_sold 354776
15.44 1144 amit_sood_building_a_museum_of_museums_on_the... 250727
16.80 1160 aaron_o_connell_making_sense_of_a_visible_quantum... 221131
12.15 1165 paul_romer_the_world_s_irst_charter_city 221131

Table 10: tst2011 per-talk scores measured in cased BLEU.

Test Train
translator ID docs lines docs lines

221131 4 344 12 1346
1077318 2 330 4 429
495543 3 235 29 3248
250727 3 192 34 3995

1636197 2 167 26 2232
1648682 2 167 7 1022
1213653 2 147 21 2046
1053094 2 122 14 1806
220760 2 84 41 4373

Table 11: Distribution of Translator efort across test
and train sets.

scored poorly in the original system. The held-out data
for translator 495433 had 3248 lines; the held-out data
for translator 354776 had 5335 lines.

When training on the restricted training data, we
see an improvement for both translators in tuning on
the held out data instead of dev2010. However, this
tuning improvement is not enough to ofset an overall
drop in score from the reduction in training data.

Looking at scores for the complete tst2011 test set,
shown in Table 13, we see an expected drop in BLEU
when restricting the training data (Column 1) and we
continue to see an improvement in score when tuning
on one of the tst2011 translators instead of tuning
with dev2010 (Rows 2 and 3). Similar improvements
with translator-speciic tuning were seen for dev2010,
tst2012, and tst2013, even though those test sets do
not contain talks by these particular translators.

Opinions, interpretations, conclusions and recommendations
are those of the authors and are not necessarily endorsed by the
United States Government. Cleared for public release on 26 Oct

docs 1104, 1115, 1107; translator=495543
dev2010 dev=495543

train (all) 15.89 15.29
train – 495543 13.29 14.08

docs 1114; translator=354776
dev2010 dev=354776

train (all) 9.89 8.64
train – 354776 8.77 8.99

Table 12: Efect of translator-speciic tuning on scores
for speciied tst2011 documents reported in cased
BLEU.

dev2010 dev=495543 dev=354776
train (all) 16.70 13.39 11.25
train – 495543 13.94 14.90 –
train – 354776 14.84 – 15.10

Table 13: Efect of translator-speciic tuning on scores
on full tst2011 reported in cased BLEU.
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Abstract

This paper describes the University of Edinburgh’s ma-
chine translation (MT) systems for the IWSLT 2015 evalu-
ation campaign. Our submissions are based on preliminary
systems which are under development for the purpose of lec-
ture translation in the TraMOOC project,1 funded by the Eu-
ropean Union.

We participated in the English→Chinese and the
English→German translation tasks in the MT track, utilizing
only data supplied by the organizers or listed as permissible.
We built phrase-based translation systems for both tasks. For
English→German, we furthermore made use of syntax-based
translation and system combination.

1. Introduction
The University of Edinburgh’s translation engines are based
on the open source Moses toolkit [1]. We set up
phrase-based systems [2, 3] for the English→Chinese and
English→German translation tasks, and additionally a string-
to-tree syntax-based system [4, 5] for English→German.
Our primary submission translations for English→Chinese
are the output of a single phrase-based system, whereas our
primary submission translations for English→German are
the output of a system combination [6] of two phrase-based
systems and one syntax-based system.

The setups for our phrase-based systems have evolved
from the configurations of the engines we built for Edin-
burgh’s participation in last year’s IWSLT evaluation [7] and
in this year’s Workshop on Statistical Machine Translation
(WMT) shared translation task [8].

Edinburgh’s syntax-based systems have recently yielded
state-of-the-art performance on English→German news
translation tasks [9, 10] and have been applied in an IWSLT-
style setting for the first time for our last year’s contrastive
submission [7]. This year, a syntax-based system became
part of our primary submission by contributing input to a sys-
tem combination.

For system combination, we employed the implemen-
tation that has been released as part of the Jane machine

1http://tramooc.eu

translation toolkit [11]. Multiple previous top-ranked sub-
missions to open evaluation campaigns have relied on this
system combination framework [12, 13, 14].

2. System Overview

2.1. Training and Tuning

For both the phrase-based systems and the syntax-based
system, we first preprocess the parallel training data
and then create word alignments by aligning the data
in both directions with MGIZA++ [15]. We use a se-
quence of IBM word alignment models [16] with five it-
erations of EM training [17] of Model 1, three itera-
tions of Model 3, and three iterations of Model 4. Af-
ter EM, we obtain a symmetrized alignment by applying
the grow-diag-final-and heuristic [18, 3] to the two
trained alignments. We extract bilingual phrases that are con-
sistent with the symmetrized word alignment from the paral-
lel training data. In the case of the syntax-based system, we
also need syntactic parses of the target-language side of the
parallel training data in order to extract synchronous context-
free grammar rules.

We train n-gram language models (LMs) with modified
Kneser-Ney smoothing [19, 20]. KenLM [21] is employed
for LM training and scoring, and SRILM [22] for linear LM
interpolation.

Our translation model incorporates a number of differ-
ent features in a log-linear combination [23]. We tune the
feature weights with batch k-best MIRA [24] to maximize
BLEU [25] on a development set. We run MIRA for 25 it-
erations on 200-best lists (phrase-based) or 1000-best lists
(syntax-based).

In our experiments (cf. Section 3) with the phrase-based
system, we commence with a plain baseline which comprises
a small amount of vital features only. We then incrementally
extend the system with further features and more advanced
techniques. Each setup is re-tuned individually to obtain op-
timal feature weights for the respective configuration.
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2.2. Phrase-based System

The features of our plain phrase-based baseline are:

• Phrase translation log-probabilities in both target-to-
source and source-to-target direction.

• Lexical translation log-probabilities in both target-to-
source and source-to-target direction.

• Word penalty.
• Phrase penalty.
• A distance-based distortion cost.
• A 5-gram language model over words. Singleton n-

grams of order three and higher are discarded.

We extract phrases up to a length of five. We prune the
phrase table to a maximum of 100 best translation options
per distinct source side and apply a minimum score thresh-
old τ on the source-to-target phrase translation probability,
with τ = 0.0001 during tuning and τ = 0.00001 during test-
ing. We use cube pruning [26] in decoding. Pop limit and
stack limit are set to 1000 for tuning and to 5000 for test-
ing. A distortion limit of six is enforced during decoding,
and we disallow reordering over punctuation. Furthermore,
Minimum Bayes Risk decoding [27] is employed for testing.

Extensions we experimented with for either
English→German or English→Chinese are:

LRM. A hierarchical lexicalized reordering model [28].
This model estimates the probabilities of orientation
classes for each phrase from the training data. We
use four orientation classes: monotone, swap, left-
discontinuous, and right-discontinuous.

TM factors. Translation model (TM) factors beyond word
surface forms [29, 30]. Factors can for instance be
part-of-speech (POS) tag, morphological tag, or auto-
matically learnt word classes, e.g. from mkcls [31].
Factors can be added on either source side or target
side or both. We do not use a generation step but
merely enrich the phrases with factored annotation.
The annotation is obtained by tagging the training data
prior to phrase extraction. Source-side factors such as
POS or morphological tags can be helpful for disam-
biguating phrases: at decoding time, we annotate the
input text in a preprocessing step, and the decoder only
applies phrases with matching annotation. Target-side
factors can be helpful for providing a longer context
window via n-gram models of higher order over repre-
sentations given by the factors (which we mention next
in this list).

7-gram class-based LM. A 7-gram language model over
mkcls word classes.

7-gram POS LM. A 7-gram language model over part-of-
speech tags.

7-gram morph LM. A 7-gram language model over mor-
phological tags.

Good-Turing smoothing. Good-Turing smoothing of
phrase translation probabilities [32].

Count features. Seven binary features indicating absolute
occurrence count classes of phrase pairs.

Sparse features. Sparse phrase length features, and sparse
lexical features for the top 200 words.

Domain indicators. Binary features indicating the prove-
nance of phrase pairs: if a phrase pair has been seen
in a particular training corpus, a binary indicator asso-
ciated with the respective training corpus fires on ap-
plication of that phrase pair during decoding.

Phrase table fill-up. A foreground phrase table extracted
from in-domain data is filled up with entries from a
background phrase table extracted from all data [33,
34]. An entry from the background table is only added
if the foreground table does not know the respective
phrase identity. A binary feature distinguishes back-
ground phrases from foreground phrases. (The base-
line uses a phrase table extracted from all data.)

5-gram OSM. A 5-gram operation sequence model [35].
5-gram OSM over word classes. A 5-gram operation se-

quence model over mkcls word classes.
5-gram OSMs over factors. Operation sequence models

over various representations given by the factors.
In-domain OSMs. 5-gram operation sequence models over

words and factors, trained on the in-domain portion of
the parallel data only.

Unpruned LM. The baseline 5-gram language model over
words is replaced by a version where singleton n-
grams of order three and higher have not been dis-
carded.

No singleton phrases. Phrase pairs with an occurrence
count of one are removed from the phrase table.

Sparse LR. Sparse lexicalized reordering features [36] with
weights learnt via RPROP with a maximum expected
BLEU objective [37, 38]. The features are added on
top of the standard hierarchical lexicalized reordering
model. We apply features based on all words as well
as word classes with 200 clusters on both source and
target side. Active feature groups are between, phrase,
and stack. We follow a similar training procedure as
suggested by Wuebker et al. [38].2 Maximum ex-
pected BLEU training with RPROP is conducted on
the in-domain fraction of the training data. We train
on 100-best lists. We set the regularization parameter
to 10−5 and use the weights obtained after 50 iterations
of RPROP. Rather than decoding the training data with
leaving-one-out, we utilize a system with no singleton
phrases. The learnt sparse lexicalized reordering fea-
tures are condensed to a single feature per orientation,
as suggested by Auli et al. [37]. A final MIRA run
tunes weights for those condensed features along with
the other features in the log-linear model of the trans-
lation system.

2Our tool for maximum expected BLEU training has been released as
part of the Moses code base on GitHub.
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2.3. Syntax-based System

The syntactic translation model for our string-to-tree sys-
tem conforms to the GHKM syntax approach as proposed
by Galley, Hopkins, Knight, and Marcu [4] with composed
rules [39, 40]. Decoding is carried out with a procedure
based on bottom-up chart parsing. The parsing algorithm is
extended to handle translation candidates and to incorporate
language model scores via cube pruning [26].

Standard features of Edinburgh’s string-to-tree syntax-
based systems are:

• Rule translation log-probabilities in both target-to-
source and source-to-target direction, smoothed with
Good-Turing discounting.

• Lexical translation log-probabilities in both target-to-
source and source-to-target direction.

• Word penalty.
• Rule penalty.
• A rule rareness penalty.
• The monolingual PCFG probability of the tree frag-

ment from which the rule was extracted.
• A 5-gram language model over words.

When extracting syntactic rules, we impose several re-
strictions for composed rules, in particular a maximum num-
ber of 100 tree nodes per rule, a maximum depth of seven,
and a maximum size of seven. We discard rules with non-
terminals on their right-hand side if they are singletons in the
training data. Only the 200 best translation options per dis-
tinct rule source side with respect to the weighted rule-level
model scores are loaded by the decoder. Search is carried out
with a maximum chart span of 25, a rule limit of 500, a stack
limit of 200, and a pop limit of 1000 for cube pruning [41].
During tuning, we constrain the translation options per rule
source side to the top 20 candidates for faster optimization,
and we set the cube pruning pop limit to 500. We config-
ure Moses’ n-best-factor parameter at a value of 100
to avoid short n-best lists.

For our IWSLT English→German syntax-based system,
the target side of the parallel training data is parsed with Bit-
Par [42]. We remove grammatical case and function infor-
mation from the annotation obtained with BitPar and apply
right binarization of the German parse trees prior to rule ex-
traction [43, 44, 45].

The system is adapted to the TED domain by extract-
ing two separate rule tables (from in-domain data and from
out-of-domain parallel data) and merging them with a fill-
up technique [33]. We also integrate a second 5-gram LM
trained on the in-domain corpus into the log-linear com-
bination. Additionally we add soft source syntactic con-
straints [46] and augment the system with non-syntactic
phrases [47].

2.4. System Combination

The Jane machine translation toolkit implements a system
combination approach via confusion network decoding [11].
The hypotheses from individual MT systems are aligned to
each other with METEOR [48]. A confusion network is gen-
erated which represents all combined translations that can
be produced from the set of individual hypotheses. The
optimal combined hypothesis is chosen by finding the best
path through the confusion network. The decision process is
guided by a couple of simple features:

• Binary system voting features.
• A primary system indicator.
• Word penalty.
• A small 3-gram language model trained only on the set

of individual hypotheses.
• A conventional 5-gram language model.

Feature weights are optimized with MERT [49].
We combine three individual systems with this method

for our English→German primary submission.

3. Experiments
3.1. English→German MT

For the English→German MT task, we submitted outputs of
two different phrase-based systems (contrastive 1 and con-
trastive 2), a syntax-based system (contrastive 3), and a sys-
tem combination (primary) of those three single systems. Ta-
ble 1 shows their respective performance in terms of BLEU
scores, along with the official scores [50] of the best last
year’s submission for comparison.

Our English→German systems are trained using mono-
lingual and parallel data from the in-domain WIT3 cor-
pus [52], as well as Europarl [53], MultiUN [54], the par-
allel corpus from the Wikipedia [55] as provided for the
evaluation campaign, the German Political Speeches cor-
pus [56], and the permissible corpora from the WMT shared
translation task [57]. For the systems with factors, annota-
tion exploited in addition to word surface forms is: part-of-
speech tags [58] on the English side; morphological tags [59]
and part-of-speech tags [59] on the German side; and word
classes from mkcls with 50 clusters on both sides.

5-gram LMs over words are estimated over a concate-
nation of all target-language training data, rather than lin-
early interpolating individual LMs over the different corpora.
We found this to perform equally well or better on the given
task. Class-based LMs, POS LMs, and morph LMs, on the
other hand, are linear interpolations of individually trained
LMs.3 Feature weights for all single engines are tuned
on a concatenation of TED.dev2010, TED.tst2010,
TEDX.dev2012, and TEDX.tst2013.4

3Individual LMs over factors are trained with KenLM’s
--discount_fallback --prune '0 0 1' parameters.

4Note that TEDX.tst2013 and tst2013 (= TED.tst2013) are two
different sets.

33

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



en→de tst2011 tst2012 tst2013 tst2014 tst2015

phrase-based (contrastive 1) 28.3 24.7 26.3 23.3 25.4
phrase-based w/o singleton phrases + sparse LR (contrastive 2) 27.9 24.5 26.8 23.3 25.5
syntax-based (contrastive 3) 26.8 23.6 26.1 22.7 24.3
system combination (primary) 28.4 25.6 27.0 24.0 26.0

best IWSLT 2014 submission (EU-BRIDGE [14]) – – 26.2 23.3 –

Table 1: Edinburgh submission system results for the English→German MT task (case-sensitive BLEU scores), and results of the
best IWSLT 2014 submission as reported by Cettolo et al. [50]. The Edinburgh primary submission is a system combination of
the three contrastive systems and was tuned on tst2012.

en→zh tst2012 tst2013 tst2014 tst2015

phrase-based (primary) 21.3 22.9 19.6 25.4

best IWSLT 2014 submission (USTC [51]) – 22.5 21.6 –

Table 2: Edinburgh submission system results for the English→Chinese MT task (character-based BLEU scores), and results of
the best IWSLT 2014 submission as reported by Cettolo et al. [50].

Phrase-based system. Table 3 presents the results
achieved with the plain phrase-based baseline, and the gains
when incrementally adding extensions as described in Sec-
tion 2.2.5 The contrastive 1 submission system outper-
forms the plain baseline by up to +3.6 BLEU points (on
tst2011). If we remove singleton phrases on top of that,
we observe a small gain on tst2013, but performance de-
grades slightly on tst2011 and tst2012. The sparse
lexicalized reordering features trained via RPROP with a
maximum expected BLEU objective (contrastive 2) do not
further affect the results too much.6 However, the con-
trastive 2 submission system outperforms the plain baseline
by +3.5 BLEU points on a different test set (on tst2013).

Syntax-based system. In the syntax-based system, we
utilize neither the parallel corpus from the Wikipedia nor
MultiUN or the German Political Speeches corpus for rule
extraction.7 We only use the target side of the Wikipedia
corpus as LM training data. The development set is the
same as for the phrase-based systems. Our IWSLT string-
to-tree syntax-based system (contrastive 3) is outperformed
by the phrase-based submission systems by a bit more than
one BLEU point on this year’s evaluation set (tst2015), cf.
Table 1. The average BLEU delta on the other test sets is
lower, though.

System combination. The parameters of the system
combination (primary) are optimized on tst2012. The
consensus translation produced by the system combination
boosts the BLEU score by half a point over the best single
system on this year’s evaluation set (tst2015), cf. Table 1.
Improvements on the other test sets vary between +0.1 and

5The order in which extensions are added is not motivated by any specific
rationale other than our personal preference.

6We add the sparse LR to the system without singleton phrases. This
avoids a mismatch with the system used in n-best generation for maximum
expected BLEU training.

7Due to time constraints, these corpora have been omitted for the benefit
of faster training.

en→de tst2011 tst2012 tst2013

phrase-based baseline 24.7 22.0 23.3
+ LRM 25.5 22.0 24.1
+ TM factors 25.3 22.1 23.8
+ 7-gram class-based LM 25.9 22.5 24.2
+ 7-gram POS LM 26.1 22.8 24.6
+ 7-gram morph LM 26.5 22.9 24.9
+ Good-Turing smoothing 26.8 23.6 24.9
+ count features 26.8 23.4 24.9
+ sparse features 26.9 23.7 25.1
+ domain indicators 27.2 23.6 25.3
+ 5-gram OSM 27.6 24.1 26.1
+ 5-gram OSMs over factors 27.8 24.3 26.0
+ in-domain OSMs 28.0 24.3 26.3
+ unpruned LM (contrastive 1) 28.3 24.7 26.3
+ no singleton phrases 27.9 24.6 26.7
+ sparse LR (contrastive 2) 27.9 24.5 26.8

Table 3: Incremental improvements over a plain phrase-
based baseline for English→German (case-sensitive BLEU
scores).

en→zh tst2012 tst2013

phrase-based baseline 19.2 21.0
+ LRM 19.8 21.7
+ Good-Turing smoothing 20.0 21.9
+ count features 20.1 21.9
+ 7-gram class-based LM (in-domain) 20.0 22.0
+ phrase table fill-up 21.0 22.3
+ 5-gram OSM 21.0 22.5
+ 5-gram OSM over word classes 20.9 22.5
+ in-domain OSMs (primary) 21.3 22.9

Table 4: Incremental improvements over a plain phrase-
based baseline for English→Chinese (character-based BLEU
scores).

34

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



+0.7 (disregarding tst2012, since it has been used to tune
the system combination).

Our best single system yields translation quality on the
level of the last year’s best submission, which was a sys-
tem combination [14]. Our primary submission is around
0.7 BLEU points better than last year’s best submission.

3.2. English→Chinese MT

For the English→Chinese MT task, we submitted the output
of a phrase-based single system (primary). Table 2 shows the
performance in terms of BLEU scores, measured on character
level with the aid of the Chinese character tokenization script
provided by the organizers of the evaluation campaign. For
comparison, we also include the official scores [50] of the
best last year’s submission.

Our English→Chinese systems are trained using mono-
lingual and parallel data from the in-domain WIT3 cor-
pus [52], as well as MultiUN [54]. For the English-Chinese
MultiUN parallel data, we resorted to the sentence-aligned
version as distributed in OPUS [60]. We perform Chinese
word segmentation with the Stanford Word Segmenter [61]
as a preprocessing step on all target-side data. The character-
based tokenization is conducted for evaluation purposes only,
whereas our models operate on word-segmented data.

Table 4 presents the results achieved with the plain
phrase-based baseline, and the gains when incrementally
adding extensions as described in Section 2.2. The 5-gram
LM over words is a linear interpolation of individual LMs,
the 7-gram class-based LM is trained on in-domain data
only. The only factors we use for English→Chinese are
word classes from mkcls with 50 clusters. Feature weights
are tuned on a concatenation of dev2010, tst2010, and
tst2011. The submission system outperforms the plain
baseline by up to +2.1 BLEU points (on tst2012).

The comparison with last year’s best submission [51] is
somewhat surprising: the BLEU score of our system is +0.4
points higher on tst2013, but we significantly lag behind
on tst2014. We are currently unaware of the reason for
this behavior.

4. Summary
We built high-quality machine translation systems for
the IWSLT 2015 English→Chinese and English→German
translation tasks in the MT track. By utilizing advanced fea-
tures and techniques, we have been able to achieve improve-
ments over plain phrase-based baselines of two BLEU points
or more on both language pairs. All methods we employed
are implemented in publicly available software such as the
Moses and the Jane statistical machine translation toolkits.
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Abstract

This paper describes the Machine Learning and Lan-
guage Processing (MLLP) ASR systems for the 2015 IWSLT
evaluation campaing. The English system is based on the
combination of five different subsystems which consist of
two types of Neural Networks architectures (Deep feed-
forward and Convolutional), two types of activation func-
tions (sigmoid and rectified linear) and two types of input
features (fMLLR and FBANK). All subsystems perform an
speaker adaptation step based on confidence measures the
output of which is then combined with ROVER. This system
achieves a Word Error Rate (WER) of 13.3% on the 2015
official IWSLT English test set.

1. Introduction
TED is a global set of conferences around the world carried
out by the non-profit organisation Sapling Foundation. Its
talks cover a wide range of different topics such as science,
culture, economics or politics, always keeping in mind the
slogan ”ideas worth spreading”. The speakers are given a
maximum of 18 minutes to present their ideas in the most
appealing way they can, typically in a storytelling format.

In order to ensure the maximum spread of these talks,
turns out to be essential their transcription and translation.
Big efforts have been devoted to this task, such as The Open
Translation Project (OTP), which aims to reach out to the 4.5
billion people on the planet who do not speak English. Nev-
ertheless, the OTP utilises crowd-based subtitling platforms,
powered by volunteers to translate and caption the videos,
which is still a very time-consuming task.

TED talks conform a very appropriate case study where
new technologies can be applied. Particularly from the ma-
chine learning community, the International Workshop on
Spoken Language Translation (IWSLT) organises a yearly
challenge which aims at evaluating the core technologies in
spoken language translation: automatic speech recognition
(ASR), machine translation (MT) and spoken language trans-
lation (SLT). Automatically transcribing this kind of videos
is still a challenging task due to the spontaneous nature of
the speech; variety in acoustic conditions, the presence of

disfluencies, hesitations and different accents states a great
challenge even for cutting-edge technology in automatic au-
tomatic speech recognition.

This paper describes the English and German ASR sys-
tems developed in the MLLP group for the IWSLT 2015
evaluation campaign. Most effort went into the develop-
ment of the English recognition system which is based on the
ROVER combination of five subsystems. Each of those sub-
systems was based on hybrid Deep Neural Networks Hidden
Markov Models (DNN-HMM) [1] with different input fea-
tures (MFCCs and filter bank), activation functions (sigmoid
and rectified linear) as well as various architectures such as
Deep Convolutional Neural Networks (CNN). It is worth not-
ing that all of these systems were entirely trained using our
own software; the transLectures-UPV toolkit.

The rest of this paper is organised as follows. Section 2
describes the ASR toolkit used for the experiments. In Sec-
tion 3 the automatic audio segmentation technique is intro-
duced. Section 4 is devoted to the English transcription sys-
tem. Similarly, in Section 5 the German ASR system is de-
scribed. Finally, conclusions are given in Section 6.

2. Translectures-UPV Toolkit
The transLectures-UPV toolkit (TLK) is composed by a set
of tools that allows the development of an end-to-end speech
recognition system. Its application range extends from fea-
ture extraction to HMM and DNN training and decoding.
Since last state published of the toolkit [2] new state-of-the-
art techniques have been added:

• DNN training and decoding hybrid based systems.

• Support to Convolutional NNs.

• Support to Multilingual NNs.

• DNN speaker adaptation techniques such as output-
feature discriminant linear regression (oDLR) [3].

• DNN sequence discriminative training based on Max-
imum Mutual Information (MMI).
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3. Audio Segmentation
The audio segmentation step performed by the MLLP group
for English and German can be viewed as a simplified case
of ASR, in which the system vocabulary is constituted by the
power set of segment classes: speech and background noise.

Provided an audio stream x, the segmentation problem
can be stated from a statistical point of view as the search of
a sequence of class labels ĉ so that

ĉ = argmax
c∈C∗

p(x | c) p(c) (1)

where, as in ASR, p(x | c) and p(c) are modeled by acoustic
and language models, respectively. In our case, it should be
noted that each word is composed by a single phoneme.

Acoustic models were trained on MFCC feature vectors
computed from acoustic samples using TLK. We used a 0.97
coefficient pre-emphasis filter and a 25 ms Hamming win-
dow that moves every 10 ms over the acoustic signal. From
each 10ms frame, a feature vector of 12 MFCC coefficients
is obtained using a 26 channel filter bank. Finally, the en-
ergy coefficient and the first and second time derivatives of
the cepstrum coefficients are added to the feature vector.

Each segment class is represented by a single-state Hid-
den Markov Model (HMM) without loops, and its emis-
sion probability is modeled by a Gaussian Mixture Model
(GMM). Acoustic HMM-GMM models were also trained us-
ing TLK, which implements the conventional Baum-Welch
algorithm.

A 5-gram back-off language model with constant dis-
count was trained on the sequence of class labels using
the SRILM toolkit [4]. Finally, the segmentation process
(search) was also carried out by the TLK toolkit.

4. English Transcription System
4.1. Acoustic Modeling

In this section the acoustic modeling process for the En-
glish system is described. First, the data selected for training
is showed as well as the techniques used for its collection.
Then, the training procedure is detailed along with all the
subsystems associated.

4.1.1. Data Collection

This year, the IWSLT challenge allowed the use of any pub-
licly available data for acoustic modeling, including TED
talks without publication date restrictions (except those listed
as disallowed). Given these requirements, roughly 400 hours
of TED talks were downloaded from its official web-page [5].

The subtitles attached to a large part of the talks neither
match the speaker’s speech nor the timings. Therefore, a data
filtering process is needed, in which those segments with a
deficient or non-existent transcription must be removed. This
process was performed in a similar manner to the data filter-
ing performed for building the TEDLIUM corpus [6].

First of all, the input audio was segmented and prepro-
cessed according to the caption timings. Secondly, a recog-
nition step was performed using an out-of-domain acoustic
model and a finite state language model. This finite state
language model was built using the sequence of words from
the reference with silence in-between, allowing loops (hes-
itations), initial state to any word transitions and from any
word to final state transitions.

This way, those segments whose recognition does not
match the reference suggest that either the timings are
wrongly set or the system is unable to recognise the segment
due to non-speech audio. Therefore, after decoding, all of
these incorrectly recognised segments were removed, which
left us a total of 245 hours of clean speech distributed among
1900 talks.

4.1.2. Training

Regarding feature extraction, two types of acoustic features
were extracted. The first type of features are Mel-frequency
cepstral coefficients (MFCC), which were extracted with a
Hamming window of 25 ms, shifted at 10 ms intervals. The
MFCC feature consisted of 16 MFCCs and their first and
second derivatives (48-dimensional feature vectors). These
feature vectors were then normalised by mean and variance
at speaker level. After that, a single feature-space Maxi-
mum Likelihood Linear Regression (fMLLR) transform for
each training speaker was then estimated and applied to per-
form speaker-adaptive training (SAT). The second type of
features are log Mel filter bank (FBANK) with first and sec-
ond derivatives which left 120 dimension feature vectors.

Five different acoustic models were trained in our sys-
tem using TLK. All of them consisted of context-dependent
Deep Neural Networks (DNNs) following an hybrid ap-
proach. To train these models, we first trained a basic con-
text dependent triphone HMM model, after which a second-
pass feature-space Maximum Likelihood Linear Regression
(fMLLR) was applied. This model yielded a total of 10492
tied states, estimated following a phonetic decision tree ap-
proach [7]. It is worth noting that, in order to obtain the best
transcription as to better perform fMLLR, an standard DNN
was trained using the MFCCs features. The five models were
build on top of these HMM acoustic model and followed a
three-pass recognition approach as shown in Fig. 1.

From Fig.1, the fMLLR CD-DNN module can be
switched among the five different acoustic models. Three
of them are feed-forward DNNs and the other two are Deep
Convolutional Neural Networks (CNNs). From the first set,
all models took as input MFCCs feature frames with a win-
dow size of 11. Moreover, all three subsystems shared the
same topology: 528− 2048 ∗ 7− 10492, i.e., an input layer
with 528 neurons, 7 hidden layers with 2048 neurons and an
output layer of 10492 neurons. The pre-training phase tech-
nique is also shared, which consisted of the Discriminative
Pretraining [8] approach. The first system was a DNN with
sigmoid activation functions, trained with the cross-entropy
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Figure 1: Overview of a multi-pass recognition system in-
cluding DNN adaptation. Top: 2-pass recognition system
using fMLLR features. Bottom: Third pass DNN adaptation.

(CE) criterion (10 epochs) and after that, with sequence dis-
criminative training following the MMI criterion (hereafter
DNN-mmi). The second model was a DNN with rectified
linear activation functions, trained following the CE criterion
during 45 epochs (hereafter DNN-relu). And the third model
was a DNN with sigmoid activation functions trained with
the CE criterion during 45 epochs (hereafter DNN-sigm).

Two models belong to the second set of acoustic mod-
els. Both take as input FBANK features with a window size
of 11 and share the same topology. It consist of one con-
volution layer followed by a max pooling operation, 6 feed-
forward hidden layers of 2048 units each, and an output layer
of 10492. The convolutional layer is composed of 128 filters
with a filter size of 9 and shift of 1. Meanwhile, the max-
pooling layer was configured with a pooling width and shift
of 2. The difference between both models is the type of ac-
tivation functions used for the feed-forward layers: sigmoid
(CNN-sigm) and rectified linear (CNN-relu).

4.1.3. DNN Speaker Adaptation

The output from the second recognition step was used to
carry out speaker adaptation of DNNs (as indicated at the
lower box of Fig. 1). The technique used consisted of a con-
servative training approach, using a very small learning rate
and early stopping [9].

Moreover, we made use of confidence measures at word
level to exploit inexpensive yet reliable unsupervised speech
data. Specifically, confidence measures are estimated from
the output of the second recognition pass in order to improve
the DNN adaptation step. Although there are many different
ways to estimate confidence measures, here we will resort
to the conventional approach by which these measures are
computed as word posterior probabilities [10].

In order to take advantage of confidence measures, we
decided to use them to weight the samples during the adap-
tation. In this approach, all samples are taken into account,
but the contribution of each sample is weighted by its cor-
responding confidence measure. The rationale behind this
method is that only samples with high confidence measures
are relevant for the adaptation process, whereas those with
low confidence can be neglected. In some way, this method
can be seen as a refinement of taking away those samples be-
hind an specified threshold, avoiding the need of estimating
that threshold.

Formally, adaptation with weighted samples is based on
a modified cross entropy training criterion:

N∑

n=1

cn log p(sn | xn) , (2)

where xN
1 is the set of frames, sn is the senone (label) ac-

cording to the output from the second pass, and cn ∈ [0, 1]
is its confidence measure. This modified criterion leads to
a different way to estimate errors in the Back-Propagation
algorithm. In particular, the error for the nth frame δn is
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Table 1: Stats of the different LM training corpora. The poli-
Media [11], VideoLectures.NET and VL.NET subtitles [12]
corpora were generated during transLectures project.

Corpus Sentences Words Perplexity
Europarl 2.2M 53M 454.3

Europarl TV 128K 1.2M 454.5
Giga 109 22M 557M 296.9

Google Ngrams - 303B 1871.1
NewsCrawl 53M 1.1B 151.7
poliMedia 4K 95K 1393.1

VideoLectures.NET 5K 127K 871.4
VL.NET subtitles 85K 1.7M 371.5

Wikipedia 82M 1.5B 200.1
TED train 520K 3.7M 218.2

estimated as follows

δn = (yn − sn) · cn , (3)

where yn is the output of the last layer, and sn are the target
labels.

4.2. Language Modeling

We used several different text corpora to train the language
models. They were preprocessed to normalise capitalisation,
remove punctuation marks and transliterate numbers. We can
distinguish two different types of corpora, out of domain cor-
pora (OOD), most of them, and in domain corpora (ID), in
this case only TED train set. Table 1 summarises the main
figures of all the corpora used.

The vocabulary for the language models have been ob-
tained by selecting the 200K most frequent words of a 1-
gram LM interpolation of the OOD corpora. The words form
the ID corpus are added to this selection, obtaining a final
vocabulary of 209 660 words.

With this vocabulary, we trained standard Kneser-Ney
smoothed n-gram models for each one of the corpora using
the SRILM toolkit [4]. The order of each model is adjusted
to 3 or 4 depending on the size of the corpus. The last col-
umn of Table 1 shows the perplexity obtained with all these
models on the English development set.

All the resulting models are linearly interpolated to ob-
tain a final powerful model adapted to the characteristics of
the task, optimising the interpolation weights on the devel-
opment set [13]. To reduce the size of the final model, it is
pruned by removing those n-grams (n > 1) whose removal
causes (training set) perplexity of the model to increase by
less than 2 × 10−10. This model obtained a perplexity of
126.1.

4.3. Experimental Results

In this section all the recognition experiments performed for
the English transcription system are described. Recognition
experiments were carried out on the IWSLT 2015 English

ASR development and evaluation sets, the statistics of which
are shown in Table 2.

Table 2: Statistics of the English ASR development and eval-
uation sets.

Set # Talks Time
tst2013 28 4h:39m
tst2014 15 2h:22m
tst2015 12 2h:25m

Following the IWSLT evaluation requirements, tst2013
was used as development set, tst2014 as progressive evalua-
tion set and tst2015 as evaluation.

The decoding was performed for all the subsystems fol-
lowing the scheme from Fig. 1. The first step was common
and its output was used to perform fMLLR speaker adapta-
tion. After that, each subsystem performed the second recog-
nition step, the output of which was used to perform DNN
speaker adaptation using confidence measures. Results from
these two steps are shown in Table 3.

Table 3: Effect of DNN Speaker Adaptation on each subsys-
tem in terms of WER. Results are shown on tst2013 data-set.

Subsystem Non-Adapt Adapt R. Improvement
DNN-mmi 16.9 16.7 1.2%
DNN-sigm 17.1 16.7 2.3%
DNN-relu 18.5 17.8 3.8%
CNN-sigm 19.4 18.8 3.1%
CNN-relu 18.7 18.0 3.7%

It is worth mention that none of the above results has been
subjected to a process of spelling normalisation by means of
a global mapping file. As we can observe, the DNN-mmi
adaptation has not performed as the rest of system’s adapta-
tions. To our knowledge this is because there is not so much
room for improvement as occurs in the other systems, and
also to the change in the training criterion (from MMI to CE
during adaptation).

Finally, a recogniser output voting error reduction
(ROVER) algorithm was applied to combine the subsys-
tem’s output and further improve the recognition results. The
combination weights were estimated based on the develop-
ment set, giving 2:2:1:1:1 for DNN-mmi, DNN-sigm, DNN-
relu, CNN-sigm and CNN-relu. The final scoring results are
shown in Table 4. At the time of writing this paper results on
the progress test set tst2014 were not provided.

5. German Transcription System
In this section the German ASR system is described. The
first section details the data and training procedure, while the
second section shows the results obtained by the system.
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Table 4: The final results of the English system in terms of
WER. (* means official result)

Set ROVER
tst2013 16.2
tst2015 13.3*

5.1. Training

For the acoustic modelling, we decided not to use the Eu-
ronews ASR provided corpus due to processing power con-
straints and its acoustic conditions being far from target con-
ditions. Instead, we downloaded and processed the Ger-
man Speechdata Corpus (GSC) [14], an open source cor-
pus recorded and released by the LT and the Teleccoper-
ation group from the Technical University of Darmstadt.
This corpus contains 180 different speakers and 36 hours of
speech, recorded under controlled conditions with many mi-
crophones in parallel. The whole corpus was used as train
data. The grapheme-to-phoneme conversion was performed
with the help of MaryTTS software [15].

The training procedure for German was the same as the
DNN-MFCC used in the English system (Sec. 4.1.2). 48-
dimensional MFCC acoustic vectors were extracted and nor-
malised by speaker. A single acoustic model was estimated
for German, which consists of a feed-forward DNN with a
window size of 11 and 4 hidden sigmoid layers with 2048
neurons each. The output layer features 12237 senones. The
network initialisation was performed with the DPT approach,
and then the network was trained using the Cross-Entropy er-
ror criterion for 10 epochs.

The training and recognition follow the same three-step
approach of the English system. An speaker-independent
model is used in the first step. The output transcription is
then used to perform unsupervised fMLLR adaptation. This
second transcription is employed to perform DNN Speaker
adaptation (Sec. 4.1.3). In the case of German, no confidence
measures have been used for this third step.

The language model for our German system is made up
by a standard linear interpolation of 4-gram language mod-
els. These models were estimated from different open corpus
downloaded from the Internet. The corpora were normalised
by lower-casing, removing punctuation marks and transliter-
ating numbers. The corpus statistics after this process can be
found in Table 5.

Table 5: Statistics of the German LM corpus.

Corpus Sentences Words Perplexity
Europarl 2M 46M 515.5
News-crawl 135M 2B 352.0
Wikipedia 31M 326M 423.4

When training, the vocabulary was restricted to 200k
words, selected with the same procedure described in Sec-
tion 4.2. The interpolation weights were set to optimise the
perplexity of the dev set. In order to improve recognition
time, the interpolated model was pruned with a prune factor
of 2× 10−9. The perplexity of the language model is 290.4.

5.2. Experimental Results

We tested our system on the tst2013 corpus, which was set as
the official development corpus of the 2015 challenge. This
corpus contains 9 videos from the TEDx website, with vary-
ing acoustic conditions. The results are summarised in Ta-
ble 6. At the time of writing this work results on tst2014 set
were not provided.

Table 6: The final results of the German system in terms of
WER. (* means official result)

Set WER
tst2013 43.6
tst2015 43.3*

Unlike the English task, we were not able to obtain state-
of-the-art results for the German task. We attribute this result
to the lack of relevant in-domain acoustic resources and the
simplicity of the approaches employed.

6. Conclusions
In this paper we have described the English and German ASR
systems developed for the IWSLT 2015 evaluation campaign.
For the first participation of the MLLP group, the presented
systems make use of the hybrid approach of HMM-DNN.
Particularly, the decoding step of the English system is based
on the combination of five different transcription subsystems.
Each one built as a three pass recognition system and com-
bining different types of NNs architectures, input features
and activation functions. Meanwhile, the German system
constitutes our first large scale speech recognition system on
this language and it is based on a three pass recognition sys-
tem with DNN speaker adaptation.
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B. Maegaard, J. Mariani, J. Odijk, and S. Piperidis, Eds.
Istanbul, Turkey: European Language Resources Asso-
ciation (ELRA), may 2012.

[7] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-
based state tying for high accuracy acoustic modelling,”
in Proc. of HLT, 1994, pp. 307–312.

[8] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineer-
ing in context-dependent deep neural networks for con-
versational speech transcription,” in Automatic Speech
Recognition and Understanding (ASRU), 2011 IEEE
Workshop on. IEEE, 2011, pp. 24–29.

[9] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “Kl-
divergence regularized deep neural network adaptation
for improved large vocabulary speech recognition,” in
Proc. of the ICASSP, 2013, pp. 7893–7897.
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Abstract

We describe Heidelberg University’s system for English-
to-German translation of transcribed TED talks. Our system
follows the hierarchical phrase-based paradigm [1]. We only
used data allowed within the constrained track. Consistent
gains were found using our in-house implementation of au-
tomatic source-side reordering, as well as large-scale tuning
with a large, lexicalized feature set. We also confirm the suc-
cess of large class-based language-models.

1. Introduction

We describe the Heidelberg University (hdu) submission to
the IWSLT 2015 evaluation. We submitted a system for
translating transcribed English TED talks into German, using
only data permitted within the constrained track. We focus
on improving a hierarchical phrase-based system by adding
large language models and thousands of sparse, lexicalized
features tuned on a large in-domain data set. We further in-
corporated syntactic knowledge through source-side reorder-
ing and k-best rescoring with language models based on syn-
tactic annotations.

The paper is organized as follows: Our baseline setup is
described in Section 2. Section 3 then explains our training
pipeline and evaluates the contributions of each step. In Sec-
tion 4, we show that scaling up the feature set and training
a parallelized pairwise ranking optimizer on a larger devel-
opment set further improves our system. We also conduct
ablation experiments for different feature templates. Sec-
tion 5 describes the integration of various external knowledge
sources via k-best rescoring.

2. SMT system

All our systems use the cdec1 tools for phrase extraction
and decoding [2]. Our language models are estimated using
KenLM [3]. For parameter tuning we use our in-house pair-
wise ranking optimizer dtrain, which is available in the
cdec repository [4]. This section describes data preparation
and the baseline system.

1https://github.com/redpony/cdec

2.1. Data

We used all provided bilingual training data. Prior to train-
ing, we filtered out empty lines and any pairs containing
sentences longer than 150 words. For the common crawl
data, we applied an additional filtering step by running
langid.py [5] on both sides to filter out sentences in the
wrong source or target language. Datasets were tokenized
with cdec’s tokenize-anything.sh and truecased
using the truecaser available in the Moses toolkit.2 All sys-
tems described in Sections 2 and 3 were tuned on the IWSLT
dev2010 development set with tst2012 and tst2013
used as progress test sets. We then added tst2011-13 to
our tuning data (Section 4), leaving tst2010 as a held-out
set for tuning our k-best reranker (Section 5). tst2014 was
treated as a blind test set.

2.2. Baseline

Our baseline model includes 21 features, namely bidirec-
tional lexical phrase pair and word pair probabilities, seven
pass-through features, three arity penalty features, a 4-gram
language model built from the target side of the training data
and count features for word penalty, glue rules, and language
model OOVs.

3. Training Pipeline
We now describe our training pipeline and feature set and
evaluate their performance of each step. The results are listed
in Table 1. All tables report cased, detokenized BLEU scores
obtained via the evaluation server provided by the task orga-
nizers.

3.1. Source-side reordering

To account for differences in word order, we re-arranged all
source-sentences to match the syntax of the target language
by applying a variation of the approach described in [6]. This
approach works by permuting nodes in a dependency tree.
During training, the reorderer generates all possible reorder-
ing rules within a window of three nodes governed by the
same parent nodes. It then selects the rule which reduces the
number of crossing alignments most on a randomly selected

2http://www.statmt.org/moses/
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validation set. This rule is applied to the training data and the
procedure is repeated. Through this repeated permutation,
the algorithm is able to generate long-range reorderings. A
reordering rule stores part-of-speech and dependency label
information of nodes, and a permutation order. If a matching
configuration is found at test time, the permutation is applied.
In order to reduce training time and to learn rules specific
to spoken language, we trained the reorderer on in-domain
data only. We used the Stanford parser for English3, but our
implementation can also be applied to the output of other
parsers, e.g. in CoNLL format. The code will be made avail-
able.4 We reordered and re-aligned all training data. Source-
side reordering produced small but consistent improvements
of 0.1 - 0.37 BLEU (experiment 1).

3.2. Domain adaptation

For domain adaptation, we added a 4-gram language model
trained on the target side of the WIT3 data only to the log-
linear model. In addition to that, we annotated each hierar-
chical phrase with binary features indicating which corpora
it came from, allowing the model to learn a log-linear scaling
weight for this phrase. This approach is similar to the work
of [7]. Domain adaptation improved the model by 0.3 BLEU
points (experiment 2).

3.3. Sparse alignment features

We included lexicalized alignment indicator features which
model word alignment, deletion and insertion in source and
target, as described in [8]. Even when tuned on a small devel-
opment set, these features produced consistent gains of 0.16
to 0.29 BLEU points (experiment 3). More sparse features
are described in Section 4.

3.4. Large and class-based language models

Previous work has shown the effectiveness of class-based
language models (e.g. [9]). We used brown-cluster5 to
infer word classes from the language model training data.
Since the KenLM implementation of class-based language
models uses as an additional feature the probability p(w|c)
of a class c generating a word w, we normalized the raw fre-
quencies returned by brown-cluster. We first trained a
7-gram class-based language model using 50 classes on the
target side of the training data (experiment 4), but observed
only a small improvement on tst2012, and no improve-
ment on tst2013.

However, when increasing the size of the monolingual
training data for word- and class-based language models to
26.8 million sentences, we were able to improve by 1.4 -
2 BLEU points (experiments 5a and 5b). We first added

3http://nlp.stanford.edu/software/lex-parser.
shtml

4http://www.cl.uni-heidelberg.de/statnlpgroup/
software.mhtml.

5https://github.com/percyliang/brown-cluster

300 thousand sentences from German political speeches to
the language modelling data. We then applied cross-entropy
based data selection using an in-domain language model to
select 50% of the sentences from newscrawl, as described in
[10]. To avoid the selection bias for shorter sentences, we
only selected sentences with 5 words or longer. After de-
duplication, we obtained 26.8 million sentences. We then
built a 5-gram word-based language model, and a 7-gram
class-based language model using 200 classes. We also in-
creased the order of our in-domain language model from 4 to
5.

3.5. Comparing fast align and GIZA++

To allow faster development, we first trained models using
the re-parametrized IBM Model 2 implementation in cdec
(fast align6). However, our experiments confirmed that
training alignments with GIZA++ [11] (we used the par-
allel implementation in mgiza++ [12]) gave a significant
boost in performance of 1.01 up to 1.6 BLEU (experiment
6), similar to the discrepancies observed in [13]. In par-
ticular, we observed that GIZA++-alignments substantially
increased the number of extracted phrases: On dev2010,
GIZA++-alignments produced 3.2 times as many phrases as
fast align.

4. Large-scale tuning with sparse features
Due to the successful results with the sparse alignment fea-
tures we experimented with a wider range of sparse features
(all implemented in cdec):

• rule identity features: one binary feature per rule

• rule shape features: generalized rules, by mapping to
sequences of terminal and non-terminals

• rule bigram features: all bigrams of terminal and non-
terminals inside rules, in both source and target sides

In addition to the plain rule shape features, in which ter-
minals are replaced by a single terminal token, we also apply
a variant where terminals are replaced by their word class.

While the rule identity features virtually allow to re-train
the full grammar in tuning by assigning individual weights to
every rule, rule shape and bigram features assess the quality
of certain extraction patterns.

In total, the number of potential features is extremely
high, several magnitudes larger than the total size of the
grammar.

4.1. Online pairwise ranking optimization

Pairwise ranking optimization for SMT [14, 15, 4] allows
tuning of a large number of features, in contrast to the tra-
ditional minimum error rate training [16]. We employ an
online variant of this training scheme [4] with data sharding,

6https://github.com/clab/fast_align
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exp model tst2012 ∆ tst2013 ∆ tst2014 ∆
0 baseline 19.78 – 21.38 – 18.86
1 + source-side reordering 20.15 +0.37 21.48 +0.1 19.03 +0.17
2 + domain adaptation 20.46 +0.31 21.76 +0.28 19.32 +0.29
3 + lexical alignment indicators 20.63 +0.17 22.05 +0.29 19.48 +0.16
4 + class-based 7-gram (small, c=50) 20.91 +0.28 22 -0.05 19.59 +0.09
5a + large word-based LM (26.8M sentences) 21.34 +0.43 23.28 +1.28 20.28 +0.69
5b + large class-based LM (c=200) 22.05 +0.71 24.07 +0.79 20.64 +0.36
6 + GIZA++ 23.06 +1.01 25.59 +1.52 22.24 +1.6

Table 1: Components of the training pipeline.

feature selection by ℓ1ℓ2 regularization and randomization of
the training input [17].

Sharding of the data greatly improves efficiency, as the
tuning and optimization may run on several parts of the data
at once. The models of different shards can then be mixed via
simple averaging. Additionally, we use ℓ1ℓ2 regularization
with a simple cut-off at 100,000 features per iteration. The
input is randomized to counter-act potential effects which
would depend on the order of the data. The shard size was
chosen to reflect the typical tuning set size of about 1,000
segments.

The final model is an average of the weight vectors of all
(15) training iterations. Longer training time neither lead to
further improvements, nor did the model overfit. As the algo-
rithm is a (margin) perceptron at its core, it has a single meta-
parameter η which can be interpreted as a learning rate. Its
optimal value 10−4 was found by a simple grid search. Note,
that starting from 0, a fixed learning rate has no effect on the
final model. With the margin perceptron however, it serves
as a scaling factor which implicitly controls the number of
pairs considered for each k-best list.

An ablation test, concatenating dev2010, tst2011
and tst2012 for tuning and validating on tst2013 is
given in Table 2. The baseline (experiment 8a) uses 27 fea-
tures, including a single language model and the domain fea-
tures. Isolating features shows some notable results (exper-
iments 8b, 8c): While rule identifiers slightly degrade be-
low the baseline (8b) and bigram and shape features show
only little improvement (8c), the combination of bigram and
shape features can be improved using ids by about 0.4 points
(8d). A similar behavior can be observed with the lexical
alignment indicators. When combining more sparse feature
templates (experiment 8d), the final model sizes are very sim-
ilar, as are the results on the validation set, which implies
no or just a small additivity of lexical and rule id features.
Improvements however are best at 0.74 points combining
all features (experiment 8e). For the baseline system three
runs were carried out to test the effect of the randomization –
the standard derivation of the final score is quite low at 0.06
points.

When applying large-scale tuning with all features to our
best setup from Section 3, we obtained a further improve-
ment of 0.5 - 0.92 BLEU points (Table 3, experiment 9).

Exp. feature set tst2013 ∆ model size
8a baseline 23.14±0.06 27
8b bigram 23.44 ∆+0.30 150,514

lexical 23.49 ∆+0.35 69,105
id 22.99 ∆−0.15 224,685
shape 23.30 ∆+0.16 202,777

8c lex., id 23.15 ∆+0.01 227,743
bigram, shape 23.37 ∆+0.23 204.537

8d lex., id, shape 23.56 ∆+0.42 272,061
bigram, id, shape 23.73 ∆+0.59 265,316
bigram, lex., shape 23.77 ∆+0.63 228,929
bigram, lex., id 23.81 ∆+0.67 280,830

8e all 23.88 ∆+0.74 260,697

Table 2: Ablation test for sparse features (the baseline used
GIZA++ alignments, but only one target-side 4-gram lan-
guage model).

5. k-best rescoring with syntactic and neural
network language models

We incorporated more knowledge sources via k-best rescor-
ing. We used three in-domain language models built from
target side syntactic annotation, namely part-of-speech, mor-
phology and lemma. The annotations were obtained by
running the German dependency parser parzu7. We also
trained an in-domain and a target-side feed-forward neural
language model using the NPLM toolkit [18]. All experi-
ments used k = 100.8

Weights for the different language models were learned
using a pairwise ranking approach as described in [19], with
an SGD classifier from scikit-learn [20]. We did not
re-tune the SMT model features, but instead used the model
score as a single feature to be tuned.

Results for rescoring are given in Table 3. The first two
entries (experiment 4 and 7) show results for the best small-
scale system described in Section 3 (no large language mod-
els, word alignments from fast align). For this system,
we observed gains on tst2012 and tst2013, but a small

7https://github.com/rsennrich/parzu
8We experimented with k = 1000, but did not see an improvement.
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loss on tst2014. The two bottom entries (experiment 9 and
10) show the effect of k-best rescoring on our best system,
including large language models, GIZA++ alignments and
large-scale tuning as described in the previous section. With
this seutp, rescoring did improve BLEU. However, we con-
ducted a small-scale human evaluation by having four raters
express pairwise preferences for 30 randomly chosen sen-
tences. The translation pairs were permuted and presented in
different order to each rater. In total, we observed a prefer-
ence for the rescored system in 61.67 percent of the cases,
with an average pairwise agreement of 0.36 between anno-
tators. This lead us to still submit the rescored system as
our primary submission with the system without rescoring as
contrastive submission.

6. Conclusions
We built a hierarchical phrase-based translation system for
English-German translation using source and target side syn-
tactic information, large-scale class- and word-based lan-
guage models, and large-scale tuning with sparse features.
On the small scale, combining source-side reordering, do-
main adaptation, sparse lexicalized alignment features, and a
class-based language model, yielded 0.62 - 1.13 BLEU over
our baseline. We were able to gain 1.14 - 2.07 BLEU points
by adding large language models. Using slower, but more
reliable, GIZA++ training, another 1.01 - 1.52 BLEU points
were gained. Large-scale tuning with sparse features gave a
further 0.5 - 0.92 BLEU points. For k-best reranking we ob-
served gains on the held-out sets for the smaller model, but
no additional gains in BLEU over the large model. However,
human evaluation indicated a preference for the reranked out-
puts. Our final results are stated in Table 3 (experiment 9 and
10). They exceed the official baseline by 4.73 - 5.88 BLEU.
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Abstract

This paper describes the Automatic Speech Recognition
and Spoken Language Translation systems developed by the
LIUM for the IWSLT 2015 evaluation campaign. We par-
ticipated in two of the proposed tasks, namely the Auto-
matic Speech Recognition task (ASR) in German and the En-
glish to French Spoken Language Translation task (SLT). We
present the approaches and specificities found in our systems,
as well as our results from the evaluation campaign.

1. Introduction
This paper describes the ASR and SLT systems developed
by the LIUM for the IWSLT 2015 evaluation campaign. We
participated in the two tasks mentioned above, with German
language for the ASR task; and English to French for the SLT
task.

The remainder of this paper is structured as follows: in
section 2.1, we describe the data used for both tasks and how
the selection was performed. In section 2, we present the ar-
chitecture of our ASR system and the results obtained on the
various corpora used during the campaign. Then in section 3,
we expose the architecture of our SLT system, along with its
results during the campaign. Lastly, the section 4 concludes
this system description paper.

2. Automatic Speech Recognition Task in
English

In this section, we will describe the Automatic Speech
Recognition system developed by the LIUM for the IWSLT
2015 campaign, as well as present the results (both in-house
and official) obtained on various corpora.

2.1. Data selection for the ASR task

Performance of Natural Language Processing (NLP) systems
like the ones we are going to present here can often be en-
hanced using various methods, which can occur before, dur-
ing or after the actual system processing. Among these, one
of the most efficient pre-processing method is data selection,
i.e. the fact to determine which data will be injected into the
system we are going to build. For this campaign, many data
selection processing was done, both in ASR and SLT tasks.

2.1.1. Data selection for acoustic models training

For our acoustic modeling we used as a primary source the
Euronews ASR 2013 dataset [1] provided by the campaign
organizers. In order to strengthen this base, we added data
from various in-house sources. Then, we also collected a set
of TEDx talks in German and carefully removed the off-limit
talks. The Table 1 summarizes the characteristics of the data
included in our ASR system acoustic models.

Corpus Duration Segments Words
Euronews 69.1h 22 707 506 019
In-house 207.2h 42 316 2 018 262
TEDx 38.0h 42 633 312 142
Total 314.3h 107 656 2 836 423

Table 1: Characteristics of the acoustic data used in the
LIUM ASR system acoustic models.

2.1.2. Data selection for language models training

Since language models training data is constrained for the
ASR task, we applied our data selection tool XenC [2] on
each allowed corpus at our disposal: basically all of pub-
licly available WMT15 data and a collection of TEDx Talks
closed-captions. Based on cross-entropy difference from a
corpus considered as in-domain and out-of-domain data, our
tool allows to perform relevant data selection by scoring
out-of-domain sentences regarding their closeness to the in-
domain data. The table 2 summarizes the characteristics of
the monolingual text data used to estimate our system lan-
guage models.

2.2. Architecture of the LIUM ASR system

Our architecture is based on two separate systems, mainly
based on the Kaldi open-source speech recognition toolkit
[3] which uses finite state transducers (FSTs) for decoding.
A first pass is performed by using a bigram language model
and deep neural network acoustic models. This pass gener-
ates word-lattices: an in-house tool, derived from a rescoring
tool included in the CMU Sphinx project, is used to rescore
word-lattices with a 3-gram, then a 4-gram back-off LM and
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Corpus Original # Selected # % of
of words of words Orig.

IWSLT14 2.85M 2.85M 100.00
Common Crawl 48.04M 4.24M 8.82
Europarl 47.40M 3.20M 6.74
News Crawl 1.4G 130.60M 9.26
News-Comm. 5.06M 0.62M 12.25
Total (w/o IWSLT14) 1.5G 138.66M 9.18

Table 2: Characteristics of the monolingual text data used in
the LIUM ASR system language models.

5-gram Continuous Space Language Model [4]. Last, an ac-
celerated version of the consensus approach [5], which takes
into account temporal information to speed up the process-
ing, is applied on the confusion networks built from the 5-
gram rescored word-graphs.

2.2.1. Acoustic modeling

The GMM-HMM (Gaussian Mixture Model - Hidden
Markov Model) models are trained on 13-dimensions PLP
features with first and second derivatives by frame. By
concatenating the four previous frames and the four next
frames, this corresponds to 39 ∗ 9 = 351 features projected
to 40 dimensions with linear discriminant analysis (LDA)
and maximum likelihood linear transform (MLLT). Speaker
adaptive training (SAT) is performed using feature-space
maximum likelihood linear regression (fMLLR) transforms.
Using these features, the models are trained on the full
314.3 hours set, with 9 500 tied triphone states and 325 000
gaussians.

On top of these models, we train two separate deep neural
networks (DNNs). The first one is based on TRAP features:
For each frame, DNN inputs were composed of 368 TRAP
coefficients computed on a sliding window of 31 frames.
Each frame was constituted by the outputs of 23 Mel-scale
filterbanks. Speaker adaptation was trivial: it only consists
on mean subtraction applied on all frames associated to a
speaker. It has been trained on the full 314.3 hours set. The
DNN was built following the approach described in [6] and
it was composed of 6 hidden layers with 2048 units, while
the output softmax layer had 4627 outputs. The second one
is based on the same fMLLR transforms as the GMM-HMM
models and on state-level minimum Bayes risk (sMBR) as
discriminative criterion. Again we use the full 314.3 hours
set as the training material. The resulting network is com-
posed of 6 hidden layers with 2 048 units, while the out-
put dimension is 7 827 units and the input dimension is 440,
which corresponds to an 11 frames window with 40 LDA
parameters each.

To speed up the learning process, each DNN is trained us-
ing general-purpose graphics processing units (GPGPU) and

the CUDA toolkit for computations.

2.2.2. Language modeling

For language modeling, we rely on the SRILM language
modeling toolkit [7] as well as the Continuous Space
Language Model toolkit. The vocabulary used in the LIUM
ASR systems is composed of 131 435 entries. The language
models are trained on the data presented in section 2.1.2 and
separate sets are trained for each system.

With the SRILM toolkit, a 2-gram LM is estimated
for each corpus source, with no cut-offs and the modified
Kneser-Ney discounting method. These 2-gram LM are
then linearly interpolated to produce the final 2-gram LM
which will be used in the final system, using the German
IWSLT 2013 test corpora. To rescore the word-lattices pro-
duced by Kaldi, a trigram and a quadrigram language mod-
els (namely 3G and 4G) are estimated with the same toolkit,
again by training one LM by corpus source and then linearly
interpolating them. A 5G continuous-space language model
(CSLM) is also estimated for the final lattice rescoring, with
no cut-offs and the same discounting method as for the bi-
gram language model. Table 3 and table 4 details the inter-
polation coefficients for the 2G, 3G and 4G language models
as well as the final perplexity for each final model used in
the two systems, respectively for the TRAP-based and the
fMLLR-based system.

Corpus Coefficients
2G 3G 4G

manual transcriptions of speech 0.21 0.16 0.16
Common Crawl 0.03 0.05 0.05
News Crawl 0.21 0.18 0.17
Europarl 0.04 0.06 0.07
News-Comm. 0.51 0.55 0.0.55
Perplexity 379 279 264

Table 3: Interpolation coefficients and perplexities for the
bigram (2G), trigram (3G) and quadrigram (4G) language
models used in the LIUM ASR TRAP-based system.

2.3. Word-lattice merging

Both systems used the same audio segmentation, provided by
the LIUMSpkDiarization[8] speaker diarization toolkit. Us-
ing the same segmentation makes easier the merging between
the two ASR outputs: final outputs were obtained by merging
word-lattices provided by both ASR systems.

Both systems provide classical word-lattices with usual
information: words, temporal information, acoustic and lin-
guistic scores. Before merging lattices, for each edge, these
scores are replaced by its a posteriori probability. Posteriors
are computed for each lattice independently, then weighted
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Corpus Coefficients
2G 3G 4G

IWSLT14 0.016 0.014 0.012
Common Crawl 0.028 0.023 0.020
Europarl 0.075 0.090 0.097
News Crawl 0.872 0.866 0.865
News-Comm. 0.008 0.008 0.006
Perplexity 514 349 326

Table 4: Interpolation coefficients and perplexities for the
bigram (2G), trigram (3G) and quadrigram (4G) language
models used in the LIUM ASR fMLLR-based system.

by 1
n , where n is the number of word-lattices to be merged

(here, n = 2). In our experiments, we did not find significant
improvements by using more tuned weights.

For each speech segment, the use of weighted posteri-
ors allows to merge starting (respectively ending) nodes from
both lattices together into a single lattice in order to process
directly with an optimized version of the consensus network
confusion algorithm. This optimization reduces very signifi-
cantly the computation time by managing temporal informa-
tion during the clustering steps.

2.4. Results

The LIUM ASR system officialy achieved a Word Error Rate
score of 17.8 on the 2015 test set, however, at this time of
writing, ranks for each participant and full results have not
been disclosed, thus we are not able to provide comparisons.

3. Spoken Language Translation Task
In this section, the architecture of our Statistical Machine
Translation (SMT) system used in the SLT task is described.

3.1. Architecture of the LIUM SLT system

The SMT system is based on the Moses toolkit [9]. The
standard 14 feature functions were used (i.e. phrase and lexi-
cal translation probabilities in both directions, seven features
for the lexicalized distortion model, word and phrase penalty
and target language model (LM) probability). In addition to
these, a 5-gram Operation Sequence Model (OSM) [10] have
been trained and included in the system.

3.2. Data processing and selection for the SLT task

All available corpora have been used to train the different
components of the SMT system. The source side of the bi-
texts have been processed in order to make it more similar to
speech transcriptions. After a standard tokenization, the pro-
cessing mainly consisted in applying regular expressions to
delete punctuations and unwanted characters, convert capital
letters in lowercase and rewrite numbers in letters.

Once the processing performed, monolingual and bilin-
gual data selection has been applied using XenC [2]. For this
purpose, the TED corpus has been used as in-domain cor-
pus (to compute in-domain cross-entropy). The development
corpus (named liumdev15 ) was used to determine the quan-
tity of data by perplexity minimization. It is composed of the
following corpora : dev2010, tst2010 tst2013.

3.2.1. Translation model

The translation models have been trained with the standard
procedure. First, the bitexts are word aligned in both direc-
tions with GIZA++ [11]. Then the phrase pairs are extracted
and the lexical and phrase probabilities are computed. The
weights have been optimized with MERT.

3.2.2. Language modeling

The language model is an interpolated 4-gram back-off LM
trained with SRILM [7] on the selected part of the French
corpora made available. The vocabulary contains all the
words from the development sets, the target side of bitexts
and only the more frequent words from the large monolin-
gual corpora. The interpolation coefficient have been opti-
mized using the standard EM procedure. The perplexity of
this model on liumdev15 was 67.02.

Besides, two large context CSLM [12] have been trained,
each with a different architecture. Those models are used to
rescore the n-best list of SMT hypotheses. Table 5 shows

Name Order Proj. size #hidd. x size PPL
CSLM11 11 512 3 x 1024 41.98
CSLM19 19 320 3 x 1024 41.38

Table 5: Architecture of the CSLM trained for rescoring the
n-best list of SMT hypotheses. The third and fourth columns
show the projection layer size and the number and size of the
hidden layers, respectively. The last columns contains the
perplexities obtained with each model on liumdev15.

the details of the architectures of the CSLMs as well as the
perplexities obtained on the development corpus liumdev15.

3.2.3. Neural network machine translation system

In addition to the phrase-based SMT system, we trained a
neural network machine translation (NNMT) system based
on [13] during 4 days. It is implemented in the Groundhog
framework. It consists in a bidirectionnal encoder-decoder
deep neural network equiped with an attention mechanism,
as described in Figure 1.

We performed the translation with different values for the
beam size. We can observe in Table 6 that the more the beam
size is increased, the lower the results in BLEU.

An explanation to this is that the BLEU score differs from
the internal score calculated by the model (at the output of
the softmax layer). Consequently, a partial hypothesis with
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Figure 1: Architecture of the encoder-decoder deep neu-
ral network machine translation system equiped with an
attention-based mechanism. Taken from [13].

Corpus Beam size
10 100 1000

liumtst15 36.79 36.1 35.24
liumdev15 31.62 30.95 30.12

Table 6: Results obtained with the deep NNMT system with
different values of beam size.

a low score which is pruned with a small beam size, is kept
and extended when the beam size is greater. Moreover, the
NN output probability distributions are known to be sharp,
giving a high probability to a small number of outputs and a
low probability to the rest. This can lead to worse hypotheses
having higher results in final. This is an undesirable behavior,
which a deeper analysis of the correlation between BLEU
score and NN outputs probabilities could explain.

We used the trained NNMT model to rescore the 1000-
best list produced by the previously trained SMT model.

3.2.4. Submitted systems

A total of six systems were submitted for evaluation. Sev-
eral rescoring process have been performed. For the sake
of comparison, our best single SMT system has been sub-
mitted as contrastive2 as well as our best NNMT system
based on Groundhog (contrastive5). This SMT system has
been rescored with the two CSLM presented in previous sec-
tion. contrastive3 and contrastive4 correspond to the rescor-
ing with CSLM11 and CSLM19, respectively. Those two
systems have also been rescored with the NNMT model ob-
tained with Groundhog. The primary system corresponds to
the contrastive3 rescored with Groundhog deep neural net-
work and the contrastive1 corresponds to the contrastive4
rescored with the same deep neural translation model.

The results and discussion are presented in the next sec-
tion.

3.3. Results and discussion

The results obtained on the development and test data are
presented in Table 7.

The main observation that we can make is that all the re-
sults are coherent. Improvement obtained by rescoring with
the CSLM and the NN model on the development corpus are
reflected on the internal test (liumtst15) and the official eval-
uation test corpus (test2015). The gains observed by rescor-
ing the 1000-best list of hypotheses with a high order CSLM
are along previous results in the literature (around +1 BLEU
point on development and test data). One can notice that the
two different CSLM provide very similar results (in terms of
perplexity during training and in terms of BLEU after rescor-
ing).

During system development, we were surprised by the
gains observed when rescoring with the NNMT system com-
pared to the lower results obtained (on liumdev15 and li-
umtst15). An interesting result is that the rescoring with the
NNMT model provides similar results on the official test set.

A key point when applying a rescoring process is the op-
timization of the feature functions weights. The weights for
the CSLM and the NNMT model have been optimized with
CONDOR [14], a numerical optimizer, with -BLEU as the
objective function to minimize. The initial weights are set
to those obtained with MERT during the SMT system tuning
phase. The initial weights for the CSLM and NNMT features
are set to the backoff LM weight (e.g. 0.0357). This is moti-
vated by the fact that the LM and CSLM features have a sim-
ilar distribution. After optimization, the LM had its weights
decreased to 0.0314, the CSLM weight increased to 0.0391
while the NNTM feature function saw its weight highly in-
creased (0.0486).

4. Conclusion
We presented the LIUM’s ASR and SMT systems which par-
ticipated in the ASR and SLT tracks of the IWSLT’15 evalu-
ation campaign.

For ASR, we participated to the German transcription
task, which is a new challenge to us since we built our first
German systems for the campaign. We achieved an official
WER of 17.8 of the 2015 test set which seems consistent with
our experiments on previous development and test sets.

By rescoring with a continuous space language model,
we obtained a gain of about 0.6% BLEU on the SLT test
data. On top of that, an additional gain of almost %1 BLEU
point is obtained by rescoring with a neural network trans-
lation model. The latter result is more surprising since the
translation score of the NNMT system is significantly lower
than the SMT systems.
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Name CSLM NNMT liumdev15 liumtst15 test2015
rescoring rescoring Case No-Case

%BLEU %BLEU %BLEU %TER %BLEU %TER
Primary CSLM11 yes 33.81 39.61 18.51 79.06 20.02 76.41
Contrast1 CSLM19 yes 33.82 39.65 18.53 78.96 20.10 76.29
Contrast2 - no 31.81 37.35 16.95 80.61 18.36 78.01
Contrast3 CSLM11 no 32.81 38.36 17.54 80.04 19.02 77.31
Contrast4 CSLM19 no 32.70 38.28 17.56 80.07 19.03 77.45
Contrast5 - - 31.62 36.79 14.88 84.69 16.98 80.38

Table 7: Results obtained with the submitted systems on internal dev and test corpora and the official evaluation test corpus.
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Abstract

We describe the University of Maryland machine translation

systems submitted to the IWSLT 2015 French-English and

Vietnamese-English tasks. We built standard hierarchical

phrase-based models, extended in two ways: (1) we applied

novel data selection techniques to select relevant informa-

tion from the large French-English training corpora, and (2)

we experimented with neural language models. Our French-

English system compares favorably against the organizers’

baseline, while the Vietnamese-English one does not, indi-

cating the difficulty of the translation scenario.

1. Introduction

Our goal at the University of Maryland (UMD) for the 2015

IWSLT evaluation campaign was to test our redesigned ma-

chine translation (MT) pipeline for different language pairs

and data conditions. We selected the French-English and

Vietnamese-English tasks, consisting of translating the tran-

scripts of TED talks.1 The French-English task is a standard

one, with a large amount of available data. On the other end

of the spectrum, the Vietnamese-English language pair is a

scarce-resource scenario and has not yet received much at-

tention in the Machine Translation community. We translated

into English in both tracks, so as to have a larger amount

of monolingual data available for training neural language

models. Our systems all use a standard hierarchical phrase-

based architecture, outlined in Section 2. We describe how

we used data selection techniques (Sections 4 and 5) to make

the most of the available data (Section 3). We also discuss

the impact of neural language models (Section 6) on transla-

tion output. Official results on the evaluation test set show

that our French-English systems outperformed the organiz-

ers’ baseline by +0.65 to +1 BLEU, while our Vietnamese-

English system were -3 BLEU below the public baseline. We

discuss these results in Section 7.

2. Core Machine Translation Architecture

We use the cdec [1] machine translation toolkit to build hi-

erarchical phrase-based MT systems [2]. We expected the

1http://www.ted.com

resulting synchronous context-free grammar (SCFG) phrasal

rules to be well suited to modeling both the local reorder-

ings arising from translating French into English, as well

as the more complex translation rules needed to map Viet-

namese – an analytic head-initial language – into English.

Training the MT systems was done by following the base-

line cdec pipeline.2 Word alignments were generated using

fast_align [3], and symmetrized using the grow-diag-
final-and heuristic. The SCFG rules extracted for each test

sentence were scored using a small number of dense fea-

tures, including rule frequency, maximum lexical alignment

within the rule, etc. We mostly used 4-gram language mod-

els, trained using kenlm [4], unless stated otherwise. Model

weights were tuned using the MIRA algorithm [5] in order to

maximize BLEU [6] on held-out test sets.

3. Data Preparation

The 2015 IWSLT campaign released parallel data from both

Wikipedia [7] and TED talks.3 The remaining corpora were

obtained from the 2015 Workshop on Machine Translation

(WMT ‘15) task.4 We translated into English in both of

the evaluation tracks we participated in. The English data

was all pre-processed the same way: first tokenized with the

Europarl tokenizer5 and then lowercased with the standard

cdec tool.

3.1. French–English Data

We processed the French data in the same way as the English

data, described above, except the tokenization was done with

the Moses tokenizer. Table 1 lists the specific sources con-

tained in the 41M parallel French-English training corpus.

3.2. Vietnamese–English Data

The Vietnamese-English translation task is a scarce-resource

scenario, with only 0.5% as much training data as the French-

English task. Our training corpus included all of the parallel

data made available by the organizers, including the auto-

2http://www.cdec-decoder.org/guide/tutorial.html
3https://sites.google.com/site/iwsltevaluation2015/data-provided
4http://www.statmt.org/wmt15/translation-task.html
5http://www.statmt.org/europarl/v7/tools.tgz
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Corpus Segments Tokens (Fr) Tokens (En)

Europarl v7 2.0 M 61.9 M 55.7 M

News Commentary 200 k 6.3 M 5.1 M

Common Crawl 3.2 M 91.2 M 81.1 M

Gigaword Fr-En 22.5 M 810.2 M 667.9 M

UN Corpus 12.9 M 421.7 M 361.9 M

Wikipedia 403 k 9.8 M 11.3 M

TED corpus 207 k 4.5 M 4.2 M

Total 41.5 M 1.406 B 1.187 B

Table 1: French-English Parallel Training Data

matically extracted Wikipedia corpus [7]. This was done to

increase vocabulary coverage, despite the domain mismatch

of the Wikipedia data with respect to the TED task. The size

of each corpus is shown in Table 2.

Corpus Segments Tokens (Vi) Tokens (En)

TED corpus 130.9k 3.2M 2.6M

Wiki 58.1k 662.2k 661k

Total 189k 3.86M 3.29M

Table 2: Vietnamese-English Parallel Training Data

The processing of the Vietnamese side was minimal: we

simply tokenized it as if it were English and removed any

uppercasing to normalize borrowed foreign words. We ex-

perimented with off-the-shelf chunking tools for Vietnamese,

but found that they did not help translation quality. The vn-

Tokenizer [8] tool takes a hybrid approach that combines

finite-state automata, regular expressions, and a maximal-

matching strategy. However, it proved too slow to process

our training data. We also tried the CRFChunker from the

JVnSegmenter software [9], which frames chunking as a su-

pervised sequence labeling problem. This tool comes with

a model trained on a small set of 8,000 hand-labeled Viet-

namese sentences. Unfortunately, using the CRFChunker to

preprocess Vietnamese degrades translation quality by about

-0.6 BLEU, possibly due to a domain mismatch.

Choosing not to chunk the Vietnamese text differs from

standard practice in related translation tasks. In Chinese-

English translation, for example, Chinese word segmentation

is a key step of the preprocessing pipeline (with the exception

of substring or character-based MT models, as in [10]). How-

ever, prior work suggests that defining Chinese word bound-

aries independently of the translation process is not optimal

[11, 12]. Based on this, it seems reasonable to let word align-

ment patterns define translation-driven Vietnamese phrases.

3.3. Postprocessing

Our translation system used tokenized and un-cased data

internally. As such, our MT output required the post-

processing steps of re-casing and then de-tokenizing before

submission. Recasing aims to restore the capitalization that

was lost when normalizing case during preprocessing. We

used the Moses recaser tool.6 This tool frames recasing as a

monotone translation task from un-cased English into cased

English. The tool runs Moses without reordering, using a

word-to-word translation model and a cased language model.

We trained the recaser language model on the English side of

the parallel training corpora in Tables 1 and 2. We detok-

enized the re-cased output using the rule-based detokenizer

tool7 from Moses [13]. We extended this script to support ad-

ditional special characters that caused the decoder to crash.

4. Training Data Selection

We faced two problems when building the French-English

system. The training process was computationally expensive

because of the large amount of parallel training data (41M

segments). Additionally, the vast majority of the parallel seg-

ments are drawn from various domains and genres that are

very different from TED. Table 1 shows that TED talks rep-

resent only 0.5% of the parallel segments. We addressed both

issues by using data selection to determine the most TED-like

subset of the parallel corpus. This pseudo in-domain sub-

set was then used to augment the TED data. This approach

yielded a medium-scale training setting, easily handled by

our standard MT pipeline on ordinary-sized computers.

4.1. Data Selection Techniques

We compared two data selection techniques in the French-

English track. The first was the popular cross-entropy dif-

ference or “Moore-Lewis" method from [14], which we refer

to as xediff for short. The second one was recently pro-

posed [15] and uses a hybrid word/part-of-speech text repre-

sentation to distinguish between rare and frequent events.

4.1.1. Cross-Entropy Difference

The Moore-Lewis method relies on cross-entropy difference

to produce domain-specific systems that are usually as good

as or better than systems using all available training data [16].

To implement Moore-Lewis selection, we first trained an in-

domain language model (LM) on the in-domain TED data,

and another LM on the full pool of general data. The algo-

rithm uses these language models to assign a cross-entropy
difference score to each data-pool sentence.

Lower scores for cross-entropy difference indicate more

relevant sentences, namely those that are most like the target

domain and most unlike the full pool average. After rank-

ing the data pool sentences by this score, the top-n sentences

(or sentence pairs) are used to create the desired subset of

most-relevant sentences. In this work, we added these sen-

tences to the in-domain corpus and trained MT systems on

the combined corpus. A range of values for n is typically

considered, selecting the n that performs best on held-out

6http://www.statmt.org/moses/?n=Moses.

SupportTools
7https://github.com/moses-smt/mosesdecoder/blob/

master/scripts/tokenizer/detokenizer.perl

56

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



in-domain data. The size of these domain-specific systems

scales roughly linearly with the amount of selected data: a

system trained on the most domain-relevant 10% of the full

out-of-domain dataset will be roughly one-tenth of the size

of a system trained using all the available data.

4.1.2. Hybrid Word/POS Representation

The data selection technique from [15] uses a hybrid

word/part-of-speech representation for corpora in order to

distinguish between rare and frequent events. In some sense,

this newer method is a pre-processing step before performing

the above-described cross-entropy difference data selection

method. This pre-processing step changes the representation

of the corpus into something better suited for computing the

relevance score for each sentence. After the sentence scor-

ing and corpus re-ranking is done, the original words are put

back and the downstream LM or MT system is trained as

usual. This method does not have a standard name yet, so in

this work we refer to it as min10 or new.

This newer hybrid word/POS data selection aims to im-

prove scaling of the data selection process itself and to im-

prove the vocabulary coverage of the selected data. This

is achieved by constructing a hybrid representation of the

text that abstracts away words that are infrequent in either

of the in-domain and general corpora. The threshold used

to determine “infrequent" is a minimum count of 10 in each

of the task and pool corpora, but other values could be ex-

plored. All words that do not meet this criterion are replaced

with their part-of-speech (POS) tags, permitting their n-gram

statistics to be robustly aggregated when the task and pool

language models are built.

The intuition for abstracting away rare words is that if a

domain-relevant sentence includes a rare word in some non-

rare context (e.g. “An earthquake in Port-au-Prince"), then

another sentence with the same context but a different rare

word is probably also just as relevant (e.g. “An earthquake in

Kodari"). Suppose “Kodari" is an out-of-vocabulary word

with respect to the task corpus, and that “Port-au-Prince"

appears three times in each corpus. The cross-entropy dif-

ference method would reward the first sentence because it

knows “Port-au-Prince", but penalize the second sentence be-

cause “Kodari" is unknown. The new method would also re-

ward the first sentence, because it has seen “An earthquake

in NPP" a few times. The new method would also reward the

second sentence, for exactly the same reason.

After the corpus has been transformed, the Moore-Lewis

data selection algorithm is then used to select parallel seg-

ments on the hybrid corpus representation, the data pool is

re-sorted by this score, and then the hybrid corpus represen-

tation is discarded and the original representations of the se-

lected segments (the regular sentence forms) are then used to

train MT systems.

Recent experiments on medium-scale Chinese-English

Machine Translation tasks [15] showed that this hybrid

method can substantially improve lexical coverage, reduce

computational requirements for the data selection model it-

self, and improve translation quality when compared against

the standard approaches of [14] and [16].

4.2. Training Data Selection Results

Each of the two data selection methods tested for the French-

English task has three possible instantiations: as a mono-

lingual method on the input side (French), as a monolin-

gual method on the output side (English), or as a bilingual

method that combines both the French and English monolin-

gual scores. In each of the six cases, we selected relevant

subsets of the data pool and concatenated each of them with

the in-domain TED training data when training the down-

stream MT system. We used cdec to train these downstream

systems for extrinsic evaluation.

For consistency, we used the KenLM toolkit [4] to build

all language models used for the data selection experiments.

All of them were 4-gram LMs. To enable fair compar-

isons, all of the word-based models had vocabularies fixed to:

{TED} ∪ {Pool minus singletons}. In constructing our hy-

brid word/POS representations for the new method, we used

the Stanford part-of-speech tagger [17] to generate the POS

tags for each of the languages.

The amount of data selected for each method was deter-

mined empirically by training MT systems on the selected

slices and comparing the BLEU scores on the tst2012

and tst2013 held-out sets. We tested all three conditions

for each of the two methods, though here we present only

results from using the monolingual English version of the

cross-entropy difference and the new hybrid methods. The

monolingual English results are shown in Figure 1. The new

method provides significantly better coverage of the words in

the in-domain corpus than the Moore-Lewis method, and at

least as good MT performance. Though the new method’s

BLEU scores are slightly better, the difference is not enough

to be particularly important.

For this submission, the best performance with the stan-

dard cross-entropy difference method was with 3 million se-

lected sentences. With the new hybrid word/POS method,

selecting 4 million sentences out of the 41 M in the data

pool. More results, graphs, and detailed analysis comparing

the two methods can be found in [18]. The results from the

monolingual French and bilingual scoring methods followed

the same trend as the monolingual English scores, but were

overall slightly lower.
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Figure 1: Comparison of the two monolingual English-side

data selection methods: Moore-Lewis (grey dashed) and the

new hybrid word/POS (solid black): OOV tokens in the TED

training set (top), and BLEU scores on tst2012 (bottom).

Method BLEU (tst2013)

baseline 37.82

+xediff (3 M) 38.29

+min10 (4 M) 38.54

Table 3: Expanding the training set using data selection im-

proves Fr-En translation quality.

After determining the best amount of data to select with

each method, we evaluated whether these selected subsets

were helpful for translating in-domain test sets. These re-

sults are shown in Table 3. The baseline system used the

in-domain data in the MT pipeline described in Section 2,

and was tuned on the large development set defined below,

in Section 5. Table 3 shows that both data selection tech-

niques improve the BLEU score of the translation output.

The newer hybrid word/POS method from [15] yielded the

largest improvement (+0.7 BLEU), and was therefore used as

the training set for our French-English submissions.

5. Tuning Data Selection

Since selecting training data improves translation quality, we

hypothesized that similar techniques could also be used to

construct better tuning sets. Prior work shows that choosing

a good development test set to tune the MT log-linear model

parameters is crucial to performance [19, 20]. The IWSLT

organizers provided a large number of development test sets

for tuning and development purposes (Tables 4 and 5). As a

result, we had many options for defining the tuning and tests

sets for our experiments.

Corpus # segments # fr tokens # en tokens

dev2010 887 20214 20214

tst2010 1664 33846 31979

tst2011 818 15628 14498

tst2012 1124 23460 21473

tst2013 1026 23293 21706

Table 4: French-English Development Test Sets

Corpus # segments # vi tokens # en tokens

dev2010 769 20750 17410

tst2010 1342 35320 28317

tst2011 1435 32801 26887

tst2012 1553 34292 27983

tst2013 1268 33682 26728

Table 5: Vietnamese-English Development Test Sets

We made the assumption that the most recent test sets

would be closest to this year’s evaluation data, and therefore

used the tst2013 test set to evaluate translation quality dur-

ing system development. We proposed two ways to make use

of the remaining data at tuning time: First by increasing the

number of tuning examples, and secondly by ranking the tun-

ing set and ordering the examples from easiest to hardest.

The development test sets could be used differently: for

instance, we could have used several held-out test sets to

guide system development.Given our focus on data selection,

we decided instead to build a large tuning set by concate-

nating all development test sets, aside from tst2013. As

shown in Table 6, this simple strategy yielded a +0.8 BLEU

improvement for the Vietnamese-English task, and a +0.75

improvement for the French-English task.

Next, we investigated the impact of ranking the tuning

examples. The order in which tuning examples are seen has

an impact on learning, because we tune parameters using the

online MIRA algorithm [21]. Instead of using the natural

order of sentences in the original documents, we hypothe-

sized that presenting “easy" examples before “hard" exam-

ples might help learning, as in curriculum learning [22].
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Task Tuning set BLEU

Vi-En dev2010 23.52

Vi-En dev2010+tst2010+tst2011+tst2012 24.30

Fr-En dev2010 36.43

Fr-En dev2010+tst2010+tst2011+tst2012 37.19

Table 6: Impact of expanding tuning set on translation quality

(train = TED, test set = tst2013)

We defined “easier" and “harder" to mean the tuning

sentences were more (and less, respectively) similar to the

parallel training data. We used the in-domain language

model perplexity as a similarity score over sentences. We

trained 4-gram models with modified Kneser-Ney smoothing

[23] using kenLM [4] on the source side of the in-domain

TED training data. We then ranked the tuning examples

by increasing perplexity. Tables 7 shows that this approach

yielded further improvements in translation scores, at least

for French-English ( +0.6 BLEU), though it had no effect on

Vietnamese-English ( +0.01 BLEU). This suggests that the

order of tuning examples can impact translation quality, but

is not guaranteed. However, it is not clear how to best rank

examples, and we will investigate alternate ranking criteria

(including random order) and re-sampling strategies in fu-

ture work.

We use the best performing strategy in the final system,

and tuned on the concatenation of examples from dev2010

to tst2012, ranked by perplexity.

Task Tuning set Order BLEU

Vi-En dev2010+tst2010-2012 default 24.30

Vi-En dev2010+tst2010-2012 ranked 24.31

Fr-En dev2010+tst2010-2012 default 37.19

Fr-En dev2010+tst2010-2012 ranked 37.82

Table 7: Impact on translation quality of ranking tuning ex-

amples by increasing perplexity, for a system trained on the

in-domain (TED) data and evaluated on tst2013.

6. Neural Language Models

Based on recent promising results[24], neural language mod-

els (NLMs) [25, 26] have become standard MT system com-

ponents. NLMs are typically trained by jointly learning word

embeddings and an estimator for the probabilities of words

conditioned on their preceding history. We used the Oxford

Neural Language Modeling Toolkit (OxLm) [27], which im-

plements two useful approximations that can significantly re-

duce the training and testing time. The first approximation is

a class-based factorization to word conditional probabilities

where classes are obtained by applying Brown clustering [28]

to the vocabulary of the training data. In our experiments,

we set the number of clusters to the recommended value of

3
√

|V |, where |V | is the vocabulary size. Second, OxLm

provides an implementation of a noise contrastive estimation

(NCE) training algorithm [26] which was shown to dramati-

cally reduce the training time with only a minor reduction to

the end-to-end BLEU scores.

We trained two kinds of neural language models on

datasets of different scale. The first type (labelled NlmS-

mall) was trained on a small amount of data, with a class-

based factorized OxLM using minibatch stochastic gradient

descent. The training set consisted of the English side of the

in-domain parallel data, described in Section 3. The second

set of models (labelled NlmLarge) were trained on much

larger data sets. These larger corpora were constructed by

augmenting the training set from NlmSmall wiht subsets of

the large pool of permissible monolingual English corpora.8

We used the xediff method described in section 4 to select

the 2.5M, 5M, and 7.5M samples from the monolingual pool

that were most similar to the training set of NlmSmall. We

trained three class-based factorized OxLms, one for the con-

catenation of each selected subset with the NlmSmall train-

ing corpus. These models are labelled NlmLarge2.5m,

NlmLarge5m and NlmLarge7.5m in Table 8. We used

the NCE-based algorithm to speed up the training of the three

large models.

Neural LM Model Hyperparameters Vi-En BLEU

None (baseline) N/A 24.23

NlmSmall l:100,h:8,f :15,λ:1 25.23

NlmLarge2.5m l:100,h:6,f :20,λ:2 25.43

NlmLarge5m l:100,h:6,f :20,λ:1 25.29

NlmLarge7.5m l:100,h:6,f :20,λ:1 25.48

Table 8: The best hyperparameters and the corresponding

BLEU scores of the Vietnamese-English pipeline of each of

our neural language models.

We fine-tuned the hyperparameters of our language mod-

els based on the devset perplexity of each hyperparameter

setting. We considered all combinations of the following val-

ues of four hyperparameters: (1) dimension of word embed-

dings l = {50, 100, 200, 300}, (2) history length (order) that

the model conditions on h = {4, 5, 6, 7, 8}, (3) frequency

cutoff (the frequency threshold below which a word is con-

sidered unknown) f = {5, 10, 15, 20}, and (4) training regu-

larization parameter λ = {0.01, 0.1, 1, 2, 5}. We noticed that

setting l to 200 or 300 hurt the training and testing times sig-

nificantly without introducing much benefit to the perplexity

scores. Table 8 shows the final hyperparameters learned.

Finally, we evaluated the impact of the neural language

models on the output scores of our Vietnamese-English sys-

tem. All models improved the BLEU score. The largest

improvement (+1.2) was obtained with NlmLarge7.5m,

which we included in our final Vietnamese-English submis-

sion. For the French-English system, we used NlmSmall.

8https://sites.google.com/site/

iwsltevaluation2015/data-provided
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7. Conclusion

We have described the UMD systems submitted to the

IWSLT 2015 evaluation campaign. Official results on the

evaluation data are provided in Table 9. This table contains

scores on the cased, detokenized, output, unlike our internal

experimental results in Sections 4, 5, and 6.9

System vi-en fr-en (2014) fr-en (2015)

Primary submission 21.57 33.20 32.59

Organizers’ baseline 24.61 32.22 31.94

Table 9: Results on evaluation test sets; BLEU scores

are computed on cased, untokenized data, using the official

IWSLT evaluation server.

The French-English system outperformed the organizers’

baseline by approximately +1 BLEU on the 2014 progress

test set, and +0.6 on the 2015 test set. This reiterates the

benefits of data selection. It is worth noting that these re-

sults were obtained using a single n-gram English language

model, trained only on the English side of the parallel corpus.

The Vietnamese-English system performed significantly

worse than the baseline. This might be due to the lack of pre-

processing on the Vietnamese side: as the Vietnamese text

was not segmented, the source context captured in SCFG

rules was very narrow. In addition, the English n-gram

model was trained only on the English side of the parallel

data. This can be problematic in a low-resource task such as

Vietnamese-English. After the official evaluation period, we

augmented our system with 4-gram language models trained

on the monolingual English corpus used for neural language

modeling. As expected, this approach improved translation

quality: we obtained improvements of up to +2 BLEU points

on the development test sets.

Overall, our experiments showed that using a standard

MT architecture and focusing on parallel data selection for

the task at hand is a simple but effective strategy for build-

ing MT systems. We will turn our attention to monolingual

English data in future work.
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Abstract
In this paper, we present the KIT systems participating
in the TED translation tasks of the IWSLT 2015 machine
translation evaluation. We submitted phrase-based transla-
tion systems for three directions, namely English→German,
German→English, and English→Vietnamese. For the of-
ficial directions (English→German and German→English),
we built systems both for the machine translation (MT) as
well as the spoken language translation (SLT) tracks.

This year we improved our systems’ performance over
last year through n-best list rescoring using neural network-
based translation and language models and novel discrimina-
tive models based on different source-side features and clas-
sification methods.

For the SLT tracks, we used a monolingual translation
system to translate the lowercased ASR hypotheses with all
punctuation stripped to truecased, punctuated output as a pre-
processing step to our usual translation system. In addition
to punctuation insertion, we also trained that system for sen-
tence boundary insertion since the SLT’s data this year come
with no sentence boundary.

1. Introduction
The Karlsruhe Institute of Technology participated
in the IWSLT 2015 Evaluation Campaign with sys-
tems for English→German, German→English and
English→Vietnamese. All systems were submitted for
the machine translation track, with additional systems for the
spoken language translation track in the official directions
(English→German, German→English). This year we partic-
ipated to the new translation direction: English→Vietnamese
and we also conducted a short investigation on the impact of
word segmentation in our MT system.

On the translation tasks, we integrated new discrimina-
tive word lexicon (DWL) models (section 4). We also fea-
tured an innovative rescoring method which allows us to take
the whole n-best list into account and scale our systems to
many features (section 6). Using this, we could seemlessly
integrate plentiful numbers of features including the features
from the same category, for examples, different DWL models
or different neural network language models (section 5).

For SLT tasks, the handling of ASR input was further
refined with sentence boundary insertion using a monolin-

gual translation system called MonoTrans (section 3). The
MonoTrans outperformed the provided baseline system for
sentence segmentation.

Our baseline system for all translation tasks will be de-
scribed in section 2. Following sections will present the fo-
cused points of this year’s KIT systems. After that, the re-
sults of the different experiments for the official MT tasks as
well as our English→Vietnamese translation will be reported
in details in Section 7, before we summarize our findings in
Section 8.

2. Baseline system
Our translation systems were conducted using our in-
house phrase-based decoder [1]. In English→German and
German→English directions, the parallel sections of TED,
EPPS, NC and Common Craw are used while TED is the
only corpus that we employed to build the English→ Viet-
namese system. Addition to the monolingual parts of those
corpora, the English News Discussions and Gigaword data
are also included in training German→English language
models.

The data is preprocessed prior to training and translation.
Exceedingly long sentences and aligned sentence pairs hav-
ing a big difference in length are removed. Special dates,
numbers and symbols are normalized. Smartcasing are ap-
plied as well. Compound splitting is also conducted to Ger-
man source texts following the suggestions of [2]. Word
segmentation and other typical preprocessing steps for our
English→Vietnamese translation system are investigated in
details. In addition, our preprocessing also assure that not all
sentences from the corpora are used. The noisy ones from
Common Crawl were filtered out by a trained SVM classifier
as described in [3].

After preprocessing, GIZA++ Toolkit [4] is utilized to
perform word alignments over the parallel data. The align-
ments are then combined to build the phrase table us-
ing Moses toolkit [5]. We use the approach described
in [6] to adapt out-of-domain phrase tables into the in-
domain phrase table from TED for English→German and
German→English systems while no adaptation is applied to
the English→Vietnamese one.

In both English→German and German→English sys-
tems, 4-gram language models with modified Kneser-Ney
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smoothing were trained using the SRILM toolkit [7] and
scored in the decoding process using KenLM [8]. For
English→Vietnamese direction, a longer context of six
words is featured in training and scoring.

In addition to conventional word-based language models,
we used other language models which are not based on words
but contextual information of words. The bilingual language
model, based on a four consecutive pairs of source and target
words, is used to increase the bilingual context during trans-
lation beyond phrase boundaries as described in [9]. On the
other hand, the Part-of-Speech (POS) based language model
utilizes morphological information by considering a 9-gram
sequence of POS tags. Furthermore, we also used the clus-
ter language model based on series of word classes induced
by the MKCLS algorithm [10]. This helps alleviate the spar-
sity problem of surface words by replacing every word in the
training corpus with its word class ID.

In our translation systems, we employ two types of re-
ordering models. The first one performs pre-reoderings on
the source side by applying the reordering rules learned from
POS information [11, 12] and tree constituents [13]. The
POS sequences tagged by TreeTagger [14] are used to pro-
duce short- and long-range reordering rules. The parsed trees
produced by Stanford Parser [15, 16] are used to perform
tree-based reorderings which are proved to be helpful for
long-dependency modeling. The resulting reordering pos-
sibilities for each source sentence are then encoded in a lat-
tice. The second type is the lexicalized reordering model [17]
which stores reordering probabilities for each phrase pair
scored from the phrase table and the word alignments pro-
duced in previous phases.

Other models, described further in following sections, are
integrated into our log-linear framework as features. The cor-
responding weights of those features are tuned using Mini-
mum Error Rate Training (MERT) against the BLEU score
as described in [18].

Some additional features, such as source DWL, neural
network-based DWL, neural network-based translation and
language models, are incorporated into our systems via the
ListNet-based rescoring scheme. We will explain further
those features as well as our new rescoring approach later
in this paper.

3. Preprocessing for speech translation
Since conventional automatic speech recognition (ASR) sys-
tems generate either no or only unreliable punctuation marks
and sentence segmentation, we design an additional prepro-
cessing step for the test sets of SLT task. In this step, punc-
tuation marks, segmentation, and case information are aug-
mented using a monolingual translation system [19].

Recently, monolingual translation system has shown
good performance in inserting punctuation marks for trans-
lating speech data [20, 21]. The importance of having proper
sentence boundaries, especially, is more emphasized in the
IWSLT evaluation campaign 2015. Unlike the SLT condi-

tion of previous years’ evaluation campaigns, no sentence
boundaries are available. Therefore, we need a system which
inserts punctuation marks as well as reliable sentence bound-
aries.

Following previous research described in [22], we built
a monolingual translation system which can also augment
sentence boundaries. This preprocsesing will be denoted as
MonoTrans. We built the MonoTrans systems for English
and German and applied them to two official SLT tracks,
English→German and German→English.

For building the systems, we took the prepro-
cessed source side of the parallel training data (either
English→German or German→English) and removed the
original sentence boundaries. Instead, we inserted sentence
boundaries randomly. Therefore, the models can observe
sentence boundaries in various positions. If we use the orig-
inal corpus as it is, the models will learn to insert a sentence
boundary at the end of each sentence. This corpus will serve
as the target side data of our MonoTrans systems.

In order to create the source side data of the MonoTrans
systems, we remove all punctuation marks from the data and
lowercased all words.

Test data is prepared differently using the shifting win-
dow of 10 as described in [22]. In this way, each word can
be observed in various contexts. Depending on how often a
certain punctuation mark was followed by each word, it is
inserted based on an empirically chosen threshold.

For both English and German input data, we used the
same models in the MonoTrans systems. For training data,
we used Europarl, TED, NC, and noise-filtered common
crawl data, which sums up to 107 million words for English
and 85 million words for German. The alignment between
non-punctuated, lower-cased text and punctuated, cased text
is obtained from GIZA++ [4].

We used a 4-gram language model built on the entire
punctuated data using the SRILM Toolkit [7]. In addition
to a bilingual language model [9], a 9-gram part-of-speech-
based language model is used. The POS is learned from
TreeTagger [14]. Also, a 1, 000-class cluster is trained on
the punctuated data. The cluster codes are then used to built
the additional 9-gram language model. The models were op-
timized on the official test set of IWSLT evaluation campaign
in 2012.

4. Discriminative Word Lexicon
Discriminative Word Lexicon was first introduced by [23].
DWL estimates the probability of a target word appearing in
the translation given the source sentence’s words. In the orig-
inal work, a maximum entropy (MaxEnt) model is trained for
every target word to determine whether it should be in the
translated sentence or not using one feature per source word.

In [24], the authors extended this conventional DWL
with n-gram source and target context features. In this evalu-
ation campaign, however, we use the source context features
only since the target context features do not bring any im-
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provements in our final system. The model using source con-
text features will be referred to as source-context DWL. The
source sentence is represented as a bag-of-n-grams, instead
of a bag-of-words. This allows us to include local informa-
tion about source word order in the model.

In addition to this DWL, we integrated a DWL in the re-
verse direction in rescoring. We will refer to this model as
source DWL. This model predicts the target word for a given
source word as described in details in [25].

In a first step, we identify the 20 most frequent transla-
tions of each word. Then we build a multi-class classifier
to predict the correct translation. For the classifier, we used
a binary maximum-entropy classifier1 trained using the one-
against-all approach.

As features for the classifier, we used the previous and
following three words. Each word is represented by a con-
tinuous vector of 100 dimensions as described in [26].

Using the predictions, we calculated two additional fea-
tures. The first feature is the absolute number of words,
where the translation predicted by the classifier and the trans-
lation in the hypothesis is the same. The second feature is the
sum of the word to word translation probabilities predicted
by the classifier that occur in the hypothesis.

While those DWL models can improve the translation by
using local source contexts, they employ MaxEnt classifiers
which are linear. Hence, they could not really discriminate
well the dependencies among features, e.g. a bigram con-
tains two unigrams which somehow reflect a similar or re-
lated semantic feature. On the contrary, non-linear classi-
fiers can model those dependencies better since they have
the ability to learn some distinct features on higher abstrac-
tion levels. [27] introduces non-linearity into DWL by using
a deep architecture of neural networks as the alternative clas-
sifier. This is referred as neural network-based Discrimina-
tive Word Lexicon (NNDWL) in our system. Furthermore,
instead of building an indenpendent MaxEnt model for every
target word, using NNDWL could improve the translation
because it can be seen as a multi-variate classifier consisting
of many classifiers which share information among source
and target words.

All the DWL models are trained on TED corpus. As
showned in previous work, there is no significant improve-
ment using the DWL models trained on bigger corpora.

5. Neural Network Language Model
The traditional n-gram language model (LM) has been ap-
plied successfully in many areas of Natural Language Pro-
cessing due to its robust and simple principles. However,
there are some disadvantages of n-gram LM preventing it
to better model the cohesion of texts. One of these dis-
advantages is that the n-grams are presented in a discrete
space, hence, it would be hard to estimate well the probabil-
ity of unseen n-grams which are semantically related to the

1http://hal3.name/megam/

n-grams appeared in the training set. Continuous space lan-
guage models, such as restricted boltzmann machine-based
LMs[28] or neural network LMs, have been introduced to
solve this problem. Basically, in a neural network LM, the
discrete representation of words is linearly transformed to a
multi-dimentional continuous space. Then one or two fol-
lowing non-linear hidden layers and a softmax output layer
are in charge of the probability estimation of the current
word based on the transformed representation of the previous
words. The transformation and estimation are jointly learned
during training. To reduce the time-consuming calculation
of the softmax layer, some advanced structures of the output
layer and better training methods are proposed[29, 30].

We experimented with different neural network language
model toolkits. We used the Torch framework2, referred to as
NNLM, and the nplm toolkit3[31], referred to as NPLM, to
train a feed forward language model. We used in both cases
a context of n = 8 and trained the model only on the TED
corpus. The scores of those language models were added to
the n-best list.

6. ListNet-based MT Rescoring
In order to facilitate more complex models, such as the afore-
mentioned DWL models or the neural network language
models, we need some way to integrate them to the baseline
scores of the phrase-based system. The natural approach is
that we rescored the n-best list of candiates in order to select
better translations. Compared to other rescoring methods, we
would prefer to take the whole list instead of one or two best
candidates, so we implemented the rescorer using the ListNet
algorithm [32, 33].

This technique defines a probability distribution on the
permutations of the list based on the scores of the log-linear
model and one based on a reference metric. Therefore, a
sentence-based translation quality metric is necessary. In our
experiments we used the BLEU+1 score introduced by [34].
Then the rescoring model was trained by minimizing the
cross entropy between both distributions on the development
data.

Using this loss function, we can compute the gradient
with respect to the weight ωk as follows:

∆ωk =
n(i)∑

j=1

fk(x
(i)
j ) ∗ (1)

(
exp(fω(x

(i)
j ))

∑n(i)

j′=1 exp(fω(x
(i)
j′ ))

−
exp(BLEU(x

(i)
j ))

∑ni

j′=1 exp(BLEU(x
(i)
j′ )

)

When using the ith sentence, we calculate the derivation by
2http://torch.ch/
3http://nlg.isi.edu/software/nplm/
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summing over all n(i) items of the k-best lists. The kth fea-
ture value fk(x

(i)
j ) is multiplied with the difference. This

difference depends on fω(x
(i)
j ), the score of the log-linear

model for the j hypothesis of the list and the BLEU score
BLEU(x

(i)
j ) assigned to this item. Using this derivation,

we used stochastic gradient descent to train the model. We
used batch updates with ten samples and tuned the learning
rate on the development data. The training process ends after
100k batches and the final model is selected according to its
performance on the development data.

The range of the scores of the different models may
greatly differ and many of these values are negative numbers
with high absolute value since they are computed as the log-
arithm of relatively small probabilities. Therefore, we nor-
malized all scores observed on the development data to the
range of [−1, 1] prior to rescoring.

7. Results
In this section, we present a summary of our experiments for
all MT and SLT tasks we have carried out for the IWSLT
2015 evaluation. All the reported scores are case-sensitive
BLEU scores calculated based on the provided development
and test sets.

7.1. German→English

System MT SLT
Dev Test Test

Baseline 26.91 28.69 16.57
+ MKCLS 26.97 29.39 -
+ DWL 27.16 29.67 -
KB Mira Rescoring 26.34 29.61 -
+ sDWL + NNDWL - 29.91 16.89

Table 1: Experiments for German→English (MT)

Table 1 presents the results of our experiments for
German→English. tst2012 and tst2013 are the devel-
opment and test sets published by the evaluation organiz-
ers. Our baseline system already incorporated a number of
advanced models. Reorderings were done using both pre-
ordering rules as well as a lexicalized reordering model. We
adapted the in-domain and out-of-domain phrase tables us-
ing the union candidate selection method. In addition to the
large language model trained on all available English data,
our baseline used an in-domain language model. A bilin-
gual language model trained on all paralled data was also in-
cluded in the baseline. When we added a 9-gram in-domain
cluster language model trained with 100 word classes, our
German→English system gained a 0.7 BLEU point improve-
ment. Using a conventional DWL trained on the in-domain
data brought further improvement of almost 0.3 BLEU score.
The system at this time was used to produce a list of 300 best

translation candidates prepared for rescoring. We tried our
rescoring using different strategies such as MERT, PRO, KB
Mira and ListNet. The corresponding results on a valida-
tion set helped us to choose KB Mira as the best strategy to
perform rescoring in this direction. Using this strategy, we
rescored the n-best list using the old features and two DWL
features from source DWLs (sDWL) and neural network-
based DWLs (NNDWL). This achieved our best system with
0.3 BLEU points better than the previous system.

For the spoken language translation tasks, since this
year’s evaluation does not provide the sentence boundaries,
we applied the monolingual translation system for sentence
boundary and punctuation insertion as well as smart cas-
ing described in the section 3. As a baseline for the task,
we used our baseline system from the MT task to translate
the SLT texts which are already applied MonoTrans. Test-
ing on tst2013 (after removing all sentence boundaries,
puntuations and casing), we got the BLEU scores of 16.57.
When we applied our best-performing system from the MT
task, the SLT system gained an improvements of 0.32 BLEU
scores. We submitted this system as our primary system
for German→English SLT task. This system achieved 19.64
BLEU score on the official test set this year (tst2015). To
show the impact of our sentence boundary and punctuation
insertion MonoTrans, we also submitted another system as
the contrastive one. It is the result that we used our best MT
system to translate the official SLT test set in which sentence
boundaries and punctuations had been inserted by a baseline
system provided by the organizer. This contrastive system
has a score of 11.84 BLEU points, 7.8 BLEU points less than
our primary system on tst2015.

7.2. English→German

We conducted several experiments for English→German
translation. They are summarized in Table 2. The devel-
opment set is the tst2012 and the test set is the tst2013
data published by the evaluation organizers. The baseline
translation system is a phrase-based translation system using
two reordering models mentioned above. The phrase table
is adapted from the out-of-domain to in-domain TED data.
Word-based and non-word language models such as bilin-
gual, POS-based and cluster language models are integrated
in the system. Conventional DWLs using source n-grams are
also utilized in this phase. The baseline was tuned by MERT
and achieved 25.07 and 26.21 BLEU points for development
and test sets, respectively.

We performed the rescoring using the ListNet algorithm
described in Section 6 on the n-best translation candidates
produced by the baseline system. The features that we used
are the scores from source and neural network-based DWL
models, as well as the neural network-based language mod-
els. Adding source DWLs in rescoring scheme helped to im-
prove the system by around 0.7 BLEU points. The NNDWL
gained almost 0.2 BLEU points more. Finally, the neu-
ral network-based language models, NNLM and NPLM, in-
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creased the performance of our system for more than 0.3
BLEU points, reaching 27.50 BLEU points. This system was
submitted as our primary system for English→German.

System Dev Test
Baseline 25.07 26.21
ListNet Rescoring 24.27 26.36
+ sDWL - 26.90
+ NNDWL - 27.18
+ NNLM + NPLM - 27.50

Table 2: Experiments for English→German (MT)

We participated in the spoken language translation tasks
for English→German by translating the output of Mono-
Trans using our best system in the MT task. We got a score
of 16.18 BLEU points on the SLT task’s official test set
tst2015.

7.3. English→Vietnamese

This year the IWSLT evaluation organizers have introduced
English→Vietnamese translation task for the first time. From
the MT perspective, there are two main problems when trans-
lating English to Vietnamese: First, the own characteristics
of an analytic language like Vietnamese make the translation
harder. Second, the lack of Vietnamese-related resources as
well as good linguistic processing tools for Vietnamese also
affects to the translation quality.

Vietnamese is an analytic language4. There are no inflec-
tional morpheme and only several derivational morphemes.
In the contrary, it uses a wide variety of function words,
temporal or numerical expressions to reflect the grammatical
changes. In the linguistic aspect, we might consider Viet-
namese is a morphological-poor language, compared to En-
glish, German, Finnish or Arabic. In reality, however, the
rich set of pronouns in Vietnamese makes the translation to
the language harder.

Another linguistic problem which increases the difficulty
of Vietnamese-related translation tasks is that the main word
boundary marker in Vietnamese is not white space. White
spaces are used to separate syllables in Vietnamese, not
words. A Vietnamese word consist of one or more sylla-
bles. Thus, like Chinese, Vietnamese text processing tools
have to deal with Word Segmentation problem, i.e. how to
determine the word boundaries in Vietnamese texts. Word
Segmentation is often the first step to be done in a prepro-
cessing phase in those tools since the basic unit is word, not
syllable. In this campaign, we also conducted a short inves-
tigation to show the importance of using word segmentation
methods in an MT system. It would be helpful for further
research work on building such translation systems.

Table 3 shows the development stages of the

4https://en.wikipedia.org/wiki/Vietnamese_
language

System Dev Test
Baseline 19.04 19.97
+ Prereordering 19.87 20.93
+ BiLM + mkcls 20.03 21.07
+ DWL 20.40 21.42

Table 3: Experiments for English→Vietnamese (MT)

English→Vietnamese system trained on word-segmented
texts. We used vnTokenizer5 [35] for word segmentation and
tokenization. The weights of our phrase-based system were
also optimized using MERT on word-segmented texts of
tst2012. And the reported scores were the BLEU scores
when we tested the system on word-segmented tst2013.

The prereordering using POS-based and Tree-based rules
helped the most, improving more than 0.8 BLEU points on
the development set and nearly 1.0 BLEU points on the test
set. This result was not surprising since Vietnamese and En-
glish have large differences in term of word order. Integrating
non-word language models, e.g bilingual and cluster LMs,
brought slightly improvements on both development and test
sets, which were 0.16 and 0.14 BLEU points, respectively.
In addition, the system gained further enhancement of 0.35
BLEU scores on the test data when we used source-context
DWLs. This was the final system we submitted as the pri-
mary to the evaluation.

7.3.1. Word-segmented vs. No word-segmented

To compare our methods trained on word-segmented texts
and the texts without word segmentation, we built similar
systems trained on those two versions and tested them on
a non-segmented independent test set. Table 7.3.1 reports
the differences. The Dev* and Test* are the BLEU scores
measured on the word-segmented development and test sets,
respectively. The others are measured on non-segmented
datasets.

On the non-segmentation version, we observed that
adding more models into the system always helps. And the
effects of the models were quite similar to what we observed
in case of word-segmented version. For example, the POS-
and tree-based reorderings gained the best improvements and
integrating DWL were helpful as well as adding non-word
language models. The only exception happened when we
conducted lexicalized reordering on the word-segmented ver-
sion, we noticed a slight degrading in the BLEU scores.

It is interesting to observe that our system trained on the
unsegmented version of texts performed better than the one
trained on the word-segmented texts. One reason we might
use to explain this observation is that the vietnamese word
segmentation tool, vnTokenizer, is not good enough for TED
data. While it simply brings longer contexts, its quality might

5http://mim.hus.vnu.edu.vn/phuonglh/softwares/
vnTokenizer
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System No Word Segmentation Word Segmentation
Dev Test Dev* Test* Test

Baseline 24.65 25.66 19.04 19.97 24.95
+ Prereordering 25.55 26.58 19.87 20.93 25.95
+ BiLM 25.58 26.76 19.89 20.99 26.36
+ mkcls 25.77 26.85 20.20 21.12 26.43
+ DWL 25.83 27.18 20.40 21.42 26.55
+ Lexicalized Reordering 25.99 27.64 20.41 21.24 26.62

Table 4: Experiments for English→Vietnamese

affect the word alignments, which in turn affect to other com-
ponents in our system. In addtion, the advantages of using
longer context in case of training on word-segmented texts
can be covered somehow by phrase extraction and language
modeling. Since phrases in our MT are basically sequences
of words, we can see a phrase in the non-segmented system
as a shorter phrase compared to corresponding one in the
word-segmented system. We would need a more compre-
hensive investigation on this problem. Due to the fact that
we have been investigating the unsegmented system after the
submission deadline, we did not submit the system despite
its better performance.

8. Conclusions

In this paper, we described several innovative works that
we applied to our translation systems we participated in
the IWSLT 2015 Evaluation Campaign. Besides the tradi-
tional, official MT and SLT tasks for English→German and
German→English, we also submitted the newly published
translation tasks English→Vietnamese.

For all official translation directions, we built strong
baseline systems including our advanced reordering meth-
ods, data selection and adaptation techniques, as well as sev-
eral word-based and non-word language models. Those in-
dividual models proved successful in many of the systems.

The notable enhancement this year is the n-best list
rescoring which performed better than other MT optimiza-
tion techniques and scaled better to a large number of fea-
tures. We used this rescoring to leverage newly-added fea-
tures such as the DWLs or other neural language models.

The combination of new features with the traditional fea-
tures in a rescoring scheme boosted our translation systems
in both English→German and German→English direction to
more than 1.2 BLEU points improvements. When we ap-
plied our techniques for English→Vietnamese, we observed
the improvements brought by the individual components. We
also showed the effects of using non word-segmented texts in
training such a translation system.

A monolingual translation system for punctuation inser-
tion played a vital role in adjusting the ASR output for speech
translation. This system was also capable to perform decent
sentence segmentation which is necessary for the SLT data
this year when they do not have any sentence boundary.
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Abstract

This paper describes our German and English Speech-
to-Text (STT) systems for the 2015 IWSLT evaluation cam-
paign. This campaign focuses on the transcription of un-
segmented TED talks. Our setup includes systems from
both Janus and Kaldi. We combined the outputs using both
ROVER [1] and confusion network combination (CNC) [2]
to archieve a good overall performance. The individual sub-
systems are built by using different front-ends, (e.g., MVDR-
MFCC or lMel), acoustic models (GMM or modular DNN)
and phone sets and by training on different sets of permis-
sible training data. Decoding is performed in two stages,
where the GMM systems are adapted in an unsupervised
manner on the combination of the first stage outputs using
VTLN, MLLR, and cMLLR.

The combination setup produces a final hypothesis that
has a significantly lower WER than any of the individual sub-
systems. For English, our single best system based on Kaldi
has a WER of 13.8% on the development set while in com-
bination with Janus we lowered the WER to 12.8%.

1. Introduction
The 2015 International Workshop on Spoken Language
Translation (IWSLT) offers a comprehensive evaluation
campaign on spoken language translation. The evaluation is
organized in different evaluation tracks covering automatic
speech recognition (ASR), machine translation (MT), and
the full-fledged combination of the two of them into speech
translation systems (SLT). The evaluations in the tracks are
conducted on TED Talks (http://www.ted.com/talks), short
5-25min presentations by people from various fields related
in some way to Technology, Entertainment, and Design
(TED) [3].

The goal of the TED ASR track is the automatic tran-
scription of fully unsegmented TED lectures. The quality of
the resulting transcriptions are measured in word error rate
(WER).

In this paper we describe our English and German ASR
systems with which we participated in the TED ASR track
of the 2015 IWSLT evaluation campaign. Our English and

German systems are based on our previous years’ evaluation
systems [4]. In addition to our Janus[5] based systems, we
also built a system based on Kaldi[6] for English. For this,
we used the recipe provided in the Kaldi repository for the
TEDLIUM corpus [7]. The Janus system setup uses multiple
complementary subsystems that employ different phone sets,
front ends, acoustic models or data subsets.

The rest of this paper is structured as follows. Section 2
describes the data that our system was trained and tested on.
This is followed by Section 3 which provides a description
of the acoustic front-ends used in our system and Section 4
which describes our segmentation setup. An overview of the
techniques used to build our acoustic models is given in Sec-
tion 5. We describe the language model used for this evalua-
tion in Section 6. Our decoding strategy and results are then
presented in sections 7 and 8. The final Section 8 contains a
short conclusion.

2. Data Resources
2.1. Training Data

The following data sources have been used for acoustic
model training of our English systems:

a) 200 hours of Quaero training data from 2010 to 2012.

b) 18 hours of various noise data, such as snippets of ap-
plause, music or noises from microphone movement.

c) 158 hours of data downloaded from the TED talks web-
site, without disallowed talks.

d) 203 hours of TED talks from the TEDLIUM v2 release
[7], excluding disallowed talks.

The Quaero training data is transcribed manually. The
noise data consists only of noises and is tagged with spe-
cific noise words to enable the training of noise models.
The TED data comes with subtitles provided by TED and
the TED translation project. The TEDLIUM dataset is
provided by Laboratoire d’Informatique de l’Université du
Maine (LIUM).

For German we used the following data sources:
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Data set # Talks # Utts Dur. Avg. dur.

tst2013 (manual) 28 2246 3.9h 6.3s
tst2013 (auto) 28 2353 4.0h 6.1s
tst2014 (auto) 15 801 2.2h 9.7s
tst2015 (auto) 12 1013 2.2h 7.7s

Table 1: Statistics of the English development sets
(“tst2013”) and the English evaluation sets (“tst2014” and
“tst2015”), including the total number of talks (# Talks),
the total number of utterances (# Utts), the overall speech
duration (Dur.), and average speech duration per utterance
(Avg. dur.). “tst2014” and “tst2015” have been segmented
automatically. Properties of the automatic segmentation of
“tst2013” are displayed alongside with those of the manual
segmentation.

a) 180 hours of Quaero training data from 2009 to 2012.

b) 24 hours of broadcast news data

c) 160 audio from the archive of parliament of the state of
Baden-Württemberg, Germany

For language modeling and vocabulary selection, we
used most of the data admissible for the evaluation, as sum-
marized in Tables 2 and 3.

2.2. Test Data

For this year’s evaluation campaign, two evaluation test sets
(“tst2014” and “tst2015”), as well as development test sets
(“tst2013”) were provided for both English and German. Ta-
ble 1 lists these 3 test sets along with relevant properties for
English.

All development test sets were used with the original pre-
segmentation provided by the IWSLT organizers. Addition-
ally, “tst2013” has been segmented automatically in the same
way as the evaluation test sets.

3. Feature Extraction
Our systems are built using several different front ends. The
two main input variants, each using a frame shift of 10ms
and a frame size of 32ms, are the mel frequency ceptral co-
efficient (MFCC) minimum variance distortionless response
(MVDR) (M2) features that have been shown to be very ef-
fective when used in bottleneck features [8] and standard
lMEL features which generally outperform MFCCs when
used as inputs to deep bottleneck features. These standard
features are often augmented by tonal features (T). For the
extraction of those, we use a pitch tracker [9] and fundamen-
tal frequency variation [10]. In [11] we demonstrate, that the
addition of tonal features not only greatly reduces the WER
on tonal languages like Vietnamese and Cantonese but also
results in small gains on non-tonal languages such as English.

3.1. Deep Bottleneck Features

The use of bottleneck features greatly improves the perfor-
mance of our GMM acoustic models, but also our Hybrid
systems benefit from it as well. Figure 1 shows a gen-
eral overview of our deep bottleneck features (BNF) training
setup. 13 frames (+-6 frames ) are stacked as the DBNF input
which consists of 4-5 hidden layers each containing 1200-
1600 units followed by a 42 unit bottleneck, a further 1200-
1600 unit hidden layer and an output layer of 6000 context
dependent phone states for the German systems and 8000 for
the English systems. Layer-wise pretraining with denoising
autoencoders is used for the all the hidden layers prior to the
bottleneck layer. The network is subsequently finetuned as
a whole [12]. For network training, we used a framework
based on Theano ([13], [14]).

The layers following the bottleneck are discarded after
training and the resulting network can then be used to map a
stream of input features to a stream of 42 dimensional bottle-
neck features. Our experiments show it to be helpful to stack
a context of 13 (+-6 ) bottleneck features and perform LDA
on this 630 dimensional stack to reduce its dimension back
to 42.

4. Automatic Segmentation

In this evaluation, the test set for the ASR track was pro-
vided without manual sentence segmentation, thus automatic
segmentation of the target data was mandatory. We utilized
an approach to automatic segmentation of audio data that
is SVM based. This kind of segmentation is using speech
and non-speech models, using the framework introduced in
[15]. The pre-processing makes use of an LDA transforma-
tion on DBNF feature vectors after frame stacking to effec-
tively incorporate temporal information. The SVM classifier
is trained with the help of LIBSVM [16]. A 2-phased post-
processing is applied for final segment generation.

We generated the segmentations for both English and
German using this SVM based segmentation. The parame-
ters for the SVM segmenter were chosen on a per language
basis after preliminary experiments.

5. Acoustic Modeling

5.1. Data Preprocessing

For the English TED data in dataset c) only subtitles were
available so the data had to be segmented prior to training.
In order to split the data into sentence-like chunks, it was
decoded by one of our development systems to discriminate
speech and non-speech and a forced alignment given the sub-
titles was performed where only the relevant speech parts de-
tected by the decoding were used. The procedure is the same
as the one that has been applied in [17]. The TEDLIUM data
did not require any special preprocessing, except for remov-
ing all disallowed talks.
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Figure 1: Overview of our standard DBNF setup.

5.2. GMM AM Training Setup

All systems use context-dependent quinphones with three
states per phoneme and a left-to-right HMM topology with-
out skip states. The English acoustic models use 8000 dis-
tributions and codebooks derived from decision-tree based
clustering of the states of all possible quinphones. The Ger-
man acoustic models use 6000 distributions and codebooks.

The GMM models are trained by using incremental split-
ting of Gaussians training (MAS) [18], followed by optimal
feature space training (OFS) which is a variant of semi-tied
covariance (STC) [19] training using a single global trans-
formation matrix. The model is then refined by one iteration
of Viterbi training. All German models use vocal tract length
normalization (VTLN), for English it is used where indicated
(V).

In order to improve the performance of our GMM based
acoustic models Boosted Maximum Mutual Information Es-
timation training (BMMIE) [20], a modified form of the
Maximum Mutual Information (MMI) [21], is applied at the
end. Lattices for discriminative training use a small uni-
gram language model as in [22]. After lattice generation,
the BMMIE training is applied for three iterations with a
boosting factor of b=0.5. This approach results in about 0.6%
WER improvement for 1st-pass sytems and about 0.4% WER
for 2nd-pass systems.

We trained multiple different GMM acoustic models by

combining different front-ends and different phoneme sets.
Section 7 elaborates the details of our system combination.

5.3. Hybrid Acoustic Model

As with the GMM systems we trained our hybrid systems on
various front-ends and phoneme sets. Our best performing
hybrid systems are based on a modular topology which in-
volves stacking the bottleneck features, described in the pre-
vious section over a window of 15 frames, with 4-5 1600-
2000 unit hidden layers and an output layer containing 6016
context dependent phonestates for German and 8156 context
dependent phonestates for English. The deep bottleneck fea-
tures were extracted using an MLP with 5 1600 unit hidden
layers prior to the 42 unit bottleneck layer. Its input was 40
lMel (or MVDR+MFCC) and 14 tone features stacked over
a 13 frame window. Both neural networks were pretrained as
denoising autoencoders.

We trained neural network acoustic models for English
on various input features and with different topologies using
the same techniques described in the deep bottleneck layer
section. Our best setup uses deep bottleneck features stacked
over a window of 15 frames, with 5 1600 unit hidden lay-
ers and an output layer containing 8156 context dependent
phone states. The deep bottleneck features were extracted
using an MLP with 5 1600 unit hidden layers prior to the 42
unit bottleneck layer. Its input was 40 lMEL and 14 tonal
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features stacked over a 15 frame window.
The German hybrid system is based on a modu-

lar topology which involves the stacking bottleneck fea-
tures from three separate bottleneck extraction networks
(MFCC+MVDR+T, lMEL+T & MFCC+MFCC+lMEL+T)
over a window of 13 frames leading to a 1638 (=3 * 42 *
13) neuron bottleneck stack, followed by 4 hidden layers
containing 2000 neurons each and an output layer contain-
ing 6016 context dependent phonestates. The deep bottle-
neck features were extracted using an MLP with 5 2000 unit
hidden layers prior to the 42 unit bottleneck layer. Their
inputs were 40 lMel and 14 tone features for the lMEL+T
network, 20 MFCC, 20 MVDR and 14 tone features for the
MFCC+MVDR+T network and 20 MFCC, 20 MVDR, 40
lMEL and 14 tonal features for the MFCC+MFCC+lMEL+T
MLP.

5.4. Kaldi

For system combination we also trained a system using Kaldi
[6]. We trained the acoustic model (AM) on the TED-LIUM
corpus release 2 [7] using the tedlium receipe (s5). The AM
utilizes a neural network taking bottle neck features extracted
from combined filterbank and pitch features that are then fM-
LLR adapted as input. After optimizing its cross-entropy on
the training data, the network is refined using sequence train-
ing optimizing the sMBR criteria. For the language model
we used the cantab-tedlium tri-gram language model [23].

5.5. Pronunciation Dictionary

For English, we used the CMU dictionary1. This is the same
phoneme set as the one used in last year’s systems. It con-
sists of 45 phonemes and allophones. We used 7 noise tags
and one silence tag each. For the CMU phoneme set we gen-
erated missing pronunciations with the help of FESTIVAL
[24].

Our German system uses an initial dictionary based on
the Verbmobil Phoneset [25]. Missing pronunciations are
generated using both Mary [26] and FESTIVAL [24].

6. Language Models and Search Vocabulary
For language model training and vocabulary selection, we
used the subtitles of TED talks, or translations thereof, and
text data from various sources (see Tables 2 and 3). Text
cleaning included tokenization, lowercasing, number nor-
malization, and removal of punctuation. Language model
training was performed by building separate language mod-
els for all (sub-)corpora using the SRILM toolkit [27] with
modified Kneser-Ney smoothing. These were then linearly
interpolated, with interpolation weights tuned using held-out
data from the TED corpus. For German, we split compounds
similarly as in [28].

For the vocabulary selection, we followed an approach

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Text corpus # Words

TED 3.6m
News + News-commentary + -crawl 4,478m
Euronews 780k
Commoncrawl 185m
GIGA 2323m
Europarl + UN + multi-UN 829m
TEDLIUM dataselection 155m

Table 2: English language modeling data after cleaning. The
total number of words was 7.8 billion, not counting Google
Books.

Text corpus # Words

TED 2,685k
News+Newscrawl 1,500M
Euro Language Newspaper 95,783k
Common Crawl 51,156k
Europarl 49,008k
ECI 14,582k
MultiUN 6,964k
German Political Speeches 5,695k
Callhome 159k
HUB5 20k
Google Web (118m n-grams)

Table 3: German language modeling data after cleaning and
compound splitting. In total, we used 1.7 billion words, not
counting Google Ngrams.

proposed by Venkataraman et al.[29]. We built unigram
language models using Witten-Bell smoothing from all text
sources, and determined unigram probabilities that maxi-
mized the likelihood of a held-out TED data set. As our
vocabulary, we then used the top 150k words for English,
and 300k words for German.

For our English Kaldi system, we used the TEDLIUM
language model from Cantab Research[23]. It contains
155,290,779 tokens and is based on the ‘1 Billion Word Lan-
guage Model Benchmark’2.

7. Decoding Setup
For our English submission we trained 3 different DBNF
GMM acoustic models in total by combining different fea-
ture front-ends (M2 and lMEL), with and without using
VTLN adaptation. We also trained one DNN hybrid system
using lMEL front-ends and another one with DBNF features.
In addition to these systems, we also included a Kaldi based
system this year, using the standard recipe for the TEDLIUM
dataset. The first CNC was created using the outputs from 3

2http://www.statmt.org/lm-benchmark
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System tst2013 tst2015 Sub.

lMEL+T+V 17.7 -
M2+T+V 17.6 -
lMEL+T 18.1 -
lMEL+T-DBNF-hyb+V 16.0 -
lMEL+T-hyb 16.4 -

CNC 1 14.7 -

lMEL+T+V+adapt 15.3 -
M2+T+V+adapt 15.0 -
lMEL+T+adapt 14.9 -

CNC 2 14.4 10.9 C 1

Kaldi 15.6 -

ROVER 1 13.2 -

Kaldi rescored 13.8 10.4 C 2

ROVER 2 12.8 10.0 Pri

Table 4: Results for English on ‘tst2013’ development and
‘tst2015’ evaluation test sets. Both contrastive systems (C 1)
and (C 2) are shown, as well as the primary submission (Pri).

different DBNF GMM based systems in combination with
the output from 2 hybrid systems. Based on this first CNC,
the GMM based systems were adapted. Combining the out-
put from the adapted systems and the hybrid systems to an-
other CNC. This second CNC is our first contrastive sub-
mission. It contains only output from Janus based systems.
The output from our Kaldi setup is incorporated in the first
and second ROVER. In the first ROVER, we combined the
output from Kaldi, out two hybrid systems and the two best
adapted GMM based systems. This result is then included in
a second ROVER, where we combined it with the re-scored
output from Kaldi and the output from the second CNC. This
is our primary condition.

The German setup consists of a DBNF GMM system and
a modular Hybrid system. A CNC is performed on the out-
puts of both systems and used to adapt the DBNF GMM AM.
A final CNC is then performed using the adapted GMM out-
put in lieu of the unadapted output.

8. Results
The English systems have been evaluated on the test set
“tst2013”. The results are listed in Table 4. Based on these
results, we decided our decoding strategy for the evaluation.
The first CNC results in a WER of 14.7%. Including the out-
put from Kaldi, the WER decreases to 12.8%.

9. Conclusions
In this paper we presented our English and German LVCSR
systems, with which we participated in the 2015 IWSLT eval-

uation. All systems make use of neural network based front-
ends, HMM/GMM and HMM/DNN based acoustics models.
The decoding set-up of all languages makes extensive use
of system combination of single systems obtained by comb-
ing different phoneme sets, feature extraction front-ends and
acoustic models.
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Abstract

Neural Machine Translation (NMT), though recently devel-
oped, has shown promising results for various language pairs.
Despite that, NMT has only been applied to mostly formal
texts such as those in the WMT shared tasks. This work fur-
ther explores the effectiveness of NMT in spoken language
domains by participating in the MT track of the IWSLT 2015.
We consider two scenarios: (a) how to adapt existing NMT
systems to a new domain and (b) the generalization of NMT
to low-resource language pairs. Our results demonstrate that
using an existing NMT framework1, we can achieve compet-
itive results in the aforementioned scenarios when translat-
ing from English to German and Vietnamese. Notably, we
have advanced state-of-the-art results in the IWSLT English-
German MT track by up to 5.2 BLEU points.

1. Introduction

Neural Machine Translation (NMT) is a radically new way of
teaching machines to translate using deep neural networks.
Though developed just last year [1, 2], NMT has achieved
state-of-the-art results in the WMT translation tasks for var-
ious language pairs such as English-French [3], English-
German [4, 5], and English-Czech [6]. NMT is appealing
since it is conceptually simple. NMT is essentially a big
recurrent neural network that can be trained end-to-end and
translates as follows. It reads through the given source words
one by one until the end, and then, starts emitting one tar-
get word at a time until a special end-of-sentence symbol is
produced. We illustrate this process in Figure 1.

Such simplicity leads to several advantages. NMT re-
quires minimal domain knowledge: it only assumes access
to sequences of source and target words as training data and
learns to directly map one into another. NMT beam-search
decoders that generate words from left to right can be easily
implemented, unlike the highly intricate decoders in standard
MT [7]. Lastly, the use of recurrent neural networks allow
NMT to generalize well to very long word sequences while
not having to explicitly store any gigantic phrase tables or
language models as in the case of standard MT.

Despite all the success, NMT has been applied to mostly
formal texts as in the case of the WMT translation tasks. As
such, it would be interesting to examine the effectiveness of

1http://nlp.stanford.edu/projects/nmt/

am a student _ Je suis étudiant

Je suis étudiant _

I

Figure 1: Neural machine translation – example of a deep
recurrent architecture proposed in [1] for translating a source
sentence “I am a student” into a target sentence “Je suis étu-

diant”. Here, “_” marks the end of a sentence.

NMT in the spoken language domain through the IWSLT
MT track. This work explores two scenarios, namely NMT
adaptation and NMT for low-resource translation. In the
first scenario, we ask if it is useful to take an existing model
trained on one domain and adapt it to another domain. Our
findings show that for the English-German translation task,
such adaptation is very crucial which gives us an improve-
ment of +3.8 BLEU points over the model without adap-
tation. This helps us advance state-of-the-art results in the
English-German MT track by up to 5.2 BLEU points.

For the latter scenario, we show that even with little
English-Vietnamese training data, NMT models trained with
an off-the-shelf framework can achieve competitive perfor-
mance compared to the IWSLT baseline. It is also worth-
while to point out a related work [8] which achieved best
results for the low-resource language pair Turkish-English in
IWSLT. However, their work makes use of a huge monolin-
gual corpus, the English Gigaword.

2. Approach

We give background information on NMT and the attention
mechanism before discussing our model choices.

2.1. Neural Machine Translation

Neural machine translation aims to directly model the con-
ditional probability p(y|x) of translating a source sentence,
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x1, . . . , xn, to a target sentence, y1, . . . , ym. It accomplishes
such goal through the encoder-decoder framework [1, 2].
The encoder computes a representation s for each source
sentence. Based on that source representation, the decoder

generates a translation, one target word at a time, and hence,
decomposes the conditional probability as:

log p(y|x) =
∑m

j=1
log p (yj |y<j , x, s) (1)

A natural choice to model such a decomposition in the
decoder is to use a recurrent neural network (RNN) architec-
ture, which most of the recent NMT work have in common.
They, however, differ in terms of the RNN architectures used
and how the encoder computes the source representation s.

Kalchbrenner and Blunsom [9] used an RNN with the
vanilla RNN unit for the decoder and a convolutional neu-
ral network for encoding the source. On the other hand,
Sutskever et al. [1] and Luong et al. [3, 5] built deep RNNs
with the Long Short-Term Memory (LSTM) unit [10] for
both the encoder and the decoder. Cho et al., [2], Bahdanau et
al., [11], and Jean et al. [4, 8] all adopted an LSTM-inspired
hidden unit, the gated recurrent unit (GRU), and used bidi-
rectional RNNs for the encoder.

In more details, considering the top recurrent layer in a
deep RNN architecture, one can compute the probability of
decoding each target word yj as:

p (yj|y<j , x, s) = softmax (hj) (2)

with hj being the current target hidden state computed as:

hj = f(hj−1, yj−1, s) (3)

Here, f derives the current state given the previous state
hj−1, the current input (often the previous word yt−1), and
optionally, the source representation s. f can be a vanilla
RNN unit, a GRU, or an LSTM. The early NMT approach
[9, 1, 2, 3] uses the last source hidden state s = h̄n once to
initialize the decoder hidden state and sets s = [ ] in Eq. (3).

The training objective is formulated as follows:

J =
∑

(x,y)∈D
− log p(y|x) (4)

with D being our parallel training corpus.

2.2. Attention Mechanism

Here, we present a simplified version of the attention mech-
anism proposed in [11] on top of a deep RNN architecture,
which is close to our actual models.

Regarding the aforementioned NMT approach, Bahdanau
et al. [11] observed that the translation quality degrades as
sentences become longer. This is mostly due to the fact that
the model has to encode the entire source information into a
single fixed-dimensional vector h̄n, which is problemmatic
for long variable-length sentences. While Sutskever et al.
[1] addressed that problem by proposing the source reversing

yj

hjhj−1

cj

h̄1 h̄n

am a student _ Je

suis

I

Context vector

Figure 2: Attention mechanism – a simplified view of the
attention mechanism proposed in [11]. The attention mecha-
nism involves two steps: first, compute a context vector based
on the previous hidden state and all the source hidden states;
second, use the context vector as an additional information to
derive the next hidden state.

trick to improve learning, a more elegant approach would be
to keep track of a memory of source hidden states and only
refer to relevant ones when needed, which is basically the
essence of the attention mechanism proposed in [11].

Concretely, the attention mechanism will set s =
[h̄1, . . . , h̄n] in Eq. (3). The f function now consists of two
stages: (a) attention context – the previous hidden state hj−1

is used to compare with individual source hidden states in
s to learn an alignment vector aj ; then a context vector cj
is derived as a weighted average of the source hidden states
according to aj ; and (b) extended RNN – the RNN unit is ex-
tended to take into account not just the previous hidden state
hj−1, the current input yj−1, but also the context vector cj
when computing the next hidden state hj . These stages are
illustrated in Figure 2.

2.3. Our Models

We follow the attention-based NMT models proposed by Lu-
ong et al. [5], which includes two types of attention, global

and local. The global model is similar to the one proposed
in [11] with some simplifications. The local model is, on the
other hand, a new model that has a more “focused” attention,
i.e., it only puts attention on a subset of source hidden states
each time, which results in better performance compared to
the global attention approach. We train both types of mod-
els so that the ensembling approach as proposed in [1] can
benefit from having a variety of models to make decisions.

3. NMT Adaptation

In this section, we explore the possibility of adapting existing
models previously trained on one domain to a new domain.
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3.1. Training Details

First, we take the existing state-of-the-art English-German
system [5], which consists of 8 individual models trained on
WMT data with mostly formal texts (4.5M sentence pairs).
We then further train on the English-German spoken lan-
guage data provided by IWSLT 2015 (200K sentence pairs).
We use the default Moses tokenizer. The vocabularies are
limited to the top 50K frequent words in the WMT data for
each language. All other words not in the vocabularies are
represented by the special token <unk>. We use the TED
tst2012 as a validation dataset for early stopping and report
results in BLEU [12] for TED tst2013 (during development)
and tst2014, tst2015 (during evaluation).

Our models are deep LSTM networks of 4 layers with
1000-dimensional embeddings and LSTM cells. We further
train existing models for 12 epochs in which after the first
epoch, learning rates (initially set to 1.0) are halved every
two epochs. Effective techniques are applied such as dropout
[13], source reversing [1], attention mechanism [11, 5], and
rare word handling [3, 4]. More details of these techniques
and other hyperparameters can be found in [5]. It takes about
3-5 hours to train a model on a Tesla K40.

3.2. Results

As highlighted in Table 1, adaptation turns out to be very
useful for NMT which gives an absolute gain of +3.8 BLEU
points compared to using an original model without further
training. Additionally, by ensembling multiple models as
done in [1], we can achieve another significant gain of +2.0
BLEU points on top of the single adapted model. Compared
to the best entry in IWSLT’14 [14], we have advanced the
state-of-the-art result by +5.2 BLEU points.

System BLEU

IWSLT’14 best entry [14] 26.2
Our systems

Single NMT (non-adapted) 25.6
Single NMT (adapted) 29.4 (+3.8)
Ensemble NMT (adapted) 31.4 (+2.0)

Table 1: English-German results on TED tst2013 – BLEU
scores of various systems. Progressive gains between our
systems are given in parentheses.

Furthermore, according to the evaluation results provided
by the organizer (Table 2), we are up to +10.0 BLEU points
better than the IWSLT’15 baseline system and +4.3 BLEU
point better than the best IWSLT’14 entry [14].

4. NMT for Low-resource Translation

Until now, state-of-the-art NMT systems rely on large
amounts of parallel corpora to sucessfully train translation
models such as English-French with 12M-36M sentence
pairs [3, 4] and English-German with 4.5M sentence pairs

System
BLEU

tst2014 tst2015

IWSLT’14 best entry [14] 23.3 -
IWSLT’15 baseline 18.5 20.1
Our system 27.6 (+9.1) 30.1 (+10.0)

Table 2: English-German evaluation results – BLEU scores
of various systems on the two evaluation sets. We show the
differences between our submission and the IWSLT’15 base-
line in parentheses.

[6, 5]. There is few work examining low-resource transla-
tion direction. In [8], the authors examined translation from
Turkish to English with 160K sentence pairs, but utilized
large monolingual data, the English Gigaword corpus. In this
work, we consider applying NMT to the low-resource trans-
lation task from English to Vietnamese in IWSLT 2015.

4.1. Training Details

We use the provided English-Vietnamese parallel data (133K
sentence pairs). Apart from tokenizing the corpus with the
default Moses tokenizer, no other preprocessing step, e.g.,
lowercasing or running word segmenter for Vietnamese, was
done. We preserve casing for words and replace those whose
frequencies are less than 5 by <unk>. As a result, our vo-
cabulary sizes are 17K and 7.7K for English and Vietnamese
respectively. We use the TED tst2012 as a valid set for early
stopping and report BLEU scores on TED tst2013 (during
development) and TED tst2015 (during evaluation).

At such a small scale of data, we could not train deep
LSTMs with 4 layers as in the English-German case. Instead,
we opt for 2-layer LSTM models with 500-dimensional em-
beddings and LSTM cells. Our other hyperparameters are:
(a) we train for 12 epochs using plain SGD; (b) our learn-
ing rate is set to 1.0 initially and after 8 epochs, we start to
halve the learning rate every epoch; (c) parameters are uni-
formly initialized in range [0.1, 0.1]; (d) gradients are scaled
whenever their norms exceed 5; (e) source sentences are re-
versed which is known to help learning [1], and (f) we use
dropout with probability 0.2. We train models with various
attention mechanisms, global and local, as detailed in [5]. It
takes about 4-7 hours to train a model on a Tesla K40.

4.2. Results

Our results during development are presented in Table 3.
Similar to the trend observed in the English-German case,
ensembling 9 models significantly boosts the performance by
+3.6 BLEU points. Since this is the first time Vietnamese is
included in IWSLT, there has not been any published number
for us to compare with.

For the final evaluation, our system is, unfortunately, be-
hind the IWSLT baseline as detailed in Table 4. Still, the gap
is small and it remains interesting to see how other teams per-
form. Examining the translation outputs, the first author, as a

78

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



System BLEU

Single NMT 23.3
Ensemble NMT 26.9

Table 3: English-Vietnamese results on TED tst2013.

native Vietnamese speaker, was quite amazed at how well the
translations can be from an off-the-shelf NMT framework.

System BLEU

IWSLT’15 baseline 27.0

Our system 26.4

Table 4: English-Vietnamese results on TED tst2015 pro-
vided by the organizer.

We also notice that the rare word handling technique as
often done in NMT [3, 4] yields little gain for our case. We
expect that this can be improved by utilizing a Vietnamese
word segmenter or simple heuristics to combine collocated
words such as the formula used in [15]. The rationale is
that many words in English correspond to multiple-character
words in Vietnamese such as “success” – “thành công” and
“city” – “thành phố”. The rare word handling technique re-
quires a word dictionary built from the unsupervised align-
ments, and in our case, without a segmenter, we are using a
word-to-char English-Vietnamese dictionary. As a result, the
model will fail when trying to translate English words whose
Vietname counterparts are multi-character words.

5. Conclusion

In this work, we have explored the use of Neural Machine
Translation (NMT) in the spoken language domain under two
interesting scenarios, namely NMT adaptation and NMT for
low-resource translation. We show that NMT adaptation is
very effective: models trained on a large amount of data in
one domain can be finetuned on a small amount of data in
another domain. This boosts the performance of an English-
German NMT system by 3.8 BLEU points. This helps ad-
vance state-of-the-art results in the IWSLT English-German
MT track by up to +5.2 BLEU points. For the latter sce-
nario, we demonstrate that an off-the-shelf NMT framework
can achieve competitive performance with very little data as
in the case of the English to Vietnamese translation direc-
tion. For future work, we hope to incorporate phrase-based
units in NMT to compensate for the fact that languages like
Vietnamese and Chinese often need a word segmenter.
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1. Introduction

In this paper we have described our system for IWSLT2015
machine translation. Focusing primarily on the English-
Vietnamese and Vietnamese-English translation direction.
Our additions for Moses phrase-based SMT and Phrasal
SMT include two language model with monolingual training
set for English and Vietnamese.

We submitted two systems to IWSLT 2015 evalu-
ations for English to Vietnamese Machine Translation
and Vietnamese to English Machine Translation. Our
systems is including sub-systems: 6 based on Phrasal
toolkit [Green et al.2014] and 6 others base Moses toolkit
[Koehn et al.2007b]. The systems conducted with IWSLT
2015 data using with extension language model using mono-
lingual training data.

2. Data and Pre-Processing

We perform to pre-processing data from IWSLT 2015 for
dev, test, train dataset. We convert from formatted xml data
to have parallel data. These data are tokenizer for both Viet-
namese and English. With Vietnamese data we use VnTok-
enizer [Phuong-Le Hong2008]. Filter the corrupt characters
and the larger sentence of length 300. With English data, we
also use tokenizer for segmentation. After that, we conducted
experiment for IWSLT 2015 data.

3. Monolingual Data

We expand the language model using Monolingual Data. For
English-Vietnam translation, we used data with the crawl
from electronic newspaper in Vietnam. We install the tool
library used crawler Jsoup to collect 1GB of data and used
for training. With Vietnamese-English translation, we use
one part of the data WMT2015 collect 1GB of data and used
for training.

4. Brief description of the baseline
Phrase-based SMT

Phrase-based SMT, as described by [Koehn et al.2003]
translates a source sentence into a target sentence by decom-
posing the source sentence into a sequence of source phrases,
which can be any contiguous sequences of words (or tokens
treated as words) in the source sentence. For each source
phrase, a target phrase translation is selected, and the target
phrases are arranged in some order to produce the target sen-
tence. A set of possible translation candidates created in this
way is scored according to a weighted linear combination of
feature values, and the highest scoring translation candidate
is selected as the translation of the source sentence.

Moses [Koehn et al.2007b] is a statistical machine trans-
lation system that allows automatically train translation mod-
els for any language pair. When we have a trained model, an
efficient search algorithm quickly finds the highest probabil-
ity translation among the exponential number of choices.

Beside Moses, nowadays, Phrasal [Green et al.2014] is
also a toolkit for phrase-based SMT. It is a state-of-the-art
statistical phrase-based machine translation system, written
in Java. At its core, it provides much the same functionality
as the core of Moses.

5. Experiment

We present our experiments to translate from English to Viet-
namese in a statistical machine translation system. We com-
pare Phrasal and Moses by evaluation with IWSLT 2015
data. We evaluated our approach on English-Vietnamese ma-
chine translation tasks, and show that it can significantly out-
perform the baseline phrase-based SMT system by extended
Language model.

The performances of the statistical machine translation
systems in our experiments are evaluated by the BLEU
scores [Papineni and Zhu2002].

745 sentences in IWSLT15.TED.dev2010 as our dev set
on which we tuned the feature weights, and report results on
the 1046 sentences of the IWSLT15.TED.tst2015 test set.
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Corpus Sentence pairs Training Set Development Set Test Set
General 123957 122132 745 1080

English Vietnamese
Training Sentences 122132

Average Length 15.93 15.58
Word 1946397 1903504

Vocabulary 40568 28414
Development Sentences 745

Average Length 16.61 15.97
Word 12397 11921

Vocabulary 2230 1986
Test Sentences 1046

Average Length 16.25 16.13
Word 17023 16889

Vocabulary 2701 2759

Table 1: The Summary statistical of data sets: English-Vietnamese

In order to extract the translation grammar necessary for
our model, we used the provided Europarl and News Com-
mentary parallel training data. The lowercased and tok-
enized training data was then filtered for length and aligned
using the GIZA++ [Och and Ney2003] implementation of
IBM Model 4 to obtain one-to-many alignments in both di-
rections and symmetrized by combining both into a single
alignment using the grow-diag-final-and method and Berke-
ley Aligner [DeNero and Klein2007]. We constructed a
4-gram language model using the SRI language modeling
toolkit [Stolcke2002] and KenLM [Heafield2011] from
the provided English monolingual training data and Viet-
namese monolingual training data from crawler web data.
Since the beginnings and ends of sentences often display
unique characteristics that are not easily captured within
the context of the model, and have previously been demon-
strated to significantly improve performance, we explicitly
annotate beginning and end of sentence markers as part
of our translation process. We used the 745 sentences in
IWSLT15.TED.dev2010 as our dev set on which we tuned
the feature weights, and report results on the 1046 sentences
of the IWSLT15.TED.tst2015 test set. (122131 train.tags +
125531 train + 1GB mono data)

6. Evaluation
We conducted some experiments the following:

• Using the state of art Phrase-based SMT Moses:

– with SMT Moses Decoder [Koehn et al.2007a]
and SRILM. We trained a 4 gram language model
using interpolate and kndiscount smoothing with
1GB Vietnamese monolingual data for English-
Vietnamese translate direction and 1GB English
monolingual data for Vietnamese-English trans-
late direction.

– Before extracting phrase table, we use GIZA++
to build word alignment with grow-diag-final-
and algorithm. Besides using pre-processing, we
also used default reordering model in Moses De-
coder: using word-based extraction (wbe), split-
ting type of reordering orientation to three class
(monotone, swap and discontinuous msd), com-
bining backward and forward direction (bidirec-
tional) and modeling base on both source and tar-
get language (fe).

• with SMT Phrasal:

– We also trained with 1GB Vietnamese monolin-
gual data for English - Vietnamese translate di-
rection and 1GB English monolingual data for
Vietnamese-English translate direction a 4 gram
language model with 1GB.

– Before extracting phrase table, we use berke-
ley aligner to build word alignment with grow-
diag-final-and algorithm. Besides using pre-
processing, we also used default reordering
model in Phrasal.

6.1. English-to-Vietnamese Translation

We conducted 6 experiments: 3 base on Phrasal and 3 base
on Moses. Using 4 gram for building language model with
monolingual following:

• Using train.tags.en-vi.vi as monolingual data for build-
ing language model.

• Combine train.tags.en-vi.vi and train.vi as monolin-
gual data for buiding language model.

• Combine train.tags.en-vi.vi and train.vi and 1GB
crawler web data from news site in Vietnam as mono-
lingual data for building language model.
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Figure 1: The experiment our systems for English to Viet-
namese translation direction

Figure 1 described results our experiments for English to
Vietnamese translation direct. Highest BLEU score is 23.15
for English-Vietnamese translation system with the IWSLT
2015 data.

6.2. Vietnamese-to-English Translation

We conducted 6 experiments: 3 base on Phrasal and 3 base
on Moses. Using 4 gram for building language model with
monolingual following:

• Using train.tags.vi-en.en as monolingual data for
building language model.

• Combine train.tags.vi-en.en and train.en as monolin-
gual data for building language model.

• Combine train.tags.en-vi.en and train.en and 1GB En-
glish data from WMT2015 as monolingual data for
building language model.

Figure 2: The experiment our systems for Vietnamese to En-
glish translation direction

Figure 2 described results our experiments for Viet-
namese to English translation direction. Highest BLEU
score is 20.18 for Vietnamese-English translation system
with IWSLT 2015 data.

7. Conclusions
In this paper, we has described an an empirical study for
English-Vietnamese Statistical Machine Translation. We at-
tempted to tackle the problem of training SMT on parallel
data. The extend of the monolingual training set to build lan-
guage model for training SMT could lead results be more
stable and better enough. We evaluated our approach on
English-Vietnamese machine translation tasks with Moses
toolkit and Phrasal toolkit (state-of-the-art phrase-based and
hierarchical statistical MT systems). The experiment results
showed that our approach achieved statistically improve-
ments in BLEU scores .
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Abstract

This paper describes the speech recognition system of IOIT
for IWSLT 2015. This year, we focus on improving acoustic
and language models by applying some new training tech-
niques based on deep neural networks compared to the last
year system. There are two subsystems which are combined
by using lattice minimum Bayes-Risk decoding. On the 2013
evaluations set, provided as a test set, we are able to reduce
the word error rate of our transcription system from 22.7%
of the last year system to 17.6%.

1. Introduction
The International Workshop on Spoken Language Transla-
tion(IWSLT) is a yearly scientific workshop, associated with
an open evaluation campaign on spoken language transla-
tion. One part of the campaign focuses on the translation
of TED Talks, which are a collection of public lectures on
a variety of topics, ranging from Technology, Entertainment
to Design. As in the previous years, the evaluation offers
specific tracks for all the core technologies involved in spo-
ken language translation, namely automatic speech recogni-
tion (ASR), machine translation (MT), and spoken language
translation (SLT).

The goal of the ASR track is the transcription of au-
dio coming from unsegmented TED talks, in order to inter-
face with the machine translation components in the speech-
translation track. The quality of the resulting transcriptions
is measured in word error rate (WER).

In this paper, we describe our speech recognition system
which participated in the TED ASR track of the IWSLT 2015
evaluation campaign. The system is a further development of
our last year’s evaluation system [1]. There are two hybrid
acoustic models in our system. The first one is built by ap-
plying a convolutional deep neural network with the input
feature of log Mel filter bank feature (FBANK). The second
one is applied a feed-forward deep neural network. Its input
feature is a speaker-dependent feature that is extracted by ap-
plying a feature space maximum likelihood linear regression
(fMLLR) in the speaker adaptive training (SAT) stage of the
baseline system. These models and an interpolated language

model are used to produce decoding latices which are then
used to generate the N-best lists for re-scoring.

The organization of the paper is as follows. Section 2
describes the data that our system is trained on. This is fol-
lowed by Section 3 which provides a description of the way
to extract acoustic features. An overview of the techniques,
used to build our acoustic models, is given in Section 4. Lan-
guage model and dictionary are presented in Section 5. We
describe the decoding procedure and results in Section 6 and
conclude the paper in Section 7.

2. Training Corpus

For training acoustic models, we used two types of corpus as
described in Table 1. The first corpus is TED talk lectures
(http://www.ted.com/talks). Approximately 220 hours of au-
dio, distributed among 920 talks, were crawled with their
subtitles, which are deliberately used for making transcripts.
However, the provided subtitles do not contain the correct
time stamps corresponding with each phrase as well as the
exact pronunciation for the spoken words, which lead to the
necessity for long-speech alignment. Segmenting the TED
data into sentence-like units, used for building a training set,
is performed with the help of SailAlign tool [2] which helps
us to not only acquire the transcript with exact timing, but
also to filter non-spoken sounds such as music or applause. A
part of these noises are kept for training noise models while
most of them are abolished. After that, the remained audio
used for training consists of around 160 hours of speech. The
second corpus is Libri360 which is the Train-clean-360 sub-
set of the LibriSpeech corpus [3]. It contains 360 hours of
speech sampled at 16 kHz, and is available for training and
evaluating speech recognition system.

Table 1: Traning data for acoustic models
Corpus Type Hours Speakers Utts

Ted Lecture 160 718 107405
Libri360 Audiobook 360 921 104014
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3. Feature Extraction
In this work, two kinds of acoustic feature are used for
developing the acoustic models. The first one is a Mel-
frequency Cepstral Coefficients (MFCC). A Hamming win-
dow of 25ms, which is shifted at the interval of 10ms, is ap-
plied. Each MFCC vector consists of 39 coefficients which
are 13 MFCCs, the first and the second order derivatives.
The second kind is a combination of a log Mel filter bank
feature and a pitch feature (FBANK+P). FBANK+P consists
of 43 coefficients including 40 FBANK coefficients, 1 the
pitch value, the first derivative of the pitch value, and the
probability of voice for the current frame. Both MFCC and
FBANK+P are extracted by using the Kaldi toolkit [4][5].

4. Acoustic Model
4.1. Baseline Acoustic Model

The baseline acoustic model was built by using the Kaldi
toolkit [4] with MFCC feature. First, this model was trained
as a basic context dependent tri-phone model, followed by
a speaker adaptive training (SAT) with a feature space maxi-
mum likelihood linear regression (fMLLR). A discriminative
training based on the maximum mutual information (MMI)
was applied at the end. This model (MMI-SAT/HMM-
GMM) had 6496 tri-phone tied states with 160180 Gaussian
components, and it was then used to produce a forced align-
ment in order to get the labeled data for training deep neural
networks.

4.2. Hybrid Acoustic Model

The hybrid Deep Neural Network and Hidden Markov Model
(DNN-HMM) acoustic model were built in which the HMM
models were the baseline model’s HMM, and their deep neu-
ral networks were built in different architectures. Fig. 1 de-
scribes the process for training these models. The first hy-
brid model was applied a feedforward deep neural network
(DNN) congured as 440-1024*5-6496 (input layer with 440
neurons, 5 hidden layers with 1024 neurons for each, out-
put layer with 6496 neurons). The second one was applied
a convolution neural network (CNN-DNN) which has one
convolutional layer with convolution and polling operations.
The conguration of the convolutional layer was as follows:
128 filters with filter size and shift as 9 and 1 for each. The
pooling width and shift is set to 2 and 2, respectively. The
output from the pooling layer was further processed with
feedforward DNN with 5 hidden layers (1024 neurons each),
and output layer with 6496 neurons. For training DNN and
CNN-DNN, a frame-based cross-entropy criterion was first
applied in the first stage, then a sequential discriminative
training based on a state level minimum Bayesian risk cri-
terion (sMBR) [6] was adopted for the second stage train-
ing. The input feature for the DNN was a fMLLR-based
feature that was calculated as follow: The MFCC was ad-
justed by concatenating 11 neighbor vectors (5 ones for each

Training data 

MFCC FBANK+P 

fMLLR feature 

CNN-DNN DNN 

DNN-HMM model CNN-DNN-HMM model 

Figure 1: Training process of hybrid acoustic models

left and right side of the current MFCC vector) to make the
context dependent feature, afterward the dimension of the
concatenated vector was reduced to 40 by applying a linear
discriminate analysis (LDA) and decorrelated with a maxi-
mum likelihood linear transformation (MLLT). It is finally
applied a feature space maximum likelihood linear regres-
sion (fMLLR) in the speaker adaptive training (SAT) stage.
The LDA, MLLT and fMLLR transforms are estimated dur-
ing the training of the baseline model. The concatenation of
11 neighbor vectors of FBANK+P, the first and the second
order derivatives was used as input feature of CNN-DNN.

5. Language Model and Dictionary
Two categories of textual corpora was used for estimating
the language model (LM) (as shown in Table 2). The first
one is the transcript of Libri360 data set that was used for
training the acoustic models. The second one is the subti-
tles of all TED talks published before June-2015 (TED2015)
which is provided by Fondazione Bruno Kessler (FBK)
(https://wit3.fbk.eu). TED2015 was used for training the lan-
guage model after rejecting all disallowed TED talks accord-
ing to the suggestion of IWSLT-2015 committee.

Table 2: Traning data for language model
Corpus Utts

Libri360 104014
TED2015 517098

For training the language model, a vocabulary set is
firstly extracted from textual sets. This vocabulary set has
73491 words and is then used to build the language model
by using the SRILM toolkit [7]. The perplexity (PPL) score
of the trained language model is 184 on the tst2013 test set.
In order to improve the performance, it is then combined in
weight of 0.65 with a 3-gram Gigaword Language model that

85

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



is available on [8] by using the linear interpolation method.
We implemented combinations with difference weights from
0.1 to 0.9 (step is 0.5). The weight of 0.65 is the weight that
gave a minimum PPL of 151 on tst2013.

The vocabulary set, obtained in the training stage of the
language model, is used to make the dictionary. The lexi-
con is built based on the Carnegie Mellon University (CMU)
Pronouncing Dictionary v0.7a. The phoneme set contains 39
phonemes. This phoneme (or more accurately, phone) set is
based on the ARPAbet symbol set.

6. Decoding Procedure and Results

 

Segmented 

Speech  

MFCC 

Extraction 

FBANK 

Extraction 

Decoding with 

Baseline model for 

SAT transform 

Decoding with DNN 

Hybrid Model 

 

Decoding with CNN-

DNN Hybrid Model 

Interpolated 

3-gram 

LM 

Lattice 

combination 

Figure 2: The full decoder architecture

During development, we evaluated our system on the
tst2013 test set that released by the IWSLT organizers. Fig. 2
shows our complete decoding process. After feature extrac-
tion step, followed by decoding with the baseline system to
estimate the transforms LDA, MLLT, and fMLLR, we oper-
ated two parallel decoding sequences for the hybrid acoustic
models. For each model, the complete process consists of a
decoding with the 3-gram LM applying Kaldi decoder. Lat-
tice outputs from the this pass are combined by using Lattice
Minimum Bayes-Risk (MBR) decoding as described in [10].

Table 3 lists the performance of our system in terms of
the word error rate (WER). Both tst2013 and dev2012 sets
were segmented manually. Regarding the performance of the
baseline system, the WER is 18.53% on dev2012 and 22.86%
on tst2013. The first row is the number of the best system
from last year [1] on the same test set. As we can see on the
Table, all of our hybrid models give better WERs which are
approximately 3% absolute compared to the baseline model.
The last row on the table shows the final combination results
of the hybrid models that give a further 1% absolute WER
reduction as compared to the best single system. For this
year’s test set which was segmented automatically like last
year system [1], we obtained 14.4% WER (about 2 % loss

Table 3: Experiment results

Denoted Model WER%
dev2012 tst2013

Last year Combination 18.7 22.7
Baseline MMI-SAT/HMM-GMM 18.53 22.86

S1 DNN-HMM 15.19 18.85
S2 CNN-DNN-HMM 15.81 19.30

S1+S2 Combination 14.5 17.6

compared to manual segmentation).

7. Conclusions
In this paper, we presented our English LVCSR system, with
which we participated in the 2015 IWSLT evaluation. The
acoustic model was improved by using deep neural networks
for this year evaluation. On the 2012 development set for the
IWSLT lecture task our system achieved a WER of 14.5%,
and a WER of 17.6% on the 2013 test set. The final com-
bination model gives about 5% absolute WER reduction on
tst2013 compared to the last year system.

In the future, we intend to improve language model us-
ing deep neural network as in [11] as well as will apply a
hybrid DNN on top of deep bottleneck features [12] to im-
prove acoustic model for the systems.
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Abstract
In this paper, we introduce the system developed at the Insti-
tute for Infocomm Research (I2R) for the English ASR task
within the IWSLT 2015 evaluation campaign. The front-
end module of our system includes a harmonic modelling
based automatic segmentation and the conventional MFCC
feature extraction. The back-end module consists of an aux-
iliary GMM-HMM training to provide the speaker adaptive
transform (SAT) and the initial forced alignment, followed
by a discriminative training DNN acoustic modelling. Multi-
stage decoding strategy is employed with a semi-supervised
DNN adaptation which uses weighted labels generated by
the previous-pass decoding output to update the trained DNN
models. Finally, Recurrent Neural network (RNN) is used to
train and rescore the language modelling to further improve
the performances. Our system achieved 8.4 % WER on the
tst2013 development set, which is better than the official re-
sults on the same set reported from the previous evaluation.
For this year’s tst2015 test set, we obtained 7.7% WER.

1. Introduction
The goal of the Automatic Speech Recognition (ASR) track
for IWSLT 2015 is to transcribe TED talks and TEDx talks
[1]. The speech in English TED talks are lectures related
to Technology, Entertainment and Design (TED) in sponta-
neous speaking style. Despite that the speech in the TED
talks is in general planned, well articulated, and recorded in
high quality, the task is challenging due to the large variabil-
ity of topics, the presence of non-speech events, the ascents
of non-native speakers, and the informal speaking style. In
this paper, we introduce our system for English TED ASR
track of the 2015 IWSLT evaluation campaign. We choose
to focus on developing a single system rather than a fusion
of multiple platforms. The overview of our ASR system is
illustrated in Fig.1. Since the TEDs’ audio samples, during
the test phase, are provided without class labels and timing
information, automatic segmentation is necessary to split au-
dio file into speech sentences to input the ASR system. In this
work, we develop a voice activity detection (VAD) method
based on harmonic modelling of speech signals and build the
automatic segmentation on top of that. As the TEDs audio is
normally recorded in relatively high quality, no noise com-
pensation method is needed and we just apply the conven-

VQ-VAD

(Sub-Harmonic Ratio)
decision

Acoustic Model Decoding

GMM
(SAT- 

fMLLR)

DNN
(sMBR)

input audio 

LM Rescore

(4gram,RNN)

Semi-Supervised 

DNN Adaptation

b
e

s
t 
p

a
th

la
b

e
l 
&

 w
e

ig
h

ts

LM Rescore

(4gram,RNN)re
s
u

lt

MFCC

Figure 1: Overview of the I2R ASR system for IWSLT 2015.

tional MFCC features as the input to the ASR system. The
training is started with an auxiliary GMM-HMM training to
provide the speaker adaptive transform (SAT) and the initial
alignment. Then the DNN acoustic modelling is carried out
on top of SAT features with a fixed size concatenating win-
dow. The hidden layer weights are initialised using layer-
wise restricted Boltzmann machine (RBM) pre-training, us-
ing 100 hours of randomly selected utterances from the train-
ing materials. Multi-stage decoding strategy is employed
with semi-supervised DNN model adaptation using weighted
lattices generated by the previous-pass decoding output. Fi-
nally, Recurrent Neural network (RNN) is used to train and
re-score the language modelling to further improve the per-
formances. Our system obtained WER of 8.4% on the devel-
opment set (tst2013) and 7.7% on the test set (tst2015), re-
spectively. The organisation of the rest of the paper is as fol-
lows. Secs.2 introduces the automatic segmentation. Secs.3
and 4 describes the acoustic modelling and language mod-
elling, respectively. Secs.5 reports the experimental results
and analyzes the role of each module into the ASR perfor-
mances. Finally, Secs 6 concludes the paper.
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2. Automatic Segmentation
The VAD module detects the speech segments based on the
harmonic to sub-harmonic ratio, and uses an adaptive thresh-
old to reject regions of noise and other non-speech and a post-
processing to smooth the result.

Our approach uses a vector quantisation (VQ) system
as the basis for voice activity detection (VAD), with frame
selection based on both energy and the harmonic to sub-
harmonic ratio (SHR) [2, 3], which is a feature for voiced
speech detection. Three acoustic categories are targeted in
this knowledge-based approach:

Speech - voiced speech is characterised by having both a
high SHR and high energy, due to the strong harmonic
structure produced during speech vocalisation.

Background Noise - for the task of lecture-style speech,
where the signal-to-noise ratio (SNR) is high, the
noise will typically have a much lower energy than the
speech signal.

Clapping - impulsive noise has a high energy but a low
SHR, which is due to the physical nature of the way
the sounds are generated.

To compute the SHR within each short-time windowed
frame, using a frame length of 32 ms, the amplitude spec-
trum E(f) is first computed. For voiced segments of speech,
E(f) has strong peaks at the harmonics of the fundamen-
tal frequency F0. From this spectrum, the summation of
harmonic amplitude (SHA) and summation of sub-harmonic
amplitude (SSA) is computed for each frequency in the range
[F0min, F0max] as follows:

SHA(f) =

Nharm∑

k=1

∆∑

a=−∆

E(k.f + a) (1)

SSA(f) =

Nharm∑

k=1

∆∑

a=−∆

E((k − 1

2
).f + a) (2)

where only the first Nharm harmonics are taken into account
in the summation, and a window of ∆ = 1 neighbouring bins
are included in the summation to account for inharmonicity.
Finally, the harmonic to sub-harmonic ratio (SHR) is the ratio
of the two, as follows:

SHR(f) =
SHA(f)

SSA(f)
(3)

where the maximum value maxf (SHR(f)) is taken as the
value of the feature for each frame, SHR[t].

The VQ process is applied on each TED talk indepen-
dently, and uses basic Mel-frequency cepstral coefficient
(MFCC) as the underlying features. Our approach is to
use k-Means clustering to build a set of representative vec-
tors for each of the three categories. The top 10% of the
available frames, ranked according to the above-mentioned

frame-selection criteria, are used for both the speech and
noise categories, while only the top 2% of frames are used for
the clapping category in anticipation that less data is avail-
able.

To allow a threshold to be set for the VAD, the VQ dis-
tances are compared using the following formula:

V QR = min(Dnoise, Dclapping)−min(Dspeech) (4)

where the distances D for each category are calculated as the
minimum Euclidean distance of the quantised vectors for that
category. We used a threshold set at thresh = 0 such that
speech frames are those with V QR > thresh.

Note that the frame-level output decision is first
smoothed to join together segments separated by a gap of
less than 500 milliseconds, with an additional hangover of
length 500 milliseconds then applied to ensure that unvoiced
speech at the start and end of the segments are not missed.

3. Acoustic Modelling
This section describes the acoustic modelling used in the I2R
ASR system, as shown in Figure 1. The following three as-
pects are detailed: (1) training data selection, (2) feature ex-
traction and auxiliary GMM-HMM, and (3) DNN acoustic
modelling.

3.1. Training Data

Following the success of the NICT system for IWSLT 2014
[4], we use a similar set of training data based on the follow-
ing three corpora:

Wall Street Journal - this comprises of 81.1 hours of read
speech, available from the Linguistic Data Consortium
(LDC), from LDC93S6B and LDC94S13B.

HUB4 English Broadcast news - unlike [4] we use the full
201 hours of broadcast news data from LDC97S44 and
LDC98S71.

TEDLIUM version 2 - this corpus contains 204 hours of
lecture-style TED speech [5] consisting of 1481 talks
after the removal of non-permissible talks.

Further experiments were conducted with an additional 44
hours of data extracted from the Euronews corpus [6], pro-
vided by the organisers. However, this was found to degrade
the WER results by approximately 4% relative so in the final
system we did not include it in the training.

3.2. Feature Extraction and Auxiliary GMM-HMM

The acoustic models (both GMM-HMM and DNN) are
trained on 13-dimensional MFCCs, without energy, which
are mean normalised over the speech segments extracted
from each conversation for the speaker. Later, these features
are spliced by ±3 frames adjacent to the central frame and
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projected down to 40 dimensions using linear discriminant
analysis (LDA).

Prior to DNN training, an auxiliary GMM-HMM is first
trained to provide speaker adaptive transforms (SAT) and
the initial alignments for training the subsequent DNN sys-
tem by forced alignment, which inherits the same tied-state
structure. To train the GMM-HMM, a monophone system
is first trained using the shortest twenty thousand utterances,
to make the initial alignments based on a flat-start approach
easier. Next, triphone and LDA GMM-HMM systems are
trained with 2500 and 4000 tied states respectively, followed
by SAT training to give a final SAT GMM-HMM system
with 6353 tied triphone states and 150k Gaussians. The
SAT approach uses feature-space maximum likelihood lin-
ear regression (fMLLR) transforms, with speech segments
extracted from each conversation assumed to come from the
same speaker. For training, the fMLLR transforms are com-
puted from forced alignments, while for testing, the fMLLR
transforms are computed from lattices by using 2 passes of
decoding.

3.3. DNN Acoustic Modelling

The DNN acoustic model is trained on top of SAT features
that are spliced ±5 frames and rescaled to have zero mean
and unit variance. The DNN has 5 hidden layers, where
each hidden layer has 2048 sigmoid neurons, and a 6353 di-
mensional softmax output layer. The hidden layer weights
are initialised using layer-wise restricted Boltzmann machine
(RBM) pretraining, using 100 hours of randomly selected ut-
terances from the TEDLIUM corpus [5]. After pretraining,
fine-tuning is performed to minimize the per-frame cross-
entropy between the labels and network output. The first
stage of fine-tuning was performed using the same 100 hour
subset as for pretraining with a learning rate of 0.008 and
halving beginning when the network improvement slows.
This then generated alignments for a full training set to per-
form a second stage of fine-tuning. Finally, the DNN is re-
trained by sequence-discriminative training to optimise the
state minimum Bayes risk (sMBR) objective. Two iterations
are performed with a fixed learning rate of 1e-5. The Kaldi
toolkit is used for all experiments [7].

3.4. Semi-supervised DNN adaptation

During decoding, semi-supervised DNN adaptation is
utilised on a per-talk basis to reduce any mismatch between
training and testing conditions and to provide speaker adap-
tation of the acoustic model [8, 9]. Additional iterations of
fine-training of the DNN requires a frame-level label, and
potentially also a confidence measure, and these are gener-
ated based on the initial output of the system, as shown in
Figure 1.

The frame-level confidence cframei is extracted from the
lattice posteriors γ(i, s), which express the probability of be-
ing in state s at time i. The decoding output gives us the best

Category Corpus Sentences
selected

Pct% of
Original

In-domain TED Talks 92k -

Out-of-
domain

CommonCrawl 770k 9%
Europarl 140k 6%

Gigaword FR-EN 0.9M 4%
NewsCommentary 47k 19%

News 12.3M 18%
Yandex 310k 31%

Table 1: Training data for the language models.

path state sequence, si,1best, and the confidence values are
the posteriors under this sequence, as follows [9]:

cframei = γ (i, si,1best) (5)

The best path state sequence and confidence measures are
then used as the target labels and weightings respectively for
additional iterations of DNN fine-tuning, with weights less
than c = 0.7 set to zero. In our experiments, all weights
in the network are updated, as our experiments suggested
this performed better than adapting only the first layer of the
DNN. The learning rate is 0.0008, with halving performed
each iteration until no improvement is observed.

4. Language Modelling
This section describes the language modelling and rescoring
approaches used in the I2R ASR system. The following three
aspects are detailed: (1) training data selection, (2) n-gram
language model training, and (3) RNN language modelling
and rescoring.

4.1. Training Data and N-gram Language Model

Table 1 shows the data used for training the language models
in the I2R ASR system. The out-of-domain data is provided
as part of the enhanced TEDLIUM version 2 corpus [5], and
consists of text selected from corpus from the WMT 2013
evaluation campaign. The selection is based on the XenC
tool [10], which is a filtering framework that trains both in-
domain and out-of-domain language models and uses the dif-
ference in the computed scores on the out-of-domain text as
an estimation of the closeness of those sentences to the in-
domain subject. Text from each corpus is concatenated to-
gether to form a single large set that is used for training each
of the subsequent language models.

Two n-gram language models are trained using the data
selected from the available corpus as described above. The
first is a 3-gram model, trained using the “Kaldi LM” pack-
age [7], which is used for DNN-based lattice generation dur-
ing the first pass of decoding. The second is a 4-gram model,
which is trained in an identical fashion to the one above, and
is used for rescoring of the word lattice to provide a consis-
tent improvement in WER performance.
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Processing Step
WER tst2013

Ground Truth Segmentation

SAT GMM 21.3% 22.4%
DNN sMBR 12.3% 11.6%

+ LM Rescore 10.8% 10.1%
+ DNN Adapt 1 9.5% 8.7%
+ DNN Adapt 2 9.4% 8.5%
+ DNN Adapt 3 9.1% 8.4%

Table 2: Detailed experimental results on the tst2013 devel-
opment set showing the performance at each stage of the de-
coding system. Note that the DNN semi-supervised adapta-
tion step includes a final round of language model rescoring.

4.2. RNN Language Model Training and Rescoring

A recurrent neural network (RNN) language model is trained
and used for n-best list rescoring to further enhance the
WER performance. The RNNLM package version 0.3e [11]
was used, with 30k words in the vocabulary, 480 hidden
units, 300 classes, and 2000M direct connections. Back-
propagation Through Time (BPTT), with truncated time or-
der 5, was used for RNN training, which performs joint train-
ing with a maximum entropy model to reduce the hidden
layer size. The training data for the RNN was the same as
above, although to enable a faster training time a random
subset of 2M sentences (14% of the filtered corpora) were
selected for training.

The RNN language model has a perplexity of approxi-
mately 60, and is used to rescore the output decoding lattice,
with interpolation weight of 0.3 instead of using the 4-gram
LM. With lower perplexity, the RNN language model can
be beneficial in reducing the WER, since final ASR perfor-
mance is quite dependent on a strong language model. Note
that the CMU pronouncing dictionary [12] was used, limited
to the words that appear in the language training databases.

5. Experimental Results

In this paper, we opt to use a single system without any
combination using ROVER [13] or other techniques. At
the decoding stage, we first decode the whole test set from
the trained DNN acoustic models and 3-gram LM. Then the
4-gram LM rescoring is carried out, following by another
RNN rescoring, described above. Next, the semi-supervised
adaptation is applied for each TED test file. Each round
of semi-supervised adaptation includes DNN models lattice
outputting, 4-gram LM rescoring, RNN LM rescoring and
DNN model adaptation. After 3-rounds of semi-supervised
adaptation of the DNN acoustic model, there was no further
improvement in WER on the devleopment sets, hence we ap-
plied the same number during final testing. For this year’s
tst2015 test set, we obtained 7.7% WER.

Processing Step WER Gain (tst2013)

DNN sMBR 9%
+ LM Rescoring 1.5%

+ Semi-supervised DNN 1.7%

Table 3: Comparison of the approximate WER improve-
ments given by the key components of the system, compared
to the SAT-GMM result.

5.1. Results and Discussions

Table 2 reports detailed experimental results on the tst2013
development set showing the performance at each stage of
the training and decoding with ground truth segmentation
and the proposed automatic segmentation. We can see that
the performance of the proposed segmentation is compara-
ble to the ground truths at the baseline SAT-GMM models
and and even outperformed the latter at the more comprehen-
sive training models. The best result from tst2013 develop-
ment set is 8.4% WER and it was obtained with multi-stage
semi-supervised adaptation with rescoring of LM. This result
is better than the official result of 10.6% WER on the same
tst2013 set from last evaluation. The DNN with sMBR dis-
criminative training yields a reasonable result of 11.6% WER
and that system is fast enough to be real-time and hence rec-
ommended for the live engines.

5.2. Analysis of Word Error Rate Improvements

A summary of the contribution of each processing step to the
final WER result is shown in Table 3. It can be seen that the
DNN with sMBR discriminative training gives the most sig-
nificant improvement in performance over the baseline SAT-
GMM. In addition, the DNN decoding strategy gives a total
of around 2-3% improvement, with the biggest contribution
coming from the semi-supervised DNN speaker adaptation,
combined with a consistent improvement achieved through
language model rescoring. The semi-supervised DNN adap-
tation is suitable for TED and TEDx talks since it involves a
single speaker and long enough to be effective. However, a
big jump of performance is normally seen in the first round
of adaptation while it is very time consuming. Hence, in
practical situations, using one round of adaptation is recom-
mended.

6. Conclusions
In this paper, we described our English ASR system for
IWSLT 2015 evaluation campaign. This is a single system
consisting of harmonic modelling voice activity detection
(VAD) for automatic segmentation, speaker adaptive training
(SAT) GMM-HMM initial forced alignment, DNN acous-
tic modelling with sMBR discriminative training, RNN lan-
guage modelling and rescoring, and semi-supervised DNN
adaptation in decoding. We obtained good performances on
both the development and test sets. Among the system, the
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harmonic modelling VAD, the DNN acoustic modelling with
discriminative training, the semi-supervised DNN adaptation
have found to be the key components which contributed to
the ASR improvements compared to the baseline systems.
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Abstract

This paper describes the submission of the Japan Advanced
Institute of Science and Technology and the University of
Engineering and Technology, Vietnam National University,
Hanoi for the machine translation track of the IWSLT 2015
workshop. We participated in the shared task for the lan-
guage pair: English-Vietnamese. First, we investigate and ap-
ply some approaches and techniques including phrase-based,
syntax-based and domain adaptation for the TED talks do-
main. Then, we observe and evaluate experimental results of
these systems on the development sets to setup the best con-
figurations. Experimental results show that the phrase-based
systems obtain the best performance on this domain in com-
parison with the other applied approaches.

Keywords: phrase-based machine translation, syntax-
based machine translation, domain adaptation

1. Introduction

This year’s machine translation track of the IWSLT work-
shop is for language pairs: English paired with French, Ger-
man, Chinese, Czech, Thai, and Vietnamese. We participate
in both translation directions for English-Vietnamese.

We approach the task by first investigating some effective
existing methods: phrase-based and syntax-based. Phrase-
based translation systems (Koehn et al., 2003 [16], Chiang,
2007 [5]) achieve state-of-the-art results in many typolog-
ically diverse language pairs. For this shared task, we par-
ticipate in translation for English-Vietnamese, a diverse lan-
guage pair with many different characteristics in linguistic;
therefore, we try to apply the syntax-based approach to ex-
ploit linguistic knowledge. For the phrase-based methods, we
built our systems based on the Moses toolkit (Koehn et al.,
2007 [15]). For the syntax-based methods, we applied the
open source Joshua [17] with two particular SCFG types: Hi-
ero [5] and Syntax Augmented Machine Translation (SAMT)
[34]. In addition to these two methods, because we used un-
constrained data in training our models, we conducted ex-
periments on some domain adaptation techniques including:
fill-up [2] and back-off 1 to leverage more improvements in

1http://www.statmt.org/moses/?n=Advanced.Domain#ntoc3

our systems. We evaluated our systems on tuning data sets
provided by the workshop.

The rest of this paper is organized as follows: in Section
2, we discuss some linguistic characteristics of the diverse
language pair English-Vietnamese and review some previous
researches of machine translation for English-Vietnamese. In
Section 3, we describe a general system overview with de-
tails on our training pipeline and decoder configuration. Next
we present empirical results for the individual translation di-
rections. In Section 5, we investigate some challenges in the
translation task for TED data. We analyze translation errors
and experimental results in Section 6. Finally, conclusions
are described in Section 7.

2. English-Vietnamese Machine Translation

In this section, we discuss different characteristics between
English and Vietnamese. Then, we review some previous re-
searches related to English-Vietnamese machine translation.

2.1. English vs. Vietnamese: Some Linguistic Character-
istics

There are many different characteristics between English and
Vietnamese languages. For instance, in word order, adjec-
tives follow nouns in Vietnamese while this order is converse
in Vietnamese. In another aspect, English uses morpholog-
ical morphemes to mark tense and number, whereas Viet-
namese uses words that precede the verb to mark tense and
the addition of numerals and quantifiers for indicating num-
bers. See Table 5 of [30] for more details of these compar-
isons.

2.2. Previous Work

Dinh et al., 2003 [8] presented a hybrid model for machine
translation (MT) which combines rule-based MT and corpus-
based MT (Bitext-Transfer Learning) that learns from bilin-
gual corpus to extract disambiguating rules. Rule-based MT
systems were improved by using word-order transfer [9].
This model has been experimented in English-to-Vietnamese
MT system (EVT). Ho et al., 2008 [1] built an English-
Vietnamese statistical machine translation (SMT) system
namely EVSMT1.0 based on the framework of the open

93

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



source Moses and showed potential features in comparison
with an existing commercial MT using traditional rule-based
approach.

For experiments on the language pair English-
Vietnamese, Nguyen and Shimazu 2006 [22] proposed
a syntactic transformation model in the pre-processing phase
which reorder the structure of source sentence so that it is
closer to the structure of target sentence. The transformation
is also produced by a dependency-based parser together with
a set of hand-crafted rules [13]. Nguyen et al., 2006 used
linguistic knowledge of languages in the preprocessing phase
using a morphological analysis or POS tagger on the source
sentence [21]. Nguyen et al., 2008 [32] proposed reordering
at trunk level and incorporate the global reordering model
into the decoder. Related to syntactic approaches, Nguyen et
al., 2008 [23] applied a tree-to-string phrase-based method
which employs a syntax-based reordering model in the
decoding phase.

There have been efforts in developing English-
Vietnamese bilingual corpora. Nguyen et al., 2006 [31]
described dictionaries used in English-Vietnamese Ma-
chine Translation (EVMT). Another work of building
bilingual corpus was conducted in the National project
VLSP (Vietnamese Language and Speech Processing). 2 In
this project, an English-Vietnamese bilingual corpus was
built, which includes more than 100,000 sentence pairs.
English-Vietnamese corpora were also built at different
levels including a study on building POS-tagger for bilingual
corpora or building a bilingual corpus for word sense
disambiguation ([6], [7]). This task was also shown in some
other researches ( [18], [19], [20]).

3. System Overview

3.1. Pre-processing

We pre-processed English training data by using scripts from
the Moses toolkit including tokenization, and then truecas-
ing. For Vietnamese training data, we used JVnTextPro3 for
tokenization. We remove sentences longer than 80 words and
their corresponding translations.

3.2. Word Alignment

Word alignment was computed using the first three steps
of the train-factored-phrasemodel.perl script packed with
Moses (Koehn et al., 2007). We used MGIZA++ (Gao
and Vogel, 2008) [11], a multi-threaded implementation of
GIZA++ (Och and Ney, 2003) [25] using the grow-diag-
final-and heuristic (Koehn et al., 2003) [16].

3.3. Language Model

We used all available monolingual data and KenLM [12] to
train interpolated Kneser-Ney discounted 5-gram LMs for

2http://vlsp.vietlp.org:8080/demo/?page=home
3http://jvntextpro.sourceforge.net/

each system.

3.4. Baseline Features

We follow the standard approach to SMT of scoring transla-
tion hypotheses using a weighted linear combination of fea-
tures. The core features of our models are a 5-gram LM score,
phrase translation and lexical translation scores, word and
phrase penalties, and a linear distortion score.

We used the hierarchical lexicalized reordering model
(Galley and Manning, 2008) [10] with 4 possible orientations
(monotone, swap, discontinuous left and discontinuous right)
in both left-to-right and right-to-left direction with the setup
msd-bidrectional-fe lexicalized reordering.

3.5. Tuning and Decoding

The feature weights were tuned using k-best batch MIRA
(Cherry and Foster, 2012) [4]. This is a version of MIRA (a
margin based classification algorithm) which works within a
batch tuning framework. We set the number of inner MIRA
loops to 300 passes over the data.

4. Experimental Results

In this section we describe peculiarities of individual systems
and present experimental results.

4.1. Data

4.1.1. Bilingual Data

In addition to the data provided by the workshop 4 (con-
strained data) [3], we used unconstrained data including
bilingual corpora for training translation models and mono-
lingual corpora for training language model (LM). Bilingual
corpora and sentence length statistics are indicated in Table
1 and Table 2.

The unconstrained bilingual data include several re-
sources in which we used the English-Vietnamese bilin-
gual corpus provided by the National project VLSP (Viet-
namese Language and Speech Processing).5 This corpus in-
cludes 80,000 sentence pairs in Economics-Social topics and
20,000 sentence pairs in information technology topic. In
addition, we used the EVBCorpus including texts extracted
from books, fictions or short stories, law documents, and
newspaper articles and then translated by skilled translators
[19], [20]. We also used our in-house data including bilingual
sentences extracted from newspaper articles. We combines
these datasets and obtained 419,385 unconstrained parallel
sentences.

For development data, we experimented and evaluated
our systems on various tuning sets: each particular set of
five development sets (dev2010, tst2010, tst2011, tst2012,
tst2013) provided by the workshop and a set of merging all

4https://wit3.fbk.eu/mt.php?release=2015-01
5http://vlsp.vietlp.org:8080/demo/?page=home
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these five sets. We setup the development set tst2013 which
shows the best performance for tuning data.

Table 1: Bilingual Corpora. Language codes: en=English,
vi=Vietnamese.

Corpus SentPairs Tokens en Tokens vi
Constrained 133,082 54,139 26,867
Unconstrained 419,385 84,506 41,120
Development 1,304 3,918 2,694

Table 2: Sentence Length Statistics. Len.Avg: average sen-
tence length on the corpus. Len.Max: the maximum sentence
length. Len>80: number of sentences which length >80.

Corpus Len.Avg Len.Max Len>80
train.en 17.33 513 341
train.vi 22.66 735 1572
test.en 16.54 90 1
test.vi 21.31 120 8

4.1.2. Monolingual Data

For monolingual data, we used English corpora of the
WMT 2015,6 which are permissible in the workshop
IWSLT 2015. For Vietnamese data, we crawled articles
from wikipedia by using more than 1.3B titles provided at
dumps.wikimedia.org.7 In addition, we crawled and extracted
800,000 Vietnamese articles from the website baomoi.com.8

These articles were then pre-processed to produce a huge
Vietnamese monolingual data. These monolingual data are
shown in Table 3.

Table 3: Monolingual Data

Corpora Sentences Tokens
en 46,788,513 20,665,762
vi 21,180,758 1,960,909

4.1.3. Test Data

Test data of the workshop IWSLT 2015 include 1080 sen-
tences on both English-Vietnamese and Vietnamese-English
extracted from 12 talks of TED data. Statistics of sentences
length of the test sets are shown in Table 2. The average
length of the English and Vietnamese sets are 16.54 and
21.31, respectively. There are few sentences with length
greater than 80.

6http://www.statmt.org/wmt15/translation-task.html
7http://dumps.wikimedia.org/viwiki/20150901/
8http://www.baomoi.com/

4.2. Experiments on Syntax-based Approaches

We found that advantages of syntax-based translation can re-
solve some differences between English and Vietnamese dis-
cussed in Section 2.1 including: i) reordering for syntactic
reasons – e.g., move Vietnamese adjectives follow nouns ii)
better explanation for function words – e.g., prepositions, de-
terminers iii) conditioning to syntactically related words –
translation of verbs may depend on subject or object.

Therefore, in our experiments, we attempted to apply
syntax-based methods for the machine translation track. We
used Joshua, a Java-based open source implementation of the
hierarchical decoder (Li et al., 2009)[17], release 6.0.

Throughout this work, we applied two particular SCFG
types known as Hiero (Chiang, 2007) and Syntax Augmented
Machine Translation (SAMT) (Zollmann and Venugopal,
2006). We used Thrax (Weese, 2011) [14], an open-source
grammar extractor for Hiero and SAMT grammars. We built
systems for two language pairs for the IWSLT 2015 shared
task: vi-en and en-vi. For the vi-en language pair, we built
both SAMT and Hiero grammars, for the en-vi language pair,
we only built Hiero grammar.

We used the constrained parallel data to train the trans-
lation models. The parallel data was subsampled using
Joshua’s built in subsampler to select sentences with n-grams
relevant to the tuning and test sets. We used SRILM [29] to
train a 5-gram LM with Kneser-Ney smoothing using the
appropriate side of the parallel data. Before extracting an
SCFG with Thrax, we pre-processed the data. For English
side, we used the provided Perl scripts to tokenize and nor-
malize the data. For Vietnamese side, we used JvnTextPro to
tokenize data. We lower-case data before extracting an SCFG.
For SAMT grammar extraction, we parsed the English train-
ing data using the Berkeley Parser (Petrov et al., 2006) [27]
with the provided Treebank-trained grammar. We tuned the
model weights against the tuning sets of the workshop us-
ing ZMERT (Zaidan, 2009) [33], an implementation of min-
imum error-rate training included with Joshua. We decoded
the test set to produce a 300-best list of unique translations,
then chose the best candidate for each sentence using Mini-
mum Bayes Risk reranking (Kumar and Byrne, 2004) [28].
To re-case the 1-best test set output, we trained a true-case
5-gram LM using the same previous LM training data, and
used Perl script to translate from the lowercased to true-case
output. Table 4 shows experimental results of the submitted
systems (phrase-based) and the syntax-based on the develop-
ment set.

Table 4: Experimental results on the tuning data (BLEU)

Setup en-vi vi-en
SAMT – 9.91
Hiero 19.27 12.52
Phrase-based (in-domain) 23.92 12.94
Phrase-based (out-of-domain) 25.49 18.27
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We use BLEU [26] as the metric to evaluate our systems.
Experimental results in Table 4 show higher BLEU scores
of the phrase-based compared with the syntax-based meth-
ods on the development data. This kind of data, spoken lan-
guages, includes complicated structure sentences that we will
discuss in Section 5. These characteristics lead to challenges
for the syntax-based methods in parsing sentences into syn-
tax structures. Since the results on development data, we set
syntax-based outputs as contrastive runs, and phrase-based
outputs are submitted to the workshop as primary runs.

4.3. Experiments on Domain Adaptation

Since we used unconstrained bilingual data from other do-
mains in the phrase-based method, we attempted to apply
some strategies for domain adaptation including fill-up and
back-off combinations. We show experimental results of do-
main adaptation in this section.

Fill-up Combination (Bisazza et al., 2011 IWSLT):
Fillup preserves all the entries and scores coming from the
first model, and adds entries from the other models only if
new. Moreover, a binary feature is added for each additional
table to denote the provenance of an entry. These binary fea-
tures work as scaling factors that can be tuned directly by
MERT [24] along with other models’ weights.

Back-Off Combination: This is a simplified version of
fill-up. Nevertheless back-off technique does not generate the
binary feature denoting the provenance an entry, and this
makes the main advantage of back-off: the combined table
contains the exact number of scores of their combining ta-
bles.

Table 5: Experimental results on domain-adaptation tech-
niques (BLEU). Domain-adaptaion techniques: fill-up and
back-off. Merged-data: merging in-domain and out-of-
domain data for training.

Setup en-vi vi-en
Fill-up 27.90 17.68
Back-off 28.08 17.74
Merged-data 28.32 22.02

We compared results produced by fill-up and back-off
techniques with those of the setup merged-data in which we
merge all in-domain and out-of-domain data together and
then train a translation model to obtain only one phrase ta-
ble. Experimental results in Table 5 show higher scores in
the merged-data training setup. Therefore, the merged-data
setup was used for generating the primary runs.

4.4. Results

To train translation models, we merged the constrained and
unconstrained bilingual corpora, then we run the processing
steps described in Section 3. Table 6 shows BLEU scores of

our translations on the evaluation system of the workshop.9

Table 6: Experimental results on the test sets IWSLT 2015
(BLEU). Hiero, SAMT: syntax-based systems. Submitted
system: Phrase-based (out-of-domain).

Setup en-vi vi-en
baseline 27.01 24.61
SAMT – 15.16
Hiero 21.48 15.05
Phrase-based (in-domain) 26.57 16.51
Phrase-based (out-of-domain) 28.17 21.53

We investigated and experimented syntax-based ap-
proaches using SAMT and Hiero grammars, which are
described in Section 4.3. We used in-domain data for
these systems. For English to Vietnamese translation (en-
vi translation), Hiero shows a BLEU score of 21.48 which
is 5.09 lower than the phrase-based method (26.57). For
Vietnamese-English translation (vi-en translation), the re-
sult of Hiero is 1.46 lower than that of the phrase-based
method (15.05 vs. 16.51). Meanwhile, SAMT which is ex-
perimented only on vi-en translation shows a slightly higher
score than that of Hiero (15.16 vs. 15.05). For both transla-
tion directions, the phrase-based systems show higher BLEU
scores than the syntax-based systems. The submitted sys-
tem, phrase-based (out-of-domain), shows the highest BLEU
scores (28.17 for en-vi translation, and 21.53 for vi-en trans-
lation). In comparison with the phrase-based in-domain sys-
tem, the phrase-based out-of-domain system obtains higher
BLEU scores (+1.6 for en-vi and +5.02 for vi-en translations)
because of the supplemented data.

In comparison of translation directions, all systems show
higher BLEU scores in en-vi than vi-en translations. In
the result of Hiero, BLEU score of en-vi translation is
6.43 higher than that of vi-en translation. Similarly, the
higher BLEU scores are +10.06 (phrase-based in-domain)
and +6.64 (phrase-based out-of-domain).

In comparison with the baseline system of the workshop,
our en-vi system shows the better result (28.17 vs. 27.01).
Nevertheless, our vi-en system is worse than the baseline
(21.53 vs. 24.61).

We will discuss these experimental results in the section
of error analyses (Section 6).

5. Data Analysis

The data for machine translation track of the IWSLT 2015 are
subtitles from TED talks. Since these data are in spoken lan-
guage, there are some challenges for translation on this kind
of data. We discuss several challenges with some examples.

9http://iwslt-server.fbk.eu/eval/Eval.html

96

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



<title> Rachel Pike: The science behind a climate head-
line </title>
Recently the headlines looked like this when the Inter-
governmental Panel on Climate Change, or IPCC, put
out their report on the state of understanding of the
atmospheric system.
That report was written by 620 scientists from 40
countries.
They wrote almost a thousand pages on the topic.

Figure 1: An example of relationships in contexts and
topics between sentences of TED data, emphasis (bold)
added by author.

5.1. Context and Topic

The first problem is that there exists a connection between
different sentences in a text. Sentences in a TED talk’s sub-
titles may be related to each other in terms of context and
topic. As shown in Figure 1, phrases that report and the topic
are mentioned previously, and this can be seen as a dependent
relationship between sentences. This kind of data causes the
translation task more complicated than that of written texts
in general.

5.2. Abstract Meaning

A characteristic of spoken languages like TED data is
abstract meaning. As shown in Figure 2, closet does not
mean a cupboard or wardrobe. Speakers sometimes tend
to use metaphors in their speech, and it is not easy for
machine translation systems to correctly produce output.
This is also another challenge in translation tasks for TED
data.

<title> Ash Beckham: We’re all hiding something.
Let’s find the courage to open up </title>
<seg id="1"> I think we all have closets. </seg>
<seg id="2"> Your closet may be telling someone
you love her for the first time, or telling someone that
you’re pregnant, or telling someone you have cancer, or
any of the other hard conversations we have throughout
our lives. </seg>

Figure 2: An example of abstract meaning in TED data,
emphasis (bold) added by author.

5.3. Sentence Structures

Unlike written texts, structures of sentences in TED data
are usually quite complicated, and this is a particular char-
acteristic of spoken languages. This is not easy to realize
and parse syntactic structures for sentences accurately. This
also leads to the applying of syntax-based approaches for
this kind of data more difficult. Figure 3 shows an example
of this challenge.

<title> Mary Lou Jepsen: Could future devices read
images from our brains? </title>
<seg id="14"> But that experience, I think, gave me
a new appreciation for men and what they might walk
through, and I’ve gotten along with men a lot better
since then. </seg>

Figure 3: An example of complicated sentence structures
in TED data.

Table 7: Out Of Vocabulary Statistics (%)

Setup en-vi vi-en
SAMT – 1.67
Hiero 6.90 2.44
Phrase-based (in-domain) 5.03 2.50
Phrase-based (out-of-domain) 2.97 1.34

6. Errors Analysis

6.1. Out Of Vocabulary

We show statistics of out-of-vocabulary (OOV) of our sys-
tems on the test sets tst2015, which are described in Table
7. This is ratio of vocabulary of the test sets that cannot be
translated by our systems to produce hypotheses. For the
en-vi translations, that ratio of the Hiero (6.90%) is higher
than that of the phrase-base in-domain (5.03%). The lowest
OOV ratio is of the phrase-based (out-of-domain) which
uses unconstrained data. This is also similar to the case
of vi-en translations of the phrase-based (out-of-domain).
Nevertheless, in the SAMT for vi-en translation, though
the OOV ratio is lower than that of the phrase-based (in-
domain) (1.67 % vs. 2.50 %), the SAMT still obtains a
lower BLEU score (15.16 vs. 16.51). The systems may
produce output phrases that differ from reference phrases
even when input phrases are included in phrase tables. We
discuss some examples of this problem in Section 6.2.

6.2. Hypotheses and Reordering

In Table 8 and Figure 4 two examples of translations are
reported, analyzed in the following. In Table 8, we indicate
some problems in vi-en translation in terms of meaning
and tenses. The input phrase được nhìn nhận is translated
into was seen (phrase-based), visible (syntax-based), has
been viewed (reference, we use the file input of vi-en trans-
lation as the reference for vi-en translations). For another
example, the input phrase có thể suy nghĩ is translated into
could think (phrase-based and syntax-based), can think (ref-
erence). As we previously discussed in Section 2.1, Viet-
namese differs from English in that it does not morpho-
logically mark tenses. In this example, the two Vietnamese
phrases are translated into results which are different from
the reference. Recognizing tenses is a challenge for trans-
lation systems. This factor can be seen as a reason why
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Table 8: An example of Vietnamese to English translation, bold phrases discussed in Section 6.2.

Input <title>Alex Wissner-Gross: A new equation for intelligence</title>
<seg id="2">Nếu chúng ta nhìn lại lịch sử xem trí thông minh được nhìn nhận thế nào ta có thể
tham khảo câu nói nổi tiếng của Edsger Dijsktra: "Hỏi rằng liệu máy có thể suy nghĩ được hay
không cũng thú vị như hỏi liệu một chiếc tàu ngầm có bơi được hay không."</seg>

Phrase-based If we look back in history to see the intelligence was seen, we can refer to the famous Edsger
Output Dijsktra: asking whether machines could think or as exciting as the question of whether a

submarine had to swim or not,
Hiero Output If we look at what intelligence visible like, we can go even famous saying edsger_dijsktra history:

"or not asking if machine could think is about as exciting as asked if a submersible swimming
or not. "

Reference If we take a look back at the history of how intelligence has been viewed, one seminal example
has been Edsger Dijkstra’s famous quote that "the question of whether a machine can think is
about as interesting as the question of whether a submarine can swim."

vi-en translations show a lower performance than that of
en-vi translation.

Another problem we would like to discuss in this
example is choosing appropriate hypotheses. The input
phrase ta có thể tham khảo is translated into we can re-
fer (phrase-based), or hỏi rằng is translated into asking
(phrase-based); thú vị is translated into exciting (phrase-
based, syntax-based). These hypotheses can be accepted in
terms of appropriate meaning. Nevertheless, they may be
not matched with results of the reference: one seminar ex-
ample, the question of, interesting, respectively. Therefore,
choosing an appropriate hypothesis is another problem that
should be solved to improve the translation performance.

In experimental results shown in Table 4 and Table
6, the syntax-based systems show lower scores than the
phrase-based systems. Syntax-based methods may less ap-
propriate for this kind of data, TED talks, than phrase-
based methods. Nevertheless, we will show here an exam-
ple that the syntax-based system produces a better result
than the phrase-based in terms of reordering. In Figure 4,
we describe translations of an English input sentence in the
test set with the reference, phrase-based and syntax-based
systems, respectively. The input noun phrase This tool use
ability is translated by the phrase-based and syntax-based
systems with different order in output phrases. The input
phrase use ability which precedes the verb will have is a
part of the subject, but its translation produced by the
phrase-based system follows the verb and now becomes
an object of the verb. This causes an incorrect meaning of
the output. Meanwhile, this translation of the syntax-based
system matches with the reference due to the syntactic
analysis in syntax-based methods.

7. Conclusion

In this work, we have described the submitted system
of the JAIST-UET-MITI team for the machine translation

track of the IWSLT 2015 workshop. This year, we partic-
ipated in the shared task for the language pair: English-
Vietnamese. We investigated and experimented some ap-
proaches including phrase-based, syntax-based and domain
adaptation. The submitted system, phrase-based approach,
is based on the Moses toolkit, which shows the best re-
sults on both development sets and test sets in comparison
with applied approaches. Although applying some domain
adaptation techniques does not improve our unconstrained
systems, we will attempt to deal with this by other strate-
gies to obtain better results.

We have discussed some challenges of machine trans-
lation for the data domain of the shared task, subtitles
of TED talks. We have also analyzed translation errors in
some aspects in both approaches: phrase-based and syntax-
based. We plan to deal with these issues in the future
work.
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Abstract 

In this paper, we attempt to improve Statistical Machine 

Translation (SMT) systems on a very diverse set of language 

pairs (in both directions): Czech - English, Vietnamese - 

English, French - English and German - English. To 

accomplish this, we performed translation model training, 

created adaptations of training settings for each language pair, 

and obtained comparable corpora for our SMT systems. 

Innovative tools and data adaptation techniques were 

employed. The TED parallel text corpora for the IWSLT 2015 

evaluation campaign were used to train language models, and 

to develop, tune, and test the system. In addition, we prepared 

Wikipedia-based comparable corpora for use with our SMT 

system. This data was specified as permissible for the IWSLT 

2015 evaluation. We explored the use of domain adaptation 

techniques, symmetrized word alignment models, the 

unsupervised transliteration models and the KenLM language 

modeling tool. To evaluate the effects of different 

preparations on translation results, we conducted experiments 

and used the BLEU, NIST and TER metrics. Our results 

indicate that our approach produced a positive impact on 

SMT quality.  

1. Introduction 

Statistical Machine Translation (SMT) must deal with a 

number of problems to achieve high quality. These problems 

include the need to align parallel texts in language pairs and 

cleaning harvested parallel corpora to remove errors. This is 

especially true for real-world corpora developed from text 

harvested from the vast data available on the Internet. Out-Of-

Vocabulary (OOV) words must also be handled, as they are 

inevitable in real-world texts [1].  

The lack of enough parallel corpora is another significant 

challenge for SMT. Since the approach is statistical in nature, 

a significant amount of quality language pair data is needed to 

improve translation accuracy. In addition, very general 

translation systems that work in a general text domain have 

accuracy problems in specific domains. SMT systems are 

more accurate on corpora from a domain that is not too wide. 

This exacerbates the data problem, calling for the 

enhancement of comparable corpora for particular text 

domains [2].  

This paper describes SMT research that addresses these 

problems, particularly comparable corpora within the limits of 

permissible data for the IWSLT 2015 campaign. We selected 

a diverse set of language pairs for translation in both 

directions: Czech and English, Vietnamese and English, 

French and English, and German and English. To accomplish 

this, we performed model training, created adaptations of 

training settings and data for each language pair, and 

enhanced our systems by building and using comparable 

corpora in our statistical translation systems.  

Innovative tools and data adaptation techniques were 

employed. The Technology, Entertainment and Design (TED) 

parallel text corpora for the IWSLT 2015 evaluation 

campaign were used to train language models, and to develop, 

tune, and test the system. In addition, we prepared Wikipedia-

based comparable corpora for use with our SMT systems. We 

explored the use of domain adaptation techniques, 

symmetrized word alignment models, the unsupervised 

transliteration models, and the KenLM language modeling 

tool [3]. To evaluate the effects of different preparations on 

translation results, we conducted experiments and evaluated 

the results using standard SMT metrics [4]. 

The languages translated during this research are diverse: 

Czech, English, French, German, and Vietnamese. The first 

four belong to three different branches of the Indo-European 

language family. Czech is found in the Slavic branch of that 

language family. English and German fall in the Western 

group of the Germanic branch of the Indo-European family, 

while French is found in the Romance branch. Vietnamese 

falls into an entirely different language family, Austro-

Asiatic. So, our translation challenges cross languages, 

language branches, and language families [5, 6, 7, 8, 9].  

This paper is structured as follows: Section 2 explains the 

data preparation. Section 3 presents experiment setup and the 

results. Lastly in Section 4 we summarize the work.  

2. Data preparation 

This section describes our techniques for data preparation for 

our SMT systems. We give particular emphasis to preparation 

of the language data and models and our domain adaptation 

approach.  

2.1. Obtaining Comparable Corpora 

We provided a new approach for mining parallel corpora from 

Wikipedia in support of IWSLT 2015 objectives. In general, 

Wikipedia data is noisy, has a wide domain, and the sentences 

of its bilingual texts are not aligned. To extract additional data 

from Wikipedia, we used the method described in [17] and 

adapted it for the needs of new languages.  

Our tool performs model training and phrase-level 

symmetrization in a multi-threaded approach to increase 

performance. The dedicated tuning tool is used to determine 

the trained model’s optimal weights [17]. 

To be more precise our approach enhances the Yalign tool 

[18], which is single threaded and becomes computationally 

infeasible for large-scale mining of corpora. Yalign’s existing 

classifier also requires individual pairs of input text or 

webpages to be loaded into memory for alignment, and the 

classifier must be reloaded. To increase performance, we 
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modified the design to supply the classifier with Wikipedia 

articles within one session, with no need to reload the 

classifier. Performance improvements of more than a factor of 

6x have been observed, as a result [17]. 

Our approach also replaces Yalign’s alignment algorithm 

with a GPU-optimized version of the Needleman-Wunsch 

algorithm. In addition to the performance improvements this 

brings, it also yields higher alignment accuracy. A tuning 

algorithm enables automatic selection of threshold and 

penalty parameters to adaptably perform tradeoffs between 

precision and recall [17]. 

Wikipedia data in the following language pairs were 

mined using our tool: English-Czech, English-German, 

English-French, and English-Vietnamese. This dataset was 

accepted by the IWSLT 2015 evaluation organizers as 

permissible data [19]. 

2.2. Data Preparation 

Five languages were involved in this research: Czech, 

English, French, German, and Vietnamese. TED talks training 

data for those languages consisted of the following:  

• Czech: approx. 11 MB - 176,094 untokenized words  

• French: approx. 24 MB - 165,605 untokenized words  

• German: approx. 22 MB - 213,486 untokenized words  

• Vietnamese: approx. 18 MB, 52,549 untokenized words  

• English: approx. 125,000 untokenized words for DE and 
FR, 85,000 words for CS and 100,000 for VI pairs  

The TED transcripts prepared by the FBK team for 

IWSLT
1
 consist of text encoded in UTF-8 format, separated 

into sentences, and provided in pairs of languages. The data is 

provided as XML files [1]. 

Pre-processing, both automatic and manual, of this 

training data was required. There were a variety of errors 

found in this data, including spelling errors, unusual nesting 

of text, text duplication, and parallel text issues. 

Approximately 2% of the text in the training set contained 

spelling errors, and approximately 4% of the text had 

insertion errors. A tool described in [2], was used to correct 

these errors. Previous studies have found that such cleaning 

increases the BLEU score for SMT by a factor of 1.5–2 [1]. 

After cleaning and tokenization, we found the following 

amounts of unique word forms in the different languages: 

• Czech: 109,692 tokenized words  

• French: 76,216 tokenized words 

• German: 123,673 tokenized words 

• Vietnamese: 24,914 tokenized words 

• English: approx. 53,000 tokenized words for DE and FR, 

39,000 tokenized words for CS and 44,000 for VI pairs  

In addition, comparable corpora in those language pairs 

were created from Wikipedia data. The Wikipedia data 

obtained consisted of the following: 

• Czech: approx. 22 MB - 104,698 untokenized words in 

27,723 parallel sentences  

• French: approx. 101 MB – 1,121,424 untokenized words 

in 818,300 parallel sentences 

• German: approx. 277 MB – 2,865,865 untokenized words 

in 2,459,662 parallel sentences 

                                                             
1
 iwslt.org 

• Vietnamese: approx. 33 MB - 93,218 untokenized words 

in 58,116 parallel sentences  

• English: approx. 285MB – 2,577,854 untokenized words 

in DE pair, approx. 113MB – 1,290,499 untokenized 

words in FR pair, approx. 22MB – 98,820 untokenized 

words in CS pair and approx. 34MB – 92,445 
untokenized words in VI pair 

After cleaning [2] and tokenization: 

• Czech: approx. 73,996 words in CS side and 65,592 

words at EN side  

• French: approx. 517,604 words in FR side and 544,994 

words at EN side 

• German: approx. 1,327,789 words in DE side and 
922,785 words at EN side 

• Vietnamese: approx. 66,391 words in FR side and 65,852 

words at EN side  

SyMGiza++, a tool that supports the creation of 

symmetric word alignment models, was used to extract 

parallel phrases from the data. This tool enables alignment 

models that support many-to-one and one-to-many alignments 

in both directions between two language pairs. SyMGiza++ is 

also designed to leverage the power of multiple processors 

through advanced threading management, making it very fast. 

Its alignment process uses four different models during 

training to progressively refine alignment results. This 

approach has yielded impressive results in [10]. 

Out-Of-Vocabulary (OOV) words pose another 

significant challenge to SMT systems. If not addressed, 

unknown words appear, untranslated, in the output, lowering 

the translation quality. To address OOV words, we used 

implemented in the Moses toolkit Unsupervised 

Transliteration Model (UTM). UTM is an unsupervised, 

language-independent approach for learning OOV words. We 

used the post-decoding transliteration option with this tool. 

UTM uses a transliteration phrase translation table to evaluate 

and score multiple possible transliterations [11, 12].  

The KenLM tool was applied to the language model to 

train and binarize it. This library enables highly efficient 

queries to language models, saving both memory and 

computation time. The lexical values of phrases are used to 

condition the reordering probabilities of phrases. We used 

KenLM with lexical reordering set to hier-msd-bidirectional-

fe. This setting uses a hierarchical model that considers three 

orientation types based on both source and target phrases: 

monotone (M), swap (S), and discontinuous (D). Probabilities 

of possible phrase orders are examined by the bidirectional 

reordering model [3, 13, 14]. 

2.3. Domain Adaptation 

The TED data sets have a rather a wide domain, but rather not 

as wide-ranging in topic as the Wikipedia articles. Since SMT 

systems work best in a defined domain, this presents another 

considerable challenge. If not addressed, this would lead to 

lower translation accuracy.  

The quality of domain adaptation depends heavily on 

training data used to optimize the language and translation 

models in an SMT system. Selection and extraction of 

domain-specific training data from a large, general corpus 

addresses this issue [15]. This process uses a parallel, general 

domain corpus and a general domain monolingual corpus in 
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the target language. The result is a pseudo in-domain sub-

corpus. 

As described by Wang et al. in [16], there are generally 

three processing stages in data selection for domain 

adaptation. First, sentence pairs from the parallel, general 

domain corpus are scored for relevance to the target domain. 

Second, resampling is performed to select the best-scoring 

sentence pairs to retain in the pseudo in-domain sub-corpus. 

Those two steps can also be applied to the general domain 

monolingual corpus to select sentences for use in a language 

model. After collecting a substantial amount of sentence pairs 

(for the translation model) or sentences (for the language 

model), those models are trained on the sub-corpus that 

represents the target domain [16]. 

Similarity measurement is required to select sentences for 

the pseudo in-domain sub-corpus. There are three state-of-the-

art approaches for similarity measurement. The cosine tf-idf 

criterion looks for word overlap in determining similarity. 

This technique is specifically helpful in reducing the number 

of OOV words, but it is sensitive to noise in the data. A 

perplexity-based criterion considers the n-gram word order in 

addition to collocation. Lastly, edit distance simultaneously 

considers word order, position, and overlap. It is the strictest 

of the three approaches. In their study [16], Wang et al. found 

that a combination of these approaches provided the best 

performance in domain adaptation for Chinese-English 

corpora [16]. 

In accordance with Wang et al.’s approach [16], we use a 

combination of the criteria at both the corpora and language 

models. The three similarity metrics are used to select 

different pseudo in-domain sub-corpora. The sub-corpora are 

then joined during resampling based on a combination of the 

three metrics. Similarly, the three metrics are combined for 

domain adaptation during translation. We empirically found 

acceptance rates that allowed us only to harvest 20% of most 

domain-similar data [16]. 

3. Experimental Results 

Various versions of our SMT systems were evaluated via 

experimentation. In preparation for experiments, we 

processed the corpora. This involved tokenization, cleaning, 

factorization, conversion to lower case, splitting, and final 

cleaning after splitting. Language models were developed and 

tuned using the training data.  

The Experiment Management System [4] from the open 

source Moses SMT toolkit was used to conduct the 

experiments. Training of a 6-gram language model was 

accomplished our resulting systems using the KenLM 

Modeling Toolkit instead of 5-gram SRILM [20] with an 

interpolated version of Kneser-Key discounting (interpolate –

unk –kndiscount) that was used in our baseline systems. Word 

and phrase alignment was performed using SyMGIZA++ [10] 

instead of GIZA++. KenLM was also used, as described 

earlier, to binarize the language models. The OOV’s were 

handled by using Unsupervised Transliteration Model [12]. 

The results are shown in Table 1 and 2. Each language 

pair was translated in both directions. “BASE” in the tables 

represents the baseline SMT system. “EXT” indicates results 

for the baseline system, using the baseline settings but 

extended with comparable corpora from Wikipedia. “BEST” 

indicates the results when the new SMT settings were applied 

and using all permissible data. For DE and FR we did not 

train systems using more permissible data that our Wikipedia 

comparable corpora. Additionally, we conducted progressive 

tests only for FR and DE data because CS and VI were not 

evaluated before during IWSLT campaigns. 

Three well-known metrics were used for scoring the 

results: Bilingual Evaluation Understudy (BLEU), the US 

National Institute of Standards and Technology (NIST) metric 

and Translation Error Rate (TER).  

In addition to TED data, the data permissible for the 

IWSLT 2015 campaign included: data from the Workshop on 

Machine Translation (WMT) 2015 web page [21], MultiUN 

data [22, 23] (translated United Nations documents) and 

parallel corpora we provided from the Wikipedia [19].  

The results show that the systems extended with 

comparable corpora from Wikipedia performed well on all 

data sets in comparison to the baseline SMT systems. 

Application of the new settings and use of all permissible data 

improved performance even more. 

Table 1: Progressive Results, 2014 Test Data 

LANG SYSTEM DIRECTION BLEU NIST TER 

DE-EN BASE àEN 17.99 5.51 64.35 

 EXT àEN 21.92 6.04 60.58 

 BASE ßEN 18.49 5.74 61.65 

 EXT ßEN 20.68 5.99 59.77 

FR-EN BASE àEN 32.20 7.36 47.60 

 EXT àEN 32.92 7.37 48.25 

 BASE ßEN 30.31 7.24 50.17 

 EXT ßEN 31.88 7.49 47.92 

Table 2: Results, 2015 Test Data 

LANG SYSTEM DIRECTION BLEU NIST TER 

DE-EN BASE àEN 21.78 6.49 55.45 

 EXT àEN 26.08 7.03 54.34 

 BASE ßEN 20.08 5.76 61.37 

 EXT ßEN 22.51 6.04 59.02 

FR-EN BASE àEN 31.94 7.34 47.55 

 EXT àEN 32.75 7.27 48.40 

 BASE ßEN 30.54 6.99 51.51 

 EXT ßEN 32.79 7.32 49.15 

CS-EN BASE àEN 22.44 6.11 57.98 

 EXT àEN 24.19 6.03 56.13 

 BEST àEN 25.07 6.40 55.74 

 BASE ßEN 14.74 4.74 65.80 

 EXT ßEN 15.18 4.86 65.11 

 BEST ßEN 17.17 5.10 63.00 

VI-EN BASE àEN 24.61 5.92 59.32 

 EXT àEN 22.41 5.68 63.78 

 BEST àEN 23.46 5.73 62.19 

 BASE ßEN 27.01 6.47 58.42 

 EXT ßEN 27.16 6.23 66.18 

 BEST ßEN 28.39 6.67 65.01 

4. Summary 

We have improved SMT for a very diverse set of language 

pairs, in both translation directions, using data permissible for 

the IWSLT 2015 evaluation campaign. We cleaned, prepared, 

and tokenized the training data. Symmetric word alignment 

models were used to align the corpora. UTM was used to 

handle OOV words. A language model was created, 

binarized, and tuned. We performed domain adaptation of 

language data using a combination of similarity metrics.  

Experiments were performed using the data permissible 

by the IWSLT 2015 organizers. The results show a positive 

impact of our approach on SMT quality across the language 
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pairs. Only surprising result was in translation from 

Vietnamese into English, where our best system outperformed 

the baseline. We conducted detailed research regarding this 

issue, including tuning results for each iteration and 

evaluation of each TED talk separately. We found out that on 

most talks our system worked correctly only two of them the 

results were negative. The talk number 2183 the baseline 

BLEU score was equal to 63.88 (BASE) whereas our system 

score (BEST) was equal to 49.73. Such big disproportion is 

most likely reason for strange overall evaluation score. We 

believe that some parts of talk 2183 were present in training 

data, and extending this data decreased the scores. Detailed 

evaluation results are presented in the Table 3. Additionally, 

we can suspect, from the statistics presented in Chapter 2.2, 

that Wikipedia data for Vietnamese is was not good enough. 

Having 93,218 words in 58,116 sentences would mean that 

this corpus basically consists of uni- or bi-grams. 

Table 3: Detailed Vietnamese-English Results 

TALK ID SYSTEM BLEU 

1922 BASE 17.25 

 BEST 18.07 

1932 BASE 15.70 

 BEST 18.17 

1939 BASE 12.35 

 BEST 13.26 

1954 BASE 27.96 

 BEST 28.92 

1961 BASE 19.59 

 BEST 21.35 

1997 BASE 16.81 

 BEST 19.67 

2007 BASE 16.38 

 BEST 19.67 

2017 BASE 21.08 

 BEST 22.42 

2024 BASE 9.44 

 BEST 6.25 

2045 BASE 21.05 

 BEST 21.09 

2102 BASE 17.14 

 BEST 20.16 

2183 BASE 63.88 

 BEST 49.73 
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Abstract
The International Workshop for Spoken Language Translation
(IWSLT) is an annual evaluation campaign for core speech pro-
cessing technologies. This paper presents Nara Institute of Science
and Technology’s (NAIST’s) contribution to the English automatic
speech recognition (ASR) track for the 2015 evaluation campaign.
The ASR systems presented in this paper make use of various front-
ends, varying deep neural net (DNN) acoustic models and separate
language models for decoding and rescoring. Recognition is per-
formed in three stages: Decoding, lattice rescoring and system com-
bination via recognizer output voting error reduction (ROVER). We
discuss the application of a rank-score based weighting approach
for the system combination. Also, a Gaussian mixture model hidden
Markov model (GMM-HMM) based speech/non-speech segmenter
makes use of said combination scheme. The primary submission
achieves a word error rate (WER) of 9.5% and 10.1% on the of-
ficial development set, given manual and automatic segmentation
respectively.

1. Introduction
The 2015 evaluation campaign of the 12th International Workshop
on Spoken Language Translation (IWSLT) offers participants the
opportunity to advance the state-of-the-art in core tasks of spoken
language translation. This involves the tasks of automatic speech
recognition (ASR), machine translation (MT) and the combination
of ASR and MT, the task of spoken language translation (SLT) it-
self. All tasks are performed and evaluated on multi-topic TED
(short for Technology, Entertainment, Design) and TEDx (licensed
spin-off) conference talks (http://www.ted.com). This pa-
per describes Nara Institute of Science and Technology’s contri-
bution to this year’s evaluation campaign by participation in the
ASR track for the English language. The goal of this track is
the automatic transcription of unsegmented talks, thus the task is
two-fold: automatic segmentation followed by speech recognition.
We describe the development and application of a Gaussian mix-
ture model (GMM) based speech/non-speech segmenter using the
Janus speech recognition toolkit [1] (see Section 4) and the ASR
system development and decoding utilizing the Kaldi speech recog-
nition toolkit [2] (see Sections 2 and 5 respectively). Our speech-
to-text system makes use of various front-ends, deep neural net
(DNN) acoustic models and several language models for decoding
and rescoring.

High performance speech recognition often makes use of sys-
tem combination approaches, especially if recognition in real-time
is not a major concern. Recognizer output voting error reduction
(ROVER) [3] and confusion network combination (CNC) [4] are
among the most popular methods. With confidence scores in hand,

both techniques allow for some form of weighting, and studies [5, 6]
have affirmed the advantages of confidence based weighting strate-
gies. However, it is common practice that systems that contribute
to a combination do so with equal shares: Besides the commonly
applied word or segment based weighting, e.g. during lattice com-
bination, systems usually contribute equally to the final output. This
strategy however can fail in cases where system performances are
unbalanced and better hypotheses might simply be overpowered by
suboptimal alternatives. In previous work [7] we were able to show
the positive effects of a weighted system combination method that
makes use of weights on the system level. In this work, we expand
this weighting technique to automatic segmentation by combining
multiple models for the segmentation task, in addition to using the
system combination for decoding.

2. Overall system
In this section, we describe the components of our framework and
the details of the system development. We elaborate our usage of
several acoustic front-ends, acoustic modeling, and language mod-
eling. The general framework is illustrated in Fig. 1. The automatic
segmentation is explained in the following section.

2.1. Acoustic features

We utilized three different kinds of acoustic features: a) Mel-
frequency cepstral coefficients (MFCC) [8]; b) perceptual linear
prediction (PLP) [9]; c) log Mel-filter bank (FBANK). All feature
vector types are 40-dimensional (raw output without dimension re-
duction), and are extracted for every 10 ms with a window length of
25 ms.

Additionally, in order to enhance the input features, we also
adopt i-vector features [10], which were originally proposed for the
speaker identification task. The distribution of an utterance super-
vector M can be modeled by

M = m+ Tw (1)

where m is the mean distribution vector, T is a total variability
matrix, and w is the i-vector. By having m and T fixed for all utter-
ances, w would be affected by speaker and channel characteristics.
We utilized i-vectors because they are able to capture speaker and
channel informations that might be helpful for speech recognition,
but are not represented in standard features such as MFCC, PLP,
and FBANK.

2.2. Acoustic model training

We tested several acoustic model training strategies during devel-
opment. GMM- and DNN-based acoustic models were trained with
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Figure 1: General overview of our framework.

different types of input features, as shown in Table 1. Models us-
ing speaker adaptive training (SAT) use standard features + feature-
space maximum likelihood linear regression (fMLLR) [11], while
all but one of the DNN-based acoustic models are trained with
stacked standard and i-vector features. We investigated DNN ar-
chitectures using sigmoid, rectified linear (ReLU), or p-norm [12]
units, and also perform training using state-level minimum Bayes
risk (sMBR) [13, 14]. The models are all implemented using the
Kaldi speech recognition toolkit [2], and details are described in the
following subsections.

2.2.1. Architectures

The sigmoid DNN model can be considered a standard DNN acous-
tic model with 6 hidden layers, where each layer consists of 2048
nodes. The sigmoid activation function is applied in each hidden
layer, and the softmax function is applied in the output layer. The
input features are generated by linear discriminant analysis (LDA) +
maximum likelihood linear transform (MLLT) + fMLLR performed
on top of spliced MFCC or FBANK (with splicing context 4). These
feature vectors are also spliced with 5 preceding and 5 succeeding
vectors, resulting in the final 440 dimensional DNN input feature
vector covering 11 frames of context. First, we performed the pre-
training with a restricted Boltzmann machine (RBM) deep belief
network [15]. After that, the DNN was trained using the back-
propagation algorithm and stochastic gradient descent with frame
cross-entropy (CE) criterion as implemented by the Kaldi speech
recognition toolkit [2].

We trained a ReLU DNN because it has been reported in [16]
that rectified linear units can show better performance than sigmoid
units for large vocabulary continuous speech recognition (LVCSR)
tasks. We utilized a ReLU DNN with 6 hidden layers, where each
layer consists of 1024 nodes, and the ReLU activation function is
applied in each hidden layer. The input features are a raw 40 di-
mensional standard feature vector and a 100 dimensional i-vector
stacked on top. Further, we do not perform pre-training as for the
sigmoid DNN model, but instead we train for a fixed number of
epochs and average model parameters over the last few epochs of
training [17]. The parameters are also optimized according to the
frame CE criterion.

The p-norm DNN [12] was adopted as the third type of model.
The p-norm is a “dimension-reducing” non-linearity that is inspired
by maxout

y = ||x||p =

(∑

i

|xi|p
)1/p

, (2)

where here the vector x represents a bundled set of 10 feature vec-
tors, p is the normalized parameter and is set to 2 as it showed the
best performance as described in [12]. The model architecture is the
same with ReLU DNN with 6 hidden layers, each has 1024 nodes.
The input features are also the same as for the ReLU DNN. The
parameters are trained by using frame CE.

Note that for ReLU DNN and p-norm DNN, we perform feature
splicing at the first, second, forth, and fifth layers with the following
frame indexes,

• first layer: -2, -1, 0, 1, 2,
• second layer: -1, 2,
• forth layer: -3, 3,
• fifth layer: -7, 2.

2.2.2. sMBR training

To further enhance the DNN model, we continued training the
model according to the state-level minimum Bayes risk (sMBR)
criterion. This DNN is a p-norm DNN model but it is optimized
according to sMBR instead of cross entropy. We only attempted
to optimize the p-norm DNN this way because the training with
sMBR is quite complicated and time-consuming, and more impor-
tantly, the p-norm DNN outperformed other models on “tst2013”
test set during our experiments.

The training procedure is as follows: We first perform forced
alignment, followed by a decoding on the training data to derive
training samples, this process took 2 days on a cluster machine with
80 CPUs to produce 80 lattices. Then, we merge all lattices down
to 4, which is equal to the number of GPUs we utilize. Finally, we
perform parallel sMBR training as implemented in Kaldi.

2.3. Dictionary

We utilized a modified CMU pronouncing dictionary
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict)
consisting of about 100k words as a base dictionary. We also
employed grapheme-to-phoneme (G2P) conversion using the
Sequitur G2P toolkit [18] trained on the CMU dictionary to
generate pronunciations for unknown words in the training data. As
a result, the total number of words in our dictionary is about 210k
words. This dictionary is used for training as well as decoding.

2.4. Language model training

2.4.1. N-gram

N-grams have long been a standard language modeling technique
for ASR, where N − 1 words are used as context to predict the
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Front-end Model type
GMM-HMM (SAT) Sigmoid DNN (CE) ReLU DNN (CE) p-norm DNN (CE) p-norm DNN (sMBR)

MFCC ✓ ✓ ✓ ✓ ✓
PLP ✓ - ✓ ✓ -

FBANK ✓ ✓ ✓ ✓ ✓

Table 1: The list of all trained acoustic models.

next word. The larger the context, the more data is required to
avoid the data sparsity problem. For the experiments described here,
two N-gram language models (LMs) were trained with Kneser-Ney
smoothing [19] implemented in the SRILM toolkit [20], a 4-gram
LM pruned with probability 10−8 for decoding purposes, and a full
5-gram model for rescoring in a second pass.

2.4.2. RNNLMs

Recurrent neural network language models (RNNLMs) have shown
to have an advantage over the standard N-gram language model.
There are several reasons for this, perhaps the most notable being
that RNNLMs can capture the context of entire utterances, which
is difficult to do with standard N-grams. [21, 22] have also shown
that RNNLMs can significantly improve the performance of speech
recognition, especially when RNN models are interpolated with N-
gram language models. However, the drawback of RNNLMs is the
computational complexity. Therefore, this type of language model
is usually used for rescoring in two-pass decoding systems.

The systems that we developed for the IWSLT challenge adopt
a class-based RNNLM [21], which consists of 1 hidden layer with
150 hidden nodes and 400 classes. The model is trained using the
threaded version of the RNNLM toolkit. It took about 1 day to
finish the training process.

2.5. Decoding strategy

For the test evaluation period we had 3 Gaussian mixture model hid-
den Markov model (GMM-HMM) systems and 12 DNN systems
at hand for decoding that made use of 3 different front-ends. The
GMM-HMM systems are trained using SAT. The DNNs use 3 dif-
ferent types of activation functions and 2 training criteria (see table
1). The GMM-HMM based SAT systems serve as basis for the sig-
moid DNN systems, since their neural nets were built on top of the
fMLLR transforms from these systems. We trained all systems on
the same data, and they use the same lexicon and language models
during decoding and rescoring. We run the decoding with a pruned
4-gram language model. Subsequent lattice rescorings make use of
a 5-gram language model and an RNNLM language model. Given
the lattices, we apply minimum Bayes risk (MBR) [23] decoding
for all systems to minimize the expected word error rate (WER).
After rescoring, we perform system combination using ROVER. To
benefit from the individual system strengths, we attempted to ap-
ply a rank-score based weighting scheme that was first introduced
in [7]. System weights during combination are conditioned to their
respective rank-score. Let rank(sn) ∈ {1, . . . , |S|} be the rank of
a system sn ∈ S, where the system s∗ with the highest accuracy
acc(s∗) has rank 1. The rank-score of a system sn is

acc(sn) · (|S|+ 1− rank(sn)) (3)

A numerically lower rank indicates a system with higher per-
formance. Weighting is performed according to:

weight(sn) =
acc(sn) · (|S|+ 1− rank(sn))∑

sn∈S acc(sn) · (|S|+ 1− rank(sn))
(4)

Corpus Amount
BN 1996 81.79 h
BN 1997 72.36 h
TED-LIUM 200.00 h
TIMIT 3.92 h
WSJ 81.01 h
Total 439.08 h

Table 2: Training data for acoustic modeling.

Corpus Word count
EUROPAL 49.13 M
GIGA 567.76 M
NC 1.17 M
TED-LIUM 2.25 M
WSJ 36.98 K

Table 3: Training data for language modeling.

Since for ROVER implicit weighting according to Equation (4)
was not possible, we used an approximate method where hypothe-
ses are taken into consideration multiple times for the combination,
according to their respective ranks: In a combination of 4 systems,
the best system enters ROVER 4 times, the second best 3 times and
so on.

3. Data resources
For the IWSLT 2015 evaluation, the regulations regarding the per-
missible training data are less restrictive, with no explicit cut-off
date for data set. Data for language modeling is generally unre-
stricted, whereas acoustic modeling has to exclude a number of se-
lected TED and TEDx talks that are not permitted to be used for
training.

3.1. Acoustic model training data

For the ASR acoustic modeling no training data is provided, in con-
trast to the other evaluation tracks. Since data selection is unre-
stricted with the above mentioned exceptions, we were able to freely
choose our speech corpora. The data we used for training acous-
tic models is selected from various resources including TED-LIUM
corpus release 2 [24], Broadcast News [25], WSJ [26], and TIMIT
[27], as listed in Table 2. We utilized TED-LIUM instead of the
original downloadable TED talks because TED-LIUM is an already
cleaned, noise-free corpus, and provides a good basis for training
a full-fledged speech recognition system [24]. Although TIMIT is
a relatively small corpus, it is suitable for training an initial mono-
phone acoustic model.

3.2. Language model training data

The data for training language models comes from different sources
including WSJ, EUROPARL, GIGA, NC, and TED, as shown in
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Data Amount
Speech (TED) 343 min
Noises (TED) 342 min
Noises (Soundsnap) 12 min
Total 697 min

Table 4: Training data for the GMM segmenter training.

Table 3. The data is cleaned by removing all punctuation, and re-
moving case sensitivity by uppercasing all characters.

3.3. Evaluation data

With regards to the test corpora, the data set “tst2013” used in past
editions as either an evaluation set (2013) or a progressive test set
(2014) was provided by the organizers as the official development
set for this year’s evaluation. “tst2014” is used as a progressive test
set, and a newly released test set “tst2015” consisting of 28 talks
serves as the official test set for the final evaluation of all systems.
Automatic segmentation of the raw audio data prior to decoding is
a mandatory sub-task of the ASR track since 2013. We describe our
approach for generating an automatic segmentation of the evalua-
tion data in the following section.

4. Automatic segmentation of evaluation data
Given our observations regarding the effectiveness of neural net
based and GMM based approaches for speech segmentation in pre-
vious work [7], we picked GMM-based segmentation as our method
of choice for the IWSLT evaluation. This method uses a Viterbi de-
coder and GMM-HMM models to classify consecutively observed
feature vectors into several sound categories. The mechanics of the
general framework are comparable to the one presented in [28]. To
improve segmentation quality, we experimented with data selection
and model selection. We also tested the effectiveness of model com-
bination to improve the final segmentation accuracy.

4.1. Segmentation training data

We used about 11.6 hours of data for model training, con-
sisting of the official IWSLT “dev2010”, “dev2012” and
“tst2010” spoken utterances, noises extracted from the TED
portion of the data used in [29, 30] and hand picked and
manually trimmed noise samples downloaded from Soundsnap
(http://www.soundsnap.com). Instead of keeping the de-
tailed transcriptions, each spoken utterance in the test sets was la-
beled with a single speech token. A noise utterance is either labeled
as applause, laughter, music or general noise. Table 4 lists the data
for segmenter training.

4.2. Segmentation model

The general GMM segmentation framework is essentially a speech
recognizer that is capable of discriminating several classes of
sounds. Consecutive frames of the same sound are modeled as
being generated by multi-state feed forward HMMs without skip
states, where the minimal segment lengths are directly modeled by
the HMM topology. Each GMM consists of 128 Gaussian com-
ponents. The input is 42 dimensional LDA transformed MFCCs
after stacking with a context of 7. The acoustic model is trained
according to the maximum likelihood criterion, where the GMMs
grow incrementally in several iterations of “split-and-merge” train-
ing [31]. The system is configurable by several parameters, one of
which is a padding factor that expands hypothesized speech seg-

Classes Pad ACC TPR TNR
[s],[sil+a+l] 0.325 88.9% 97.6% 45.6%
[s],[sil],[a+l] 0.475 90.1% 95.7% 62.2%
[s],[sil],[a],[l] 0.575 89.6% 95.8% 58.5%
[s],[sil],[a],[l],[n] 0.6 89.4% 95.9% 57.2%
[s],[sil],[a],[l],[n],[m] 0.8 82.6% 86.0% 65.7%

Table 5: Segmenter performance dependent on the amount of
classes. In column “Classes”, the abbreviations stand for speech,
silence, applause, laughter, (general) noise and music, respectively.
Brackets delimit the individual classes formed by the data. Padding
factors are in msec.

Data (types) Pad ACC TPR TNR WER
a+l+n+m 0.65 88.9% 95.5% 56.2% 27.3%
a+l+n 0.8 88.1% 95.3% 52.0% 28.8%
a+l 0.475 90.1% 95.7% 62.2% 26.5%
a 0.4 90.2% 96.1% 61.0% 26.0%
- 0.475 89.4% 96.5% 53.9% 26.7%
combined 90.4% 97.5% 55.2% 25.7%

Table 6: Segmenter performance dependent on the amount of data.
Padding factors are in msec. combined is the weighted combination
of segmentations.

ments on both sides by a certain amount of milliseconds. This fac-
tor is tuned on the segmentation of this year’s official development
set. Segment coverage is computed on frame level and evaluated in
terms of accuracy (ACC), true positive rate (TPR) and true negative
rate (TNR).

4.3. Sound class selection

We evaluated the impact of the amount of target sound classes. The
most simple system is discriminating speech from non-speech, the
most complex system separates the distinct noises into individual
classes. Silence in the speech recordings was detected via a simple
power threshold during the sample extraction step of the training
pipeline and where silence is a class of it’s own, these features are
used as samples for a silence class. Table 5 lists the details of the
systems subject to comparison.

It is noteworthy that the 5 class and 6 class models were
trained on more data, since they model additional classes for spe-
cific sounds. For the 2 class and 3 class models several noise types
were simply mapped to one broad noise class. We interpret the re-
sults in the following way: It seems 2 classes are less suited to prop-
erly discriminate non-speech from speech, given the relatively low
TNR, whereas 6 classes make significantly more errors in classify-
ing speech correctly. The adding of samples for music obviously
leads to a better noise classification, but also to more confusions
in classification of speech. The 3 class model segmentation yields
the highest accuracy, showing a comparatively good TNR with lit-
tle loss in TPR given the alternatives. All further experiments were
undergone with the 3 class segmentation model.

4.4. Sound class combination

We trained several models to test the impact of including or or ex-
cluding data of distinct noise types during training. The speech data
and the hand picked Soundsnap samples were kept fix, and differ-
ent portions of the TED noises were added. For each set generated
this way, a segmenter was trained, tuned and evaluated. The re-
sults in table 6 show that it is the original data set that leads to
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Segmentation → manual automatic
Features → MFCC PLP FBANK MFCC PLP FBANK
GMM-HMM (SAT) 23.9% 23.9% 24.8% 24.4% 24.8% 25.4%
Sigmoid DNN (CE) 14.4% - - 15.1% - -
ReLU DNN (CE) 11.2% 10.9% 12.7% 12.0% 11.7% 13.5%

M
od

el
p-norm DNN (CE) 10.8% 10.5% 12.6% 11.4% 11.4% 13.5%
p-norm DNN (sMBR) 9.8% - 11.2% 10.5% - 11.8%

Table 7: Individual system performances of all recognizers in WER after rescoring.

Systems WeightsReLU DNN (CE) p-norm DNN (CE) p-norm DNN (sMBR)
MFCC PLP FBANK MFCC PLP FBANK MFCC FBANK equal rank-score

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10.0% 9.7%
✓ ✓ ✓ ✓ ✓ ✓ ✓ 9.8% 9.7%
✓ ✓ ✓ ✓ ✓ ✓ 9.8% 9.5%

✓ ✓ ✓ ✓ ✓ 9.6% 9.7%
✓ ✓ ✓ ✓ 9.6% 9.7%

✓ ✓ ✓ 9.5% 9.6%
✓ ✓ 10.0% 9.8%

Table 8: Comparison of the 8 best ROVER combinations with equal and rank-score based weighting. Performance is measured in WER.

Sigmoid DNN (CE)

ReLU DNN (CE)

p-norm DNN (CE)

p-norm DNN (sMBR)

GMM-HMM (SAT)

MFCC

ReLU DNN (CE)

p-norm DNN (CE)

GMM-HMM (SAT)

PLP

Sigmoid DNN (CE)

ReLU DNN (CE)

p-norm DNN (CE)

p-norm DNN (sMBR)

GMM-HMM (SAT)

FBANK

Sigmoid DNN (CE)

ReLU DNN (CE)

p-norm DNN (CE)

p-norm DNN (sMBR)

GMM-HMM (SAT)

MFCC

ReLU DNN (CE)

p-norm DNN (CE)

GMM-HMM (SAT)

PLP

Sigmoid DNN (CE)

ReLU DNN (CE)

p-norm DNN (CE)

p-norm DNN (sMBR)

GMM-HMM (SAT)

FBANK

RNNLM
rescoring

ROVER
combination

Figure 2: Decoding pipeline of the primary submission. The left-
most arrows symbolize the dependency of the sigmoid DNNs on the
fMLLR transforms of the GMM-HMM systems.

optimal performance. If more noises are added, the performance
deteriorates. If less noises are seen during training, the speech clas-
sification performance increases, while at the same time noise clas-
sification suffers. The table also lists the decoding performance of
the SAT models, when decoded given the respective segmentations.
The baseline performance on the provided segmentation is 25.0%
WER. To benefit from the individual model strengths, we success-
fully applied the rank-score based weighting scheme of subsection
2.5 to combine segmentations on frame level. Since combination
is performed frame-wise, artifacts in form of extremely short seg-
ments may be introduced at positions where the models greatly dif-
fer in their prognoses. To counter-act this phenomenon, segments
are merged according to the heuristic

from(seg2)− to(seg1) ≤ δ ∧ to(seg2)− from(seg1) ≤ θ (5)

with δ being subject to tuning (40 msec during our experiments)
and θ set to 30000 msec. The weighted combination improves seg-
mentation accuracy as well as speech recognition performance, re-

ducing the WER to 25.7%. Combination with equal weights yielded
similar results, but was inferior to our proposed method.

5. ASR evaluation
We evaluated our ASR systems on the “tst2013” development set,
given the manual segmentation as well as our own, automatically
generated segmentation. In preliminary experiments we found that
RNNLM rescoring consistently outperformed rescoring with the 5-
gram LM, producing WERs that were 0.4% absolute better on aver-
age. Thus, the results presented in this section only cover the results
after RNNLM rescoring.

5.1. Single system performance

Table 7 lists the single system performances of all successful de-
codings on the development set. PLP features generally helped to
achieve the best performance, followed by MFCC features. The gap
between the MFCC and FBANK features is fairly large. It can also
be seen that DNNs utilizing the p-norm activation function exceed
the other nets’ classification capabilities. Finally, the nets trained
with the sMBR training criterion led to better accuracy than the
ones built according to the cross-entropy criterion. The apparent
inferiority of the sigmoid DNN might be due to several reasons,
one of which is the differing activation function, given that ReLU
seems to have an advantage on large data, according to previous
work [11]. Another reason might be the differing network layout.
Our assumption however is that the main difference is caused by the
fact that this model is using standard features only, without the i-
vectors stacked on top. This matches our observations in [7], where
we used the same layout for all NNs and still observed a large gap
between the system’s performance. This thus re-confirms our as-
sumption regarding the role of the features.

Decoding for the final submission had to be run on the
automatic segmentation. Table 7 therefore also lists the
recognition performance in WER for our own segmentation,
created with the framework described in Section 4. Assum-
ing that the scoring is identical or almost identical – given
that we used the evaluation’s default toolkit NIST SCTK
(http://www.nist.gov/itl/iad/mig/tools.cfm) –
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our single best system (p-norm DNN sMBR) already outperforms
last year’s winner in the ASR track by 0.1% absolute on “tst2013”.

5.2. System combination performance

Table 8 lists the performance of weighted system combination using
the rank-score function compared to the default combination with
equal weighting of all systems. To guarantee that the systems are
diverse enough to benefit from the combination, each combination
of more than 2 systems covered all three front-ends. Experiments
confirmed that failing to do so indeed leads to sub-optimal combi-
nations that are not even able to beat the single best system.

The results are interesting insofar as it seems that improvement
by weighting is not possible if the standard ROVER already leads
to a better performance than the single best system involved in the
combination. In cases where unweighted ROVER produces a sub-
optimal result, weighting is able to boost the positive effects of com-
bination and achieves a better result. This observation is consistent
with the combination results of our segmentation in Subsection 4.4
as well as in [7]. Given the results on “tst2013” we performed the
ROVER combination with equal weights on the automatically seg-
mented set and achieved a WER of 10.1%. The system design of
our primary submission is highlighted in Fig. 2.

6. Conclusion
This paper described the structure and development of NAIST’s En-
glish ASR system for the English ASR track of the IWSLT 2015
evaluation campaign. We evaluated different architectures of deep
neural network based models as well as various types of input fea-
tures such as MFCC, PLP, FBANK and i-vector. The results show
that a p-norm DNN trained on combined MFCC + i-vector fea-
ture vectors following the sMBR training criterion achieves the best
performance for a single system, yielding a WER of 9.8% on the
official development set. After system combination with ROVER,
where the outputs of the best systems for each front-end were com-
bined, the WER can be further reduced to 9.5%.

We trained several simple GMM models for speech/non-speech
classification for the purpose of automatic segmentation prior to de-
coding. To exploit the benefits of multiple models we performed
a rank-score based weighting in a segmentation hypothesis combi-
nation scheme on frame level. The combined segmentation outper-
forms the single best segmentation in terms of segment coverage
accuracy and WER after actual decoding. Our best decoding on the
automatically segmented development set achieves a 10.1% WER,
which outperforms last year’s winning system by 0.5% absolute
WER on this set. This setup was used for producing our primary
submission for the evaluation campaign. The official scoring of our
primary submission on the “tst2015” evaluation set yields 12.0%
WER.
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Abstract

Aiming at better SMT systems, two approaches for im-
proving word alignment between Vietnamese and English are
proposed and evaluated. One is to delete English words that
never appear in Vietnamese; the other is to retokenize Viet-
namese tokens so that each token of Vietnamese matches an
English word. Although the baseline systems could not be
improved by these methods at this moment, the results of the
analysis show that these approaches are promising.

1. Introduction

Nowadays, a large number of bilingual corpora between pop-
ular languages such as English, Chinese, Arabic, and Euro-
pean languages (as listed in the “permissible training data” in
this evaluation campaign) are available. In contrast, few cor-
pora for many Asian languages are available. Although Viet-
namese was one of the low resource languages, the TED task
provided a fair amount of bilingual corpora between English
and Vietnamese. Accordingly, Vietnamese has becomes a
new target of statistical machine translation.

Since tokenization and grammatical constituents of Viet-
namese are different from those of English, each token or
word does not always correspond to an English word. This
nature of Vietnamese leads a poor word alignment model be-
tween Vietnamese and English that will be a base of phrase
alignment. To overcome this problem, two methods are pro-
posed: (a) deleting English words that never appear in Viet-
namese and inserting them afterward and (b) retokenize Viet-
namese so that each token corresponds to an English word.
To the authors’ knowledge, this is the first application of
these methods to Vietnamese translation. Although the base-
line system could not be improved by these methods at this
moment, we believe these methods will be helpful with fur-
ther improvement.

The rest of the paper is organized as follows. Section
2 reviews the Vietnamese language. Section 3 explains the
method used for retokenization and Section 4 explains our
system configuration. Section 5 presents the results of an
experimental evaluation of the proposed system, and Section
6 discusses the results. Section 7 concludes the paper.

2. Vietnamese language

Key features of the Vietnamese language are summarized as
follows. Some Vietnamese sentences and their English trans-
lations are shown in Figure 1. The following features of the
Vietnamese language can be seen in this example:

1. Vietnamese is tokenized into units that correspond ap-
proximately to syllables.

2. Vietnamese does not have words equivalent to English
articles.

For example, in Figure 1, “kêt́ quá” corresponds to “re-
sult”. Also, there is no Vietnamese word corresponding to
the English article “the.”

The English side of the training data of the experi-
ment has 2,492,239 words and the number of the articles is
213,710. Therefore, approximately 9% of the English words
do not correspond to Vietnamese words. Since the Viet-
namese side of the training data has 3,030,127 words, the
Vietnamese sentence is approximately 1.3 times longer than
that of English ignoring English articles that do not corre-
spond to Vietnamese words.

To improve word alignment models, it is preferable to re-
tokenize Vietnamese words into a unit that corresponds to an
English word. Also, an English article must be deleted from
the viewpoint of word alignment models, if possible. Con-
sidering the former point, we apply two tokenization meth-
ods (explained in Section 3). Considering the latter point, we
apply two-step translation (explained in Section 4).

3. Tokenizer

Hereafter, the term “tokenization” is simply used for “retok-
enization” of Vietnamese words where some original tokens
are consolidated.

Two tokenization systems are used. One is an existing
tokenization tool for Vietnamese, namely, vnTokenizer[1]. It
utilizes a word dictionary. Therefore, we refer this as a su-
pervised method. The other is an unsupervised tokenizer pro-
posed by Tagyoung et al. [2] and does not utilize any word
dictionaries.
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because they 're the ones that are experts in flavor , too .

b i vìở  họ là nh ng ng iữ ườ  mà cũng là các chuyên gia về mùi vị . Vietnamese 

English

what was the result ?

k t quế ả nh  th  nàoư ế  ? Vietnamese 

English

Figure 1: Phrase alignment of Vietnamese and English

3.1. Unsupervised bilingual tokenizer

This tokenization method based on a word-level alignment
model trained by using a parallel corpus was originally pro-
posed by Tagyoung et al. for languages that are not tokenized
by spaces (such as Chinese and Korean). It is used here for
consolidating original Vietnamese tokens.

3.1.1. Bilingual model

The bilingual model is denoted by the following equation.
The input data are a tokenized English string en and an unto-
kenized Vietnamese string sm, where “untokenized” means
the original tokens are left.

P (f, a = k|e) =
α(i)P (fi|ek)P (a = k)β(j)

P (c|e)

where f = {sisi+1...sj} is a new token formed by concate-
nating from the i-th to the j-th Vietnamese tokens, and a is
a variable indicating the position of the English word that
generates f . α and β are given by the following equations:

α(i) =
L∑

l=1

α(i− l)
∑

a

P (a)P (sii−l|ea)

β(j) =
L∑

l=1

∑

a

P (a)P (sj+l
j |ea)β(j + l)

where L is the maximum syllable length for a word.
This model is trained by using an EM algorithm. First, it

calculates the expected counts of individual word pairs:

ec(sji , ek) =
α(i)P (a)P (sji |ek)β(j)

α(m)

Second, an M step simply normalizes the counts:

P (f |e) =
ec(f, e)∑
f ec(f, e)

Given two sentences, e and f, the optimal segmentation
of a new source-language sentence can be obtained by using
the Viterbi algorithm.

segments = argmins

n∑

i

(
−log

∑

a

P (si|ea) + θ

)

where s = {s1s2...sn} is a segment set of source sentences
f, and a is the alignment of the source segments to the tar-
get words. This model can be applied only when a target
sentence is available.

3.2. Monolingual model

The monolingual model is denoted by the following equa-
tion.

P (f) =
∑

e

P (f |e)P (e)

where P (f |e) is the probability of the bilingual model ex-
plained Section 3.1.1. P (e) is a monolingual model calcu-
lated by the following equation.

P (ei) =
count(ei)∑K
k count(ek)

where count() is the number of occurrences on the English
side of the training corpus, and K is the size of the vocabu-
lary.
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4. System configuration

The configuration of the proposed system is shown in Fig-
ure 2. Each SMT system, namely, (a) baseline system,(b)
two-step translation system, and (c) retokenized system, pre-
form the translation for the test set. Multi-Engine Machine
Translation (MEMT) then performs the system combination.
It receives the results of the combined systems as inputs.

4.1. Baseline system

A phrase-based SMT system and a hierarchical phrase-based
SMT system were adopted as baseline systems. These sys-
tems are trained by Moses scripts from parallel corpus that is
tokenized. The phrase table is trained by the grow-diag-final
method and the reordering model is msd-bidirectional-fe.

4.2. Two-step translation system for inserting articles

Two-step translation was performed to deal with English arti-
cles properly. The first step is a translation from Vietnamese
to English that erases the article. The second step is a trans-
lation from English without articles to original English.

First, this two-step approach makes a corpus in which ar-
ticles of the English side of the parallel corpus are removed
and to makes a trilingual parallel corpus: both languages of
the original parallel corpus and the newly made English cor-
pus without articles. The two systems are trained by using
the trilingual corpus. The first system is a phrase-based SMT
system or hierarchical phrase-based SMT system trained by
Vietnamese and English without articles. This system re-
ceives Vietnamese as an input and outputs English without
articles. The second system is a phrase-based system trained
by English without articles and original English. It receives
the first system’s output as an input and complements the re-
moved articles.

4.3. Retokenized system

The training set is tokenized by using vnTokenizer and unsu-
pervised Tokenizer. A phrase-based SMT system is trained
by using these tokenized corpora.

The phrase-based systems are trained by a corpus tok-
enized by vnTokenizer and unsupervised Tokenizer. The sys-
tems may have more unknown words than the baseline sys-
tem because retokenization may not be consistent and pro-
duce unknown combined tokens. To solve this problem, the
tokens in the phrase table are divided, and the original nota-
tion is recovered after the phrase table is built. This system
does not perform two-step translation in the experiment.

4.4. System combination

To improve of the translation quality, the outputs of each sys-
tem are combined by using MEMT[3] (developed by Ken-
neth Heafield et al).

5. Experiment
The effectiveness of our proposed methods was experimen-
tally evaluated by using a Vietnamese-to-English translation
task in IWSLT2015.

5.1. Submitted results

Our submitted results used all of the development sets and
test sets provided by IWSLT2015 as a development set. Con-
trastive1 is the result given by the hierarchical phrase-based
baseline system. Contrastive2 is the result given by the
phrase-base baseline system. Contrastive3 is the result given
by the hierarchical two-step translation system. Contrastive4
is the result given by the phrase-based two-step translation
system. Contrastive5 is the result given by the phrase-based
retokenized system. The primary is the results obtained by
MEMT combining all results listed above. However, the sys-
tems had some bugs. The following shows the results where
the bugs were fixed.

5.2. Conditions

Only in-domain training and development data of TED talks
provided for the IWSLT2015 evaluation campaign were used
in the experiments.

Both languages in the training set were tokenized, and the
first letter of sentences was recased. The case of the original
form is determined by the majority in the training data. The
training data was cleaned so that the length of a sentence is
80 words at most.

A language model was created by using test set
IWSLT2015 to select the development set based on the per-
plexity, and test set IWSLT2010 was adopted as the develop-
ment set.

Moses[4] was used for translation tools, and GIZA++[5]
for word alignment tools. The language model was trained
by using kenLM[6], and MEMT was used for combining the
systems.

5.3. Results

The results obtained by the proposed system are listed in
Table 1. In this table, the baseline denotes the systems ex-
plained in Section 4.1, and “two-step translation” is the sys-
tem explained in Section 4.2. The method “vnTokenizer”
utilized the corpus tokenized by vnTokenizer. The method
“unspTokenizer(bi)” utilized the corpus tokenized by the
bilingual model described in Section 3.1.1, and the method
“unspTokenizer(mono)” utilized the corpus tokenized by the
monolingual model described in Section 3.1.2. And “system
comb” is the SMT system that combines all systems listed
above.

The two-step translation for articles and retokenization of
Vietnamese could not improve the performance of the base-
line systems. Also, the result of the system combination fell
below the baselines.
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Test Set

Baseline SMT system

Two-step 
translation 

System
First step

Two-step 
translation 

System
Second step

Retokenized system

“Baseline” result

“Two-step” result

“Retokenized” 
result

Multi-Engine
Machine

Translation
(MEMT)

Figure 2: Outline of proposed system

method model BLEU %
baseline phrase base 24.41

hierarchical 25.00
two-step translation phrase base 19.06

hierarchical 19.22
retokenized vnTokenizer+phrase base 20.38

unspTokenizer(bi)+phrase base 19.11
unspTokenizer(mono)+phrase base 19.97

system comb 20.78

Table 1: Experiment results

6. Discussion
As for the two-step translation, the performance improve-
ment of the first step is worse than we expected. The BLEU
score of the first step in the development set is 23.47 and that
of the baseline system ignoring English articles is 23.34. We
have no idea on the very small improvement at this moment.
Clearly, this problem must be further investigated.

As for retokenization, vnTokenize may cause mismatch
between the training data and the TED task, and its tokeniza-
tion performance may not be good enough. The unsuper-
vised tokenizer does not cause task mismatch between train-
ing data and test data. However, the model does not guar-
antee each tokenized unit corresponds to an English word,
although the model considers bilingual natures. This is a
weakness of the current model of the unsupervised tokenizer.

In addition, the result given by the unsupervised tok-
enizer is not consistent. Therefore, it causes a large number
of out-of-vocabulary words if the phrase table is used without
reforming the original tokens.

7. Conclusion
Two methods for improving baseline translation were ap-
plied. One is deleting English articles that never appear in
Vietnamese and inserting them afterward. The other is to
retokenize Vietnamese so that each Vietnamese word cor-
responds to an English word by applying both supervised
and unsupervised tokenizers. Although these methods were

not helpful at the moment, our analysis shows that the ap-
proaches themselves are promising.
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Abstract  

The multilingual nature of the world makes translation a 
crucial requirement today. Parallel dictionaries constructed by 
humans are a widely-available resource, but they are limited 
and do not provide enough coverage for good quality 
translation purposes, due to out-of-vocabulary words and 
neologisms. This motivates the use of statistical translation 
systems, which are unfortunately dependent on the quantity 
and quality of training data. Such systems have a very limited 
availability especially for some languages and very narrow 
text domains. In this research we present our improvements to 
current comparable corpora mining methodologies by re-
implementation of the comparison algorithms (using 
Needleman-Wunch algorithm), introduction of a tuning script 
and computation time improvement by GPU acceleration. 
Experiments are carried out on bilingual data extracted from 
the Wikipedia, on various domains. For the Wikipedia itself, 
additional cross-lingual comparison heuristics were 
introduced. The modifications made a positive impact on the 
quality and quantity of mined data and on the translation 
quality. 

1. Introduction 

The aim of this research is a preparation of parallel and 
comparable corpora and language models. This work improves 
SMT quality through the processing and filtering of parallel 
corpora and through extraction of additional parallel data from 
the resulting comparable corpora. To enrich the language 
resources of SMT systems, adaptation and interpolation 
techniques have been applied to the prepared data. 
Experiments were conducted using data from a wide domain 
(TED1 presentations on various topics).  

Evaluation of SMT systems was performed on random 
samples of parallel data using automated algorithms (BLEU 
metric) to evaluate the quality and potential usability of the 
SMT systems’ output [1].  

As far as experiments are concerned, the Moses Statistical 
Machine Translation Toolkit software [2] is used. Moreover, 
the multi-threaded implementation of the GIZA++ tool is 
employed to train models on parallel data and to perform 
their symmetrization (using Berkeley Aligner [28]) at the 
phrase level. The statistical language models from single-
language data are trained and smoothed using the SRI 
Language Modeling toolkit (SRILM). In addition, data from 
outside the thematic domain is adapted. In the case of parallel 
models, Moore-Lewis Filtering [3] is used for pseudo in-
domain data selection, while single-language models are 
linearly interpolated [4]. 

                                                             
1 https://www.ted.com/ 

Lastly, methodology proposed in the Yalign [5] parallel 
data mining tool is analyzed and enhanced. Its speed is 
increased by reimplementing it in a multi-threaded manner 
and by employing graphics processing unit (GPU) for its 
calculations. Quality is improved by using the Needleman-
Wunch [6] algorithm for sequence comparison and by 
developing a tuning script that adjusts mining parameters to 
specific domain requirements. 

The resulting systems out-performed baseline systems 
used in the tests.  
 

2. Corpora Types 

A corpus is a large collection of texts, stored on a computer. 
Text collections are called corpora. The term “parallel 
corpus” is typically used in linguistic circles to refer to texts 
that are translations of each other. For statistical machine 
translation, we are especially interested in parallel corpora, 
which are texts paired with a translation into another 
language. Preparing parallel texts for the purpose of statistical 
machine translation may require crawling the web, extracting 
the text from formats such as HTML, and performing 
document and sentence alignment [4].  

There are two main types of parallel corpora, which 
contain texts in two languages. In a comparable corpus, the 
texts are of the same kind and cover the same content. An 
example is a corpus of articles about football from English 
and Polish newspapers. In a translation corpus, the texts in 
one language (e) are translations of texts in the second 
language (f). It is important to remember that the term 
“comparable corpora” refers to texts in two languages that are 
similar in content, but are not translations of each other [4].  

To exploit a parallel text, some kind of text alignment, 
which identifies equivalent text segments (approximately, 
sentences), is a prerequisite for analysis.  

Machine translation algorithms for translating between a 
first language and a second language are often trained using 
parallel fragments, comprising a first language corpus and a 
second language corpus, which is an element-for-element 
translation of the first language corpus. Such training may 
involve large training sets that may be extracted from large 
bodies of similar sources, such as databases of news articles 
written in the first and second languages describing similar 
events. However, extracted fragments may be comparatively 
“noisy”, with extra elements inserted in each corpus. 
Extraction techniques may be devised that can differentiate 
between “bilingual” elements represented in both corpora and 
“monolingual” elements represented in only one corpus, and 
for extracting cleaner parallel fragments of bilingual elements. 
Such techniques may involve conditional probability 
determinations on one corpus with respect to the other corpus, 
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or joint probability determinations that concurrently evaluate 
both corpora for bilingual elements [4].  

Because of such difficulties, high-quality parallel data is 
difficult to obtain, especially for less popular languages. 
Comparable corpora are the answer to the problem of lack of 
data for the translation systems for under-resourced languages 
and subject domains. It may be possible to use comparable 
corpora to directly obtain knowledge for translation purposes. 
Such data is also a valuable source of information for other 
cross-lingual, information-dependent tasks. Unfortunately, 
such data is quite rare, especially for the Polish–English 
language pair. On the other hand, monolingual data for those 
languages is accessible in far greater quantities [4].  

Summing up, four main corpora types can be 
distinguished. Most rare parallel corpora can be defined as 
corpora that contain translations of the same document into 
two or more languages. Such data should be aligned, at least 
at the sentence level. A noisy parallel corpus contains 
bilingual sentences that are not perfectly aligned or have poor 
quality translations. Nevertheless, mostly bilingual 
translations of a specific document should be present in it. A 
comparable corpus is built from non-sentence-aligned and 
untranslated bilingual documents, but the documents should 
be topic-aligned. A quasi-comparable corpus includes very 
heterogeneous and non-parallel bilingual documents that may 
or may not be topic-aligned [18]. 

3. State of the art 

As far as comparable corpora are concerned, many attempts 
(especially for Wikipedia) have been made so far to extract 
parallel data samples. Two main approaches for building 
comparable corpora can be distinguished. Perhaps the most 
common approach is based on the retrieval of cross-lingual 
information. In the second approach, source documents must 
be translated using any machine translation system. The 
documents translated in that process are then compared with 
documents written in the target language, to find the most 
similar document pairs.  

An interesting idea for mining parallel data from 
Wikipedia was described in [8]. The authors propose two 
separate approaches. The first idea is to use an online machine 
translation (MT) system to translate Dutch Wikipedia pages 
into English, and then try to compare original EN pages with 
translated ones. The idea, although interesting, seems 
computationally infeasible, and it presents a chicken-egg 
problem. Their second approach uses a dictionary generated 
from Wikipedia titles and hyperlinks shared between 
documents. Unfortunately, the second method was reported to 
return numerous, noisy sentence pairs. The second method 
was improved in [9] by additional restrictions on the length of 
the correspondence between chunks of text and by 
introducing an additional similarity measure. They prove that 
[8] the precision (understood as number of correct translations 
pairs over total number of candidates) is about 21%, and in 
the improved method [9], the precision is about 43%.  

Yasuda and Sumita [11] proposed an MT bootstrapping 
framework based on statistics that generate a sentence-aligned 
corpus. Sentence alignment is achieved using a bilingual 
lexicon that is automatically updated by the aligned sentences. 
Their solution uses a corpus that has already been aligned for 
initial training. They showed that 10% of Japanese Wikipedia 
sentences have an equivalent on English Wikipedia.  

Interwiki links were leveraged by the approach of Tyers 
and Pienaar in [10]. Based on Wikipedia link structure, a 
bilingual dictionary is extracted. In their work, they measured 
the average mismatch between linked Wikipedia pages for 
different languages. They found that precision of their method 
is about 69-92% depending on language. 

In [12] the authors attempt to advance the state of the art 
in parallel data mining by modeling document-level 
alignment using the observation that parallel sentences can 
most likely be found in close proximity. They also use 
annotation available on Wikipedia and an automatically-
induced lexicon model. The authors report 90% recall and 
80% precision. 

The author of [13] introduces an automatic alignment 
method for parallel text fragments that uses a textual 
entailment technique and a phrase-based SMT system. The 
author states that significant improvements in SMT quality 
were obtained (BLEU increased by 1.73) by using this aligned 
data between German and French languages. 

Another approach for exploring Wikipedia was recently 
described in [14] by M. Plamada and M. Volk. Their solution 
differs from the previously described methods in which the 
parallel data was restricted by the monotonicity constraint of 
the alignment algorithm used for matching candidate 
sentences. Their algorithm ignores the position of a candidate 
in the text and, instead, ranks candidates by means of 
customized metrics that combine different similarity criteria. 
In addition, the authors limit the mining process to a specific 
domain and analyze the semantic equivalency of extracted 
pairs. The mining precision in their work is 39% for parallel 
sentences and 26% for noisy-parallel sentences, with the 
remaining sentences misaligned. They also report an 
improvement of 0.5 points in the BLEU metric for out-of-
domain data, and almost no improvement for in-domain data.  

The authors in [15] propose obtaining only title and some 
meta-information, such as publication date and time for each 
document, instead of its full contents, to reduce the cost of 
building the comparable corpora. The cosine similarity of the 
titles’ term frequency vectors were used to match titles and 
the contents of matched pairs.  

In the research described in [16], the authors introduce a 
document similarity measure that is based on events. To count 
the values of this metric, they model documents as sets of 
events. These events are temporal and geographical 
expressions found in the documents. Target documents are 
ranked based on temporal and geographical hierarchies.  

The authors in [17] also suggest an automatic technique 
for building a comparable corpus from the web using news 
web pages, Wikipedia, and Twitter in. They extract entities, 
time interval filtering, URLs of web pages, and document 
lengths as features for classification and for gathering the 
comparable data.  

In the present research, a method inspired by the Yalign 
tool is used. The solution was far from perfect, but after 
improvements that were made during this research, it supplied 
the SMT systems with bi-sentences of good quality in a 
reasonable amount of time. 

4. Parallel data mining 

In this research, methodologies that obtain parallel corpora 
from data sources that are not sentence-aligned, such as noisy 
parallel or comparable corpora, are presented. The results of 
initial experiments on text samples obtained from Wikipedia 
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pages are presented. We chose Wikipedia as a data source 
because of the large number of documents that it provides 
(4,524,017 on EN wiki, at the time of writing). Furthermore, 
Wikipedia contains not only comparable documents, but also 
some documents that are translations of each other. The 
quality of the approach used was measured by improvements 
in MT systems translations.  

For the experiments in data mining, the TED corpora 
prepared for the IWSLT 2015 evaluation campaign by FBK1 
were chosen. This domain is very wide and covers many 
unrelated subject areas. The data contains almost 2.5M 
untokenized words [19]. The experiments were conducted on 
DE-EN, FR-EN, VI-EN and CS-EN corpora. 

The solution can be divided into three main steps. First, 
the comparable data is collected, then it is aligned at the article 
level, and finally the aligned results are mined for parallel 
sentences. The last two steps are not trivial, because there are 
great disparities between Wikipedia documents. This is most 
likely why sentences in the raw Wiki corpus are mostly 
misaligned, with translation lines whose placement does not 
correspond to any text lines in the source language. Moreover, 
some sentences have no corresponding translations in the 
corpus at all. The corpus might also contain poor or indirect 
translations, making alignment difficult. Thus, alignment is 
crucial for accuracy. Sentence alignment must also be 
computationally feasible to be of practical use in various 
applications. 

Before a mining tool processes the data, texts must be 
prepared. Firstly, all the data is saved in a relational database. 
Secondly, our tool aligns article pairs and removes from the 
database articles that appear only in one of the two languages. 
These topic-aligned articles are filtered to remove any HTML 
tags, XML tags, or noisy data (tables, references, figures, etc.). 
Finally, bilingual documents are tagged with a unique ID as a 
topic-aligned, comparable corpus. To extract the parallel 
sentence pairs, a decision was made to try strategy designed to 
automate the parallel text mining process by finding sentences 
that are close translation matches from comparable corpora. 
This presents opportunities for harvesting parallel corpora 
from sources, like translated documents and the web, that are 
not limited to a particular language pair. However, alignment 
models for two selected languages must first be created. 

The solution was implemented using a sentence similarity 
metric that produces a rough estimate (a number between 0 
and 1) of how likely it is for two sentences to be a translation 
of each other. It also uses a sequence aligner, which produces 
an alignment that maximizes the sum of the individual (per 
sentence pair) similarities between two documents [5]. 

For sequence alignment, the Yalign used an A* search 
approach [7] to find an optimal alignment between the 
sentences in two selected documents. The algorithm has a 
polynomial time worst-case complexity, and it produces an 
optimal alignment. Unfortunately, it cannot handle alignments 
that cross each other or alignments from two sentences into a 
single one [7].  

After the alignment, only sentences that have a high 
probability of being translations are included in the final 
alignment. The result is filtered in order to deliver high quality 
alignments. To do this, a threshold is used: if the sentence 
similarity score is below it, the pair is excluded. 

                                                             
1 http://www.fbk.eu/ 

For the sentence similarity metric, the algorithm uses a 
statistical classifier’s likelihood output and normalizes it into 
the 0–1 range. 

The classifier must be trained in order to determine if 
sentence pairs are translations of each other. A Support Vector 
Machine (SVM) classifier was used in this research. Besides 
being an excellent classifier, an SVM can provide a distance to 
the separation hyperplane during classification, and this 
distance can be easily modified using a Sigmoid Function to 
return a value similar to likelihood between 0 and 1 [21]. 

The use of a classifier means that the quality of the 
alignment depends not only on the input but also on the quality 
of the trained classifier. 

To train the classifier, good quality parallel data were 
needed, as well as a dictionary that included translation 
probability. For this purpose, we used the TED talks [18] 
corpora. To obtain a dictionary, we trained a phrase table and 
extracted 1-grams from it [22].  

5. Improvements to the mining process 

Unfortunately, the native Yalign tool was not computationally 
feasible for large-scale parallel data mining. The standard 
implementation accepts plain text or web links, which need to 
be accepted, as input, and the classifier is loaded into memory 
for each pair alignment. In addition, the Yalign software is 
single-threaded. To make the process faster, a solution was 
developed that supplies the classifier with articles from the 
database within one session, with no need to reload the 
classifier each time. The developed solution also facilitated 
multi-threading and decreased the mining time by a factor of 
6.1x (using a 4-core, 8-thread i7 CPU). The alignment 
algorithm was also reimplemented for better accuracy and to 
leverage the power of GPUs for additional computing 
requirements. The tuning algorithm was implemented as well.  

5.1. Needleman-Wunsch algorithm (NW) 

The objective of this algorithm is to align two sequences of 
elements (letters, words, phrases, etc.). The first step consists 
of defining the similarity between two elements. This is 
defined by the similarity matrix S, an NxM matrix, where N is 
the number of elements in the first sequence and M is the 
number of elements in the second sequence. The algorithm 
originated in the field of bioinformatics for RNA and DNA 
comparison. However, it can be adapted for text comparison. 
In simple terms, the algorithm associates a real number with 
each pair of elements in the matrix. The higher the number, the 
more similar the two elements are. For example, imagine that 
we have the similarity matrix S (phrase-polish, phrase-english) 
= number between 0 and 1. A 0 for two phrases means they 
have nothing in common; 1 means that those two phrases are 
the exact translation of each other. The similarity matrix 
definition is fundamental to the results of the algorithm [7]. 

The second step is the definition of the gap penalty. It is 
necessary in the case when one element of a sequence must be 
associated with a gap in the other sequence; however, such a 
step will incur a penalty (p). 

The calculation of the S matrix is performed starting from 
the S(0,0) element that is, by definition, equal to 0. After the 
first row and columns are initialized, the algorithm iterates 
through the other elements of the S matrix, starting from the 
upper-left side to the bottom-right side. Each step of this 
calculation is shown in Figure 1. 
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ê 
Inside M matrix calculation 

Figure 1: Needleman-Wunsch S-matrix calculation 

The two NW algorithms, with and without GPU 
optimization, are conceptually identical, but the first has an 
advantage in efficiency, depending on the hardware, of up to 
max(n, m) times. 

It differs in the calculation of the S matrix elements. This 
calculation is the step to which multi-threading optimization is 
applied. Those operations are small enough to be processed by 
an enormous number of Graphics Processing Units (ex. CUDA 
cores). The idea is to compute all elements in a diagonal in 
parallel, always starting from the lower-left and proceeding to 
the bottom-right. An example is presented in Figure 2 [24]. 

 
         

         

         

         

         

         

         

         

         

 
 First column initialization in parallel threads 
 First raw initialization in parallel  

 1st diagonal calculation in parallel threads 
 2nd diagonal calculation in parallel threads 

 3rd diagonal calculation in parallel threads 
 … 

Figure 2: Needleman-Wunsch S-matrix calculation with 
parallel threads 

The S matrix calculation starts from the top left column. In 
order to find out the value of a cell of S(m,n), for all pairs of m 
and n, the values to its top  S(m-1,n)  , left  S(m,n-1) and top 
left  S(m-1,n-1) must be known in advance. Where, S(m,n) can 
be calculated with the help of following equation,   [26]: 

 
 
! ", $ = max 	 ! " − 1 ± 1, ! " − 1, $ −

2,	!(", $ − 	1) 	− 2	                                                          (1) 
 
Nonetheless, the results of the A* algorithm, if the 

similarity calculation and the gap penalty are defined as in the 
NW algorithm, will be the same only if there is an additional 
constraint on paths: paths cannot go upward or leftward in the 
S matrix. Yalign does not impose these additional conditions, 
so in some scenarios, repetitions of the same phrase may 
appear. In fact, every time the algorithm decides to move up or 
left, it is coming back into the second and first sequence 
respectively. 

An example of an S matrix without constraints is 
presented in Figure 3: 

 

 a d e g f 

a X     

d  X    

c X     

d  X    

e   X X X 

Figure 3: S matrix pass trough without constraints 

The alignment result in this scenario is: 
a, d, a, d, e, g, f 
a, d, c, d, e, −, − 
In the same problem, the NW would react as presented in 

Figure 4: 
 

 a d e g f 

a X     

d  X    

c  X    

d  X    

e   X X X 

Figure 4: S matrix pass trough with NW 

The alignment result using NW would be: 
a, d, −, −, e, g, f 
a, d, c, d, e, −, − 
In order to visualize the problem, let us assume that first 

sequence is “tablets make children very addicted” and second 
one is “tablets make people spoil children”. The solution to 
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this sequence using A* algorithm without constrains is 
presented in Figure 5 and using NW in Figure 6. 

 

 

ta
bl

et
s 

m
ak

e 

ch
il

dr
en

 

ve
ry

 

ad
di

ct
ed

 

tablets X - - - - 

make - X - - - 

people X - - - - 

spoil - - - - - 

children - - X X X 

Figure 5:A* alignment without constraints 
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tablets X - - - - 

make - X - - - 

people - - - - - 

spoil - - - - - 

children - - X - - 

Figure 6: NW alignment with constraints 

Because of the lack of constraints, repetitions were created 
that visualized the imperfection of the A* algorithm 
implemented in the Yalign program. Using A* many sentences 
may be misaligned or missed during the alignment, especially 
when analyzed texts are of different lengths and have 
vocabularies rich in synonyms. Some sentences can simply be 
skipped while checking for alignment. That is why NW with 
GPU optimization is more suitable algorithm. In this research, 
a comparison was made using all three approaches described 
above. 

5.2. Tuning algorithm for classifier 

The quality of alignments is defined by a tradeoff between 
precision and recall. The classifier has two configurable 
variables [25]: 

• threshold: the confidence threshold to accept an 
alignment as "good." A lower value means more precision and 
less recall. The "confidence" is a probability estimated from a 
support vector machine classifying "is a translation" or "is not 
a translation." [27]  

• penalty: controls the amount of "skipping ahead" 
allowed in the alignment [5]. Say you are aligning subtitles, 
where there are few or no extra paragraphs and the alignment 
should be more or less one-to-one; then the penalty should be 

high. If you are aligning things that are moderately good 
translations of each other, where there are some extra 
paragraphs for each language, then the penalty should be 
lower. 

Both of these parameters are selected automatically during 
training but they can be manually adjusted if necessary. The 
solution implemented in this research also introduces a tuning 
algorithm for those parameters, which allows for better 
adjustment of them. 

To perform tuning, it is necessary to extract random article 
samples from the corpus. Such articles must be manually 
aligned by humans. Based on such information, the tuning 
script tries, naively by random parameter selection, to find 
values for which classifier output is as similar to that of a 
human as possible. Similarity is a percentage value of how the 
automatically-aligned file resembles the human-aligned one. A 
Needleman-Wunsch algorithm is used for this comparison. 
Analysis was performed for each of four languages of interest 
to check how the tuning algorithms cope with proper 
adjustment of the parameters. Table 1 shows the results of this 
experiment. For testing purposes, 100 random article pairs 
were taken from the Wikipedia comparable corpus and aligned 
by a human translator. Second, a tuning script was run using 
classifiers trained on the previously described text domain. A 
percentage change in quantity of recognized parallel sentences 
was calculated for each classifier. 

Table 1: Improvements in mining using tuning script for 
Wikipedia data 

Domain Improvement in % 

DE 11.2 
FR 13.5 
CS 12.1 
VI 15.2 

5.3. Minor improvements for better Wikipedia 

exploration 

All the improvements discussed in the previous sections deal 
mostly with heuristics used in the mining tool and can be 
applied to any bilingual textual data. Such an attitude would 
also improve the mining within Wikipedia. However, 
Wikipedia has many additional sources of cross-lingual 
dependencies that can be used. First of all, the topic domain of 
Wikipedia cannot be closed into a specific domain; this page 
covers almost any topic. This is the reason why its articles 
often contain complicated or rare vocabulary, and why 
statistical mining methods may skip some parallel sentences. 
The solution to this problem might be extraction of the 
dictionary using the article titles from Wikipedia (Figure 7) 
and additionally implemented web crawler tool.  
 

 

Figure 7: Example of bi-lingual Wikipedia page title 

According to [11] precision of such a dictionary can be as 
high as 92%. Such a dictionary can be used not only for the 
extension of the parallel corpora but also in the classifier 
training phase. 
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Secondly, figures, or to be more precise, their descriptions, 
contain good quality parallel phrases. It is possible to get them 
by picture analysis and hyperlinks to the pictures. The same 
goes for any figures, tables, maps, audio, video or any other 
multimedia contents on Wikipedia. Unfortunately, not all 
information can be extracted from Wikipedia dumps and it is 
required to use a web crawler suited for this task (Figure 8). 
This also means that only cross-lingual information that are 
annotated with common links can be extracted. 

 

Figure 8: Example of bi-lingual figure caption 

The good quality Wikipedia articles are well referenced. It 
is most likely for sentences to be cross-lingual equivalents if 
they are referenced with the same publication. Such analysis, 
joined with other comparison techniques, can lead to better 
accuracy in parallel text recognition (Figure 9).  
 

 

Figure 9: Example of bilingually referenced sentence 

Unfortunately, the Wikipedia articles are developed 
separately for each language by many authors. In the 
following example, the parallel sentence in one language is 
notated with reference number 21 and in other with reference 
26. It is why it is required not only to compare the number but 
to analyze the references themselves (Figure 10). 

 

 

Figure 10. Example of cross-lingual reference 

In addition to references, it is important to analyze names, 
dates, numbers etc. as well, because it they indicate parallel 
data presence. 

Because of the need to use a web crawler, this tool version 
was evaluated only using 1,000 randomly selected articles. It 
would take too long to build using an entire corpus without 
access to many proxy servers and Internet connections. It is 
not only required to crawl about 5,000,000 articles for EN 
wiki but also many links present in each language Wiki.  

Table 2: Number of parallel segments found 

Y 4,192 
YMOD 5,289 
DICT 868 

DICTC 685 
 
Firstly, the data was crawled and secondly aligned using 

the standard version of the classifier (Y in Table 2) and then 

aligned using the modified version - dictionary, captions and 
references extraction as described above (YMOD in Table 2). 
Lastly, the single words were extracted and counted (DICT in 
Table 2) and also manually analyzed in order to verify how 
many of them could be considered as correct translations 
(DICTC in Table 2). 

The results mean that the improved method using 
additional information sources mined an additional 1,097 
parallel segments. Out of them, it possible to identify 868 
single words, which means that in fact 229 new sentences 
were obtained. Potential growth in obtained data was equal to 
5.5%. After manual analysis of the dictionary, 685 words were 
identified as proper translations. This means that the accuracy 
of the dictionary was about 79%.  

5.4. Evaluation of improvements  

As mentioned, some methods for improving the 
performance of the native classifier were developed. First, 
speed improvements were made by introducing multi-
threading to the algorithm, using a database instead of plain 
text files or Internet links, and using GPU acceleration in 
sequence comparison. More importantly, two improvements 
were obtained to the quality and quantity of the mined data. 
The A* search algorithm was modified to use Needleman-
Wunch, and a tuning script of mining parameters was 
developed. In this section, the CS-EN TED corpus will be 
used to demonstrate the impact of the improvements (it was 
the only classifier used in the mining phase). The data mining 
approaches used were: directional (CS->EN classifier) mining 
(MONO), bi-directional (additional EN->CS classifier) mining 
(BI), bi-directional mining using a GPU-accelerated version of 
the Needleman-Wunch algorithm (NW), and mining using the 
NW version of the classifier that was tuned (NWT). Such 
mining methodologies were already successfully evaluated 
against MT quality in [25]. The results of such mining are 
shown in Table 3. 

Table 3: Number of obtained Bi-Sentences 

Mining Method Number of Bi-Sentences 
MONO 21,132 

BI 23,480 
NW 24,731 

NWT 27,723 
 

As presented in Table 3, each of the improvements 
increased the number of parallel sentences discovered. In 
addition, in Table 4 a speed comparison is made using 
different versions of the tool.  

Table 4: Computation Time of Different Yalign Version 

Mining Method Computation Time [s] 
Y 92.37 

MY 15.1 
NWMY 18.2 

GNWMY 16.4 
 

A total of 1,000 comparable articles were randomly 
selected from Wikipedia and aligned using the native 
implementation (Y), multi-threaded implementation (MY), 
classifier with the Needleman-Wunch algorithm (NWMY), 
and with a GPU-accelerated Needleman-Wunch algorithm 
(GNWMY) 
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The results indicate that multi-threading significantly 
improved speed, which is very important for large-scale 
mining. As anticipated, the Needleman-Wunch algorithm 
decreases speed. However, GPU acceleration makes it possible 
to obtain performance almost as fast as that of the multi-
threaded A* version. It must be noted that the mining time 
may significantly differ when the alignment matrix is big (text 
is long). The experiments were conducted on a hyper-threaded 
Intel Core i7 CPU and a GeForce GTX 660 GPU. 

6. Evaluation of obtained comparable corpora  

Using techniques described above, we were able to build 
comparable corpora and mine them for parallel sentences for 
the four languages being part of IWSLT 2015 evaluation 
campaign. We used GPU accelerated Needleman-Wunch 
algorithm, the classifier was tuned and Wikipedia page titles 
were downloaded separately. We focused on DE, FR, CS and 
VI. The corpora statistics are presented in Table 5. 

Table 5: Results of mining after improvements 

Language 
Pair 

Number of bi-
sentences 

Number of 
unique EN 

tokens 

Number of 
unique foreign 

tokens 
DE-EN 2,459,662 2,576,938 2,864,554 
FR-EN 818,300 1,290,000 1,120,166 
CS-EN 27,723 98,786 104,596 
VI-EN 58,166 92,434 93,187 

 
To evaluate the corpora, we trained baseline systems 

using IWSLT 2015 official data sets and enriched them with 
obtained comparable corpora, both as parallel data and as 
language models. The enriched systems were trained with the 
baseline settings but additional data was adapted using linear 
interpolation and Modified Moore-Lewis [23]. Because of the 
well know MERT instability, tuning was not performed in the 
experiments [20]. Using MERT would most likely improve 
overall MT systems quality but it some cases it could produce 
false positive results, what needed to be avoided in order to 
properly evaluate only the impact of augmented corpora [20].  

Table 6: Results of MT Experiments 

LANGUAGE SYSTEM DIRECTION BLEU 
DE-EN BASE àEN 30.21 

 EXT àEN 31.37 

 BASE ENß 21.07 
 EXT ENß 22.47 

FR-EN BASE àEN 35.95 
 EXT àEN 37.01 
 BASE ENß 35.73 
 EXT ENß 37.79 

CS-EN BASE àEN 23.55 
 EXT àEN 24.09 
 BASE ENß 14.05 
 EXT ENß 14.93 

VI-EN BASE àEN 22.84 
 EXT àEN 23.38 
 BASE ENß 26.23 
 EXT ENß 26.76 

 
The evaluation was conducted using official test sets from 
IWSLT 2010-2013 campaigns and averaged. For scoring 
purposes, Bilingual Evaluation Understudy (BLEU) metric 
was used. The results of the experiments are shown in Table 

6. BASE in the Table 6 stands for baseline system and EXT 
for enriched systems. 

As anticipated, additional data sets improved overall 
translation quality for each language and in both translation 
directions. The gain in quality was observed mostly in the 
English to foreign language direction. 

7. Conclusions 

Bi-sentence extraction has become more and more popular in 
unsupervised learning for numerous specific tasks. This 
method overcomes disparities between English and other 
languages. It is a language-independent method that can 
easily be adjusted to a new environment, and it only requires 
parallel corpora for initial training. Our experiments show that 
the method performs well. The resulting corpora increased 
MT quality in a wide text domain. In some cases, only very 
small BLEU score differences were reported. Nonetheless, it 
can be assumed that even small differences can make a 
positive influence on real-life, rare translation scenarios. In 
addition, it was proven that mining data using two classifiers 
trained from a foreign to a native language and vice versa, can 
significantly improve data quantity, even though some 
repetitions are possible. From a practical point of view, the 
method requires neither expensive training nor language-
specific grammatical resources, but it produces satisfying 
results. It is possible to replicate such mining for any 
language pair or text domain, or for any reasonable 
comparable input data. 

8. Acknowledgements 

This work is supported by the European Community from the 
European Social Fund within the Interkadra project UDA-
POKL-04.01.01-00-014/10-00 and PJATK statutory resources 
ST/MUL/02/2015. 

9. References 

[1] WOŁK, K.; MARASEK, K. Real-Time Statistical Speech 
Translation. In: New Perspectives in Information Systems 

and Technologies, Volume 1. Springer International 
Publishing, 2014, p. 107-113. 

[2] WOŁK, K.; MARASEK, K. Polish–English Speech 
Statistical Machine Translation Systems for the IWSLT 
2013. In: Proceedings of the 10th International Workshop 

on Spoken Language Translation, Heidelberg, Germany. 
2013, p. 113-119. 

[3] KOEHN, P. Statistical machine translation. Cambridge 
University Press, 2009. 

[4] BERROTARÁN G., CARRASCOSA R., VINE A., 
Yalign documentation, https://yalign.readthedocs.org - 
accessed 01/2015 

[5] DIENY R., THEVENON J., MARTINEZ-DEL-RINCON 
J., NEBEL J.-C. Bioinformatics inspired algorithm for 
stereo correspondence. International Conference on 

Computer Vision Theory and Applications, March 5–7, 
Vilamoura - Algarve, Portugal, 2011. 

[6] MUSSO, G. Sequence alignment (Needleman-Wunsch, 
Smith-Waterman), 
http://www.cs.utoronto.ca/~brudno/bcb410/lec2notes.pdf.  

[7] ADAFRE, S.; DE RIJKE, M. Finding similar sentences 
across multiple languages in wikipedia. In: Proceedings 

of the 11th Conference of the European Chapter of the 

124

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



Association for Computational Linguistics, 2006, p. 62-
69. 

[8] MOHAMMADI, M.; GHASEMAGHAEE, N. Building 
bilingual parallel corpora based on wikipedia. 
In: Computer Engineering and Applications (ICCEA), 

2010 Second International Conference on. IEEE, 2010, p. 
264-268. 

[9] TYERS, F. M.; PIENAAR, J. A. Extracting bilingual 
word pairs from Wikipedia, Collaboration: 

interoperability between people in the creation of 

language resources for less-resourced languages 19, 
2008, p. 19-22. 

[10] YASUDA, K.; SUMITA, E. Method for building 
sentence-aligned corpus from wikipedia. In: 2008 AAAI 

Workshop on Wikipedia and Artificial Intelligence 

(WikiAI08), 2008, p.263-268. 
[11] SMITH, J. R.; QUIRK, C.; TOUTANOVA, K. Extracting 

parallel sentences from comparable corpora using 
document level alignment. In: Human Language 

Technologies: The 2010 Annual Conference of the North 

American Chapter of the Association for Computational 

Linguistics. Association for Computational Linguistics, 
2010, p. 403-411. 

[12] PAL, S.; PAKRAY, P.; NASKAR, S. K. Automatic 
Building and Using Parallel Resources for SMT from 
Comparable Corpora. In:Proceedings of the 3rd 

Workshop on Hybrid Approaches to Translation 

(HyTra)@ EACL, 2014. p. 48-57. 
[13] PLAMADA, M.; VOLK, M. Mining for Domain-specific 

Parallel Text from Wikipedia. Proceedings of the Sixth 
Workshop on Building and Using Comparable Corpora, 
ACL 2013, 2013, p.112-120. 

[14] AKER, A.; KANOULAS, E.; GAIZAUSKAS, R. J. A 
light way to collect comparable corpora from the Web. 
In: LREC, 2012, p. 15-20. 

[15] STRÖTGEN, J.; GERTZ, M.; JUNGHANS, C.. An 
event-centric model for multilingual document similarity. 
In: Proceedings of the 34th international ACM SIGIR 

conference on Research and development in Information 

Retrieval. ACM, 2011, p. 953-962. 
[16] PARAMITA, M. L., et al. Methods for collection and 

evaluation of comparable documents. In: Building and 

Using Comparable Corpora. Springer Berlin Heidelberg, 
2013, p. 93-112. 

[17] WU, D.; FUNG, P. Inversion transduction grammar 
constraints for mining parallel sentences from quasi-
comparable corpora. In: Natural Language Processing–

IJCNLP 2005. Springer Berlin Heidelberg, 2005, p. 257-
268. 

[18] CETTOLO, M.; GIRARDI, C.; FEDERICO, M. Wit3: 
Web inventory of transcribed and translated talks. 
In: Proceedings of the 16th Conference of the European 

Association for Machine Translation (EAMT). 2012, p. 
261-268. 

[19] CLARK, J. H., et al. Better hypothesis testing for 
statistical machine translation: Controlling for optimizer 
instability. In: Proceedings of the 49th Annual Meeting of 

the Association for Computational Linguistics: Human 

Language Technologies: short papers-Volume 2. 
Association for Computational Linguistics, 2011, p. 176-
181. 

[20] JOACHIMS, T.. Text categorization with support vector 

machines: Learning with many relevant features. Lecture 
Notes in Computer Science vol 1398, 2005, p. 137-142. 

[21] WOŁK, K.; MARASEK, K. A Sentence Meaning Based 
Alignment Method for Parallel Text Corpora Preparation. 
In: New Perspectives in Information Systems and 

Technologies, Volume 1. Springer International 
Publishing, 2014, p. 229-237. 

[22] AXELROD, A.; HE, X.; GAO, J. Domain adaptation via 
pseudo in-domain data selection. In: Proceedings of the 

Conference on Empirical Methods in Natural Language 

Processing. Association for Computational Linguistics, 
2011, p. 355-362. 

[23] ROESSLER, R. A GPU implementation of Needleman-
Wunsch, specifically for use in the program pyronoise 
2. Computer Science & Engineering, 2010. 

[24] WOŁK, K.; MARASEK, K. Tuned and GPU-accelerated 
parallel data mining from comparable corpora. In: Text, 

Speech, and Dialogue. Springer International Publishing, 
2015, p. 32-40. 

[25] MOORE, Robert C.; LEWIS, William. Intelligent 
selection of language model training data. 
In: Proceedings of the ACL 2010 conference short 

papers. Association for Computational Linguistics, 2010, 
p. 220-224. 

[26] KHALADKAR C. S. An Efficient Implementation of 
Needleman Wunsch Algorithm on Graphical Processing 
Units, PHD Thesis, School of Computer Science and 
Software Engineering, The University of Western 
Australia, 2009. 

[27] https://github.com/machinalis/yalign/issues/3 accessed 
10.11.2015  

[28] HAGHIGHI, A., et al. Better word alignments with 
supervised ITG models. In:Proceedings of the Joint 

Conference of the 47th Annual Meeting of the ACL and 

the 4th International Joint Conference on Natural 

Language Processing of the AFNLP: Volume 2-Volume 2. 
Association for Computational Linguistics, 2009, p. 923-
931. 

125

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



Applying Cross-Entropy Difference for Selecting Parallel Training Data

from Publicly Available Sources for Conversational Machine Translation

William D. Lewis, Christian Federmann, Ying Xin

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA

{wilewis,chrife,v-yixi}@microsoft.com

Abstract

Cross Entropy Difference (CED) has proven to be a very ef-

fective method for selecting domain-specific data from large

corpora of out-of-domain or general domain content. It is

used in a number of different scenarios, and is particularly

popular in bake-off competitions in which participants have a

limited set of resources to draw from, and need to sub-sample

the data in such a way as to ensure better results on domain-

specific test sets. The underlying algorithm is handy since

one can provide a set of in-domain data and, using a language

model (LM) trained on this in-domain data, along with one

trained on out-of-domain or general domain content, use it

to “identify more of the same.” Although CED was designed

to select domain-specific data, in this work we are generous

regarding the notion of “domain”. Instead of looking for data

of a particular domain, we seek to identify data of a particular

style, specifically, data that is conversational. Our interest is

to train conversational Machine Translation (MT) systems,

and boost the available data using CED against large, pub-

licly available general domain corpora. Experimental results

on conversational test sets show that CED can greatly benefit

machine translation system quality in conversational scenar-

ios, and can be used to significantly increase the amount of

parallel conversational data available.

1. Introduction

Cross EntropyDifference (CED) as defined by [1] has proven

to be a very effective method for selecting domain-specific

data from a larger corpus of out-of-domain or general do-

main content. It is used in a number of different scenarios,

and is particularly popular in bake-off competitions—such as

those hosted by the WMT [2] or IWSLT [3]—in which par-

ticipants have a limited set of resources to draw from, and

need to sub-sample the data in such a way as to ensure better

results on domain-specific test sets. It has also proven useful

in scenarios where training on all available data is not pos-

sible or feasible, or where iterating on large samples of data

takes too long [4].

The algorithm is handy since one can provide a set of

in-domain data and, using an LM built over the in-domain

data, use it to “find more of the same” in a larger store of par-

allel or monolingual data. Although the output generated by

CEDmay not truly be in-domain—Axelrod et al 2011 [5] use

the term “pseudo in-domain”—the resulting data generally

proves useful enough, and quality on relevant, in-domain,

test data improves sufficiently enough, to warrant CED’s in-

clusion in one’s “bag of tricks” for manipulating data for

SMT or language model building.

Although CED was designed to select domain-specific

data, in this paper we are generous regarding the notion of

“domain”. Since we are looking for data not necessarily of

a particular domain but rather we are looking for data of a

particular style or register, that is, conversational. People

have conversations about just about anything, so conversa-

tions truly defy domain.

Our primary interest, however, even more than using

CED for style adaptation, is to find a means to bolster the

amount parallel conversational data that is available for train-

ing conversational MT systems—essentially MT systems

that we could be used in an end-to-end speech-to-speech

(S2S) pipeline. Conversational data, specifically fluent tran-

scripts of conversations, especially parallel conversational

data, is very difficult to come by; only a very small set of

language pairs have any parallel conversational data, and the

quantities that are available are quite small. By contrast,

the amount of broad-domain parallel data that is available

has grown dramatically over the past few years (e.g., Com-

monCrawl, EuroParl, United Nations, etc.). Enter CED as

a method to find conversational content in the much larger

stores of heterogeneous, general domain data.

We assume that a conversational MT system must be

able to take as input the transcripts of speech recognition (a

la [6]). We assume further that we have a mechanism to clean

up disfluencies in the source ASR output in order to make it

more hospitable to an MT engine (how to do such data clean-

ing is beyond the scope of this paper;1 we assume clean input

1We employ a method for such data cleaning called TrueText. [7] gives

some background on how producing “fluent” content from speech recog-

nition can improve downstream processes, such as Machine Translation.

Given space limits, we will not expand upon TrueText in this paper, but

suggest the reader explore [7] for more background.
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for the MT, effectively constituting “oracle” output from the

ASR2. To this end, we seek to use CED to bolster the amount

of parallel conversational-style (or “pseudo-conversational-

style”) data available to us. Using a method to discover con-

versational content, notably parallel conversational content,

can help build more robust conversational MT systems.

To determine the utility of data output by CED for this

task, we measure end-to-end MT results on conversational

test sets representative of actual mono- and bi-lingual con-

versations. For our general domain corpora, we draw from

all publicly available parallel sources for English↔French

that we know of (shown in detail in Table 3). Combined

and added to training, these sources act as our general do-

main source data and our ceiling (when we train on all of

the data). To test a “what if” scenario—that is, “what if” we

had a much larger store of data available to draw from be-

yond those that are publicly available—we use CED against

a very large store of Web-scraped English↔French content

(over 500 million parallel sentences) combined with the pub-

licly available data to create another ceiling. With this ceiling

we show that CED can expand to much larger stores of data,

and demonstrate the gain others can reasonably expect to see

using this method in the near-term. Experimental results on

conversational test sets show that style adaptation using CED

greatly benefits MT quality in conversational scenarios.

This paper is organized as follows: Section 2 provides

more details on the CEDmethodwhile Section 3 explains our

experimental setup and the data we have used. We discuss

results in Section 4 and conclude with a summary and an

outlook to future research questions in Section 5.

2. Background

2.1. Cross-Entropy Difference

The intent of the Cross Entropy Difference (CED) algorithm

[1] is to identify a subset of data in a much larger corpus

of data that is in the “domain” of interest. Using an in-

domain corpus, and an LM built over the corpus, we can

find more content that resembles the domain of interest. The

CED algorithm, as shown in Figure 1, relies on three prin-

cipal components: (i) an in-domain LM Sin (or LMs, in the

case of [5]), (ii) an out-of-domain LM Sout, and (iii) an out-

of-domain or general domain corpus from which we are se-

lecting data ((ii) can be built over the data in (iii), but that

is not required). For each sentence in (iii) si, the CED al-

gorithm calculates the cross entropy from the in-domain LM

Sin, and subtracts from it the cross entropy for the same sen-

tence scored against the out-of-domain LM Sout. Although

one would expect scoring against the in-domain should be

adequate in and of itself, e.g., one would expect the en-

tropy of sentences that share characteristics of the domain,

e.g., shared n-gram frequencies, would be adequately scored

against the in-domain LM Sin. This is the thinking behind

related and earlier attempts at the same [8, 9]. However, by

2See [6] for an alternative approach.

simultaneously scoring against an LM built over content that

is not in the domain of interest, we favor content that scores

better on the in-domain LM and more poorly against the

out-of-domain LM. This, in effect, “pushes” the selection to-

wards in-domain content and away from out-of-domain con-

tent. Figure 1 shows the algorithm.

CED(si|Sin, Sout) = HLM (Sin)(si)−HLM (Sout)(si) (1)

The most common usage of CED in MT, as noted ear-

lier regarding bake-offs, has been to find additional content

in a particular domain, say “news text”, in an out-of-domain

corpus, say “parliamentary proceedings”, e.g., Europarl [10].

We may or may not have bilingual data for the in-domain cor-

pus, but if we do we can pool it with a set of data selected by

CED, and use it for training our in-domain translation mod-

els. The percentage of content that we should select is of-

ten decided upon by trial and error, that is, select 5%, 10%,

15%, etc., of the data desired, and where quality plateaus,

select that percentage. Since CED assigns a score to every

sentence for an out-of-domain corpus, we can rank the data

by that score, and select the top n% from the ranked data, and

then train our models on that percentage.

2.2. The Nature of Conversational Data

The definition of what constitutes a domain has mostly been

avoided in the MT literature. Researchers will generally refer

to a domain by name, e.g., news, blogs, government, tech,

etc., without ever really defining what the characteristics of

that domain are. For conversational data, which is really not

a domain at all but rather a style or register, i.e., a manner

in which language is used, we can be a little clearer in our

definition. There are a number of features that characterize

data in the conversational style, among them being what is

shown in Table 1. Given that most of these features can be

captured by simple LMs, their presence can be boosted by

CED.

3. Data and Experiments

3.1. Data Sources (for Training and Tuning)

In this section we provide detail on the data we use in our

experiments:

Publicly available data sets – Table 2 shows the sets of

data that are available publicly as well as their sizes.

This data serves as our general-domain content (our

Sout) for the set of experiments against which we ap-

ply CED (and we also use it for producing our Ceil-

ing System (D), and we randomly sample it for control

baselines (B)).

CED seed data – Our seed, in-domain corpus is drawn from

the Fisher Corpus [11], and consists of 760K English

sentences. The Fisher Corpus consists of transcripts
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Id Feature Description / Examples

F1 Increased use of contracted forms don’t, can’t, I’m, I’ll, you’re

F2 Increased use of reduced forms Forms common in colloquial speech, e.g., gonna, wanna, shoulda, musta, kinda

F3 Increased use of slang

F4 Higher frequency of 1st and 2nd person 1st and 2nd person pronouns and verbal forms are more common in colloquial

speech vs. Web content as a whole

F5 Shorter Sentences Conversational utterances tend to be shorter than many sources of textual content

F6 Reduced vocabulary

F7 Sentence Fragments/Partial Utterances

F8 Disfluencies and Restarts Disfluencies: um, uh, you know, I mean

Restarts: I I, I’m uh I’ve

Table 1: Features of the conversational style

Source Sentences Words (English)

Common Crawl 2015 2.98M 58M

Europarl v7 2015 1.79M 43M

FBIS 38K 851K

Gutenberg (No Shakespeare) 196K 3.1M

JRCDGT 698K 15.8M

JRC 1.87M 45.3M

MultiUN 9.1M 228.6M

Subtitle2012 13.8M 96.8M

Subtitle2013 15.1M 106.6M

WIT3 167K 2.5M

WMT2009 Giga 23.93M 532.8M

WMT2009 News 64.6M 1.33M

WMT2011 News 117K 2.5M

WMT2012 News 139K 2.91M

WMT2013 News Commentary 158K 3.4M

WMT2014 News Commentary 2015 179K 3.8M

Total 70.4M 1.15B

Table 2: Publicly available data comprising our general pool

of over 2,000 hours of English-speaking phone calls.

These are unscripted and, hence, very conversational.

Training data – Core to one of our baseline systems (A)

is just the set of Open Subtitle content. We assume

that subtitle data is reasonably conversational (albeit

scripted), and thus makes a good “core” set of train-

ing data for conversational MT. It acts as our primary

baseline. To (A), we add varying amounts of “Style

Adapted” (SA) data. Our SA data consists of four

different sets, specifically 10%, 20%, 30%, and 40%,

ranked by CED, drawn from the publicly available data

shown in Table 2.3 Our Random Baseline system (B)

consists of a random sample of our public data, with

approximately the same word count as (A). To be a

3In production, we select the sample, e.g., , 10%, 20%, etc., that produces

the highest BLEU score for the particular task at hand. See [5] or [12] for

further exploration of the methodology.

Data set Sentences Words

Baseline (A) 22,912,400 167,690,601

Baseline (B) 7,288,000 167,127,882

Baseline (C) 14,300,000 166,085,537

Ceiling (D) 60,864,815 1,037,969,219

Ceiling (E) 93,700,367 1,145,178,939

Table 3: Overview on training data sets for our experiments

useful control against (A), we again add the 10-40%

SA samples. Baseline (C) is a system containing just

the 20%SA sample, and nothing else. Its word count is

approximately the same as (A) and (B), and thus can be

used for comparison purposes. System (D) was trained

on all publicly available training data, and thus should

act as a ceiling system, possibly reflecting the peak

BLEU scores we might expect to achieve. Finally,

system (E) is a system consisting of a very large SA

sample, paired with OpenSubtitle content at its core

(same assumption as (A) as to the underlying value of

subtitle content for conversational systems). The data

consists of approximately 94M parallel sentences. The

SA data for (E) was drawn from a very large corpus of

English↔French Web content, plus all publicly avail-

able sources, clocking in at greater than 500 million

parallel sentences. We were unable to train another

ceiling system on all of this data, so the style-adapted

system (E) effectively acts as another ceiling system.

The sentence and word counts for each baseline sys-

tem (A), (B), and (C) are shown in Table 3. We also

include the sizes of our two ceiling systems, (D) and

(E).

Tuning data – Our dev set is based on a random sample

of Web content which contains 6,870 sentence pairs

and a total of 123,030 English and 132,903 French

words, respectively. Based on our experience with this

data set, it can be considered lightly conversational as

it shares some of the characteristics of conversational
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data. Still, our main tuning target is general domain

text so any measurable improvements on our strictly

conversational test sets will effectively prove that our

data selection approach works as desired.

3.2. Test Data

To test the impact of our data selection on resulting SMT

systems, we built several test sets. These are listed below.

Crucially, since we wanted to measure the performance of

SMT systems on true, open-domain conversational content,

each of the Speech test sets was created from actual Skype

calls that were recorded between participants who were ei-

ther speaking the same language or different languages (in

the latter case, drawn from bilingual conversations).

Supporting real-time, open-domain, bilingual conversa-

tions is the gold standard for S2S systems. To evaluate

a conversational MT system that performs the translation

function in such a system, we felt our test sets had match

the scenario as close as possible, that is, be representative

of open-domain, conversations. To that end, SpeechEX,1

and SpeechXE consist of transcripts of English→French

and French→English bilingual conversations, respectively,

which were then translated into the opposing languages.

These tests sets are relatively hard, since they consiste of

true, real-time bilingual conversations, but they are also rep-

resentative of our ultimate S2S goal: to support free-form,

open-domain, bilingual conversations between monolingual

speakers.

1. SpeechEX,1 – This test set consists of the transcripts

of the English side of bilingual English↔French con-

versations. Participants were English↔French bilin-

guals, who were fully conversant in both languages.

In each conversation, one of the two consistently

spoke English, the other spoke French. The English

transcripts were normalized and then translated into

French.

2. SpeechEX,2 – This test set consists of the transcripts

of the English side of bilingual English↔French con-

versations conducted by monolingual speakers, medi-

ated by an S2S system, namely Skype Translator.4 In

other words, each participant spoke in their own lan-

guage, and the S2S system transcribed and translated

their spoken content into the other language. The En-

glish audio was human transcribed (the test data does

not contain ASR output), normalized, and then trans-

lated into French.5

3. SpeechXE – This test set consists of the French side

of bilingual English↔French conversations. It is ef-

fectively the equivalent of SpeechEX,1, except in this

4Skype Translator is available at the following URL:

http://www.skype.com/en/translator-preview/. The functionality of

Skype Translator is also being integrated into other Skype versions.
5We assume SpeechEX,2 is easier than SpeechEX,1, since users were

bound by the current state of the art of the S2S at the time the recordings

were made.

case the French side data was kept and translated into

English. All French data has been recorded by French

native speakers so it is an accurate representation of

conversational French.

4. Eval2000EX – Eval2000 [13] is a standard speech test

set consisting of transcripts of English phone conver-

sations. We translated a sample of the Eval2000 tran-

scripts into French in order to create this test set.

5. SocialXE – This test set consists of a sample of French

Facebook posts, which were then translated into En-

glish. Although not strictly conversational, Facebook

posts, as with any other social media, exhibit some of

the features one sees in conversational transcripts.

6. WMT2013 – This test set consists of a sample of stan-

dard test set used at the 2013 Workshop on Machine

Translation [2]. It acts as a sanity check. It contains

content that is really not relevant to the conversational

MT style.

3.3. Experimental Setup

In order to measure the effectiveness on translation quality

of data selected using CED, we ran a series of experiments

drawing from a general domain pool of English↔French

data (our Sout). All of the data is publicly available, con-

sisting of corpora such as the CommonCrawl, Project Guten-

berg, various WMT data sets, UN data, etc., which are bro-

ken down in Table 2.6 In total, this corpus consists of ap-

proximately 70M sentence pairs and 1.15B words (English

side), before removing duplicates. The in-domain (or “in-

style”) data, or seed data (Sin), which is constant in these

experiments, consists of a 760K sentence sample from the

Fisher data set [11]. Fisher consists of transcripts of un-

scripted phone calls, so the data are quite conversational, and

very similar to the Speech test sets. We also include in our

experiments two ceiling systems, trained on the following

data: The first is trained on all available publicly available

corpora (effectively, all sources shown in Table 2). The sec-

ond is a “what if” system, trained on 94M sentences, includ-

ing some 24M sentences discovered using CED from a very

large scrape of the Web, consisting of over 500M sentence

pairs, which is then combined with other conversational con-

tent. The intent of the second ceiling is to demonstrate the

potential of CED on very large corpora, and to provide a

proof of concept of what is possible as more data becomes

publicly available (e.g., as the CommonCrawl data continues

to grow). The hypothesis is that as more data becomes avail-

able, there will be more snippets of conversational data in the

general pool, which increases the amount of beneficial data

we extract when we run CED. This in turn will benefit those

who are building conversational S2S and MT systems.7

6Much of this data, specifically, the Europarl data, the Com-

monCrawl parallel data, and any data sets labeled with “WMT” are

available from WMT 2015 [14] at http://statmt.org/wmt15/

translation-task.html. WIT3 comes from IWSLT [15].
7Crucially, CED can be run on corpora of any size. Realistically, the only

limiting factors are disk space, the amount of time to run the algorithm over
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Our basic experimental setup compares a baseline MT

system trained on subtitle data (A) to a contrastive system

trained on a set of randomly selected general domain data,

basically parallel text harvested from the Web, of approxi-

mately the same word count (B). We assume (A) to be con-

versational (albeit, scripted conversations). To each baseline,

we incrementally add samples of style-adapted data, gener-

ated using CED from Sout. We have an additional baseline of

just style-adapted data of similar sizes to (A) and (B), which

is composed of just style-adapted content (C). (C) provides a

baseline that demonstrates what is possible in conversational

MT just using CED (and is size-controlled, having roughly

the same sentence count as (A) and (B), and thus directly

comparable to these systems). Finally, we train a system

on all available general domain data, to act as a “ceiling”

(D). All systems are compared against multiple conversation-

ally oriented test data, with a sanity check test set from the

WMT, specifically a test set sampled from the WMT 2013

English↔French test data [2].

We use custom tree-to-string (T2S) systems for training

the models for our engines. We require a source-side parser

for our T2S decoder, which we have for both English and

French; for the English→French direction, we use the En-

glish parser, and for the opposing direction, the French one.

5-gram Language Models (LMs) are trained over the target-

side data for each system. We use Minimum Error Rate

Training (MERT) [17] for tuning the lambda values for all

systems, and we report results in terms of BLEU score [18]

on lowercased output with tokenized punctuation.

4. Evaluation and Analysis

4.1. Experimental Results

Looking at Tables 4 and 5, it is fairly clear that trainings per-

formed on conversational training data fare well on test sets

that are conversational in nature. This should not come as

a surprise. However, there are some surprises in the results.

For the English→French trainings, baseline (C) which con-

sists of just the style-adapted data, outperformed all other

trainings on the EX Speech-related test sets (having scores

of 52.39, 47.39, and 35.45 for SpeechEX,1, SpeechEX,2, and

Eval2000, respectively), even besting systems trained with

subtitle data, including those trained with additional CED

“style-adapted” (SA) data (best in class for each test EX set:

51.68 with 20% SA data, 46.59 with 40% SA data, and 34.31

with 10% SA data). What was most startling, however, was

that the Random baseline (B) bested the subtitle Baseline (A)

on all EX test sets, scoring 50.79, 45.09 and 35.23 versus

50.28, 44.63 and 32.77. This suggests that the subtitle data,

contrary to our initial assumptions, is not a good baseline for

a conversational MT system. Further, adding SA data for the

Random baselines did sometimes improve scores on EX test

the data—LM scores do not have to be stored in memory, but can be out-

put directly—and building the out-of-domain or general domain LM. Using

KenLM [16] for the latter makes CED feasible in most scenarios.

sets, but no Random baseline+SA pairing bested Baseline

(C)—that is, SA data alone beats any random baseline—on

EX test sets.

Results for the English→French trainings on the XE test

sets paint a different story, however. As noted in Section 4.2,

there are two XE test sets, SpeechXE and SocialXE. The for-

mer consists of the French side of English→French conversa-

tions, and the latter consists of French Facebook posts. Both

sets of data were translated into English. On the SpeechXE

test set, the subtitle Baseline (A) beats all other results (ex-

cepting Big Data (E)), including SA (D) and any combination

of SA with Subtitle (A) or Random (B); the baseline score of

51.61 is beat by no training other the Big Data (E). So, con-

trary to the assessment that subtitle data makes a poor base-

line system, it actually proves to be very good when the data

is French sourced. In fact, it proves to be a much better base-

line than SA data (Baseline (C)), completely the opposite of

what we saw on the EX test sets. (We examine what the

source of this “directionality bias” might be in more detail in

Section 4.3.2). On the SocialXE test set, the SA baseline (C)

does equally poorly, beating only the random baseline (23.45

vs. 22.76). Again, since the SocialXE is French sourced, it

provides further evidence of some sort of directionality bias.

For the French→English trainings, the subtitle baseline

trainings (A) fare much better than the equivalent EX train-

ings: on all conversational test sets, they best the SA base-

line (C), in some cases paired with varying quantities of SA

data. The only odd result is the performance of the Ran-

dom baseline (B) when paired with 30% SA for SpeechEX,2,

which does the best of any system outside of (E). Baseline

(B) does very poorly by itself on all test sets, however, per-

forming better when paired with the SA data. SA data, thus,

proves to be a useful augmentation for the random baseline

(B). SA proves less useful for the subtitle baseline (A) on the

EX speech test sets, but much better for the XE speech test

set (and the social media XE test set as well). Again, there is

evidence here for some sort of directionality bias.

Overall, the SA data contributes. By itself, in the EX

trainings, it has proven essential. For XE, it’s a useful addi-

tion to subtitle data when measured against XE test sets.

4.2. Overview of Experimental Results

Subtitle data appears less useful, but only when either (a)

English sourced data is used or (b) training English→French

systems. In all other cases, subtitle data proves useful for

training conversational MT systems. Domain adapted data,

however, proves highly useful for training conversationalMT

systems. Using existing and readily available public sources

of English↔French data, and using existing and readily

available monolingual, conversational English seed data, we

are effectively able to select “conversational” data from these

sources in order to train conversational MT systems with

higher BLEU scores. Although SA data has proven univer-

sally useful, its value differs depending on the direction of

training or test data. In the next section, we examine some
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English→French

Experiment Test sets

Data System SpeechEX,1 SpeechEX,2 SpeechXE Eval2000EX SocialXE WMT13

Baseline (A) OpenSubtitle 50.28 44.63 51.61 32.77 25.27 28.87

+10% SA OpenSubtitle 51.37 45.36 51.59 35.02 25.46 30.80

+20% SA OpenSubtitle 51.68 46.46 51.39 33.95 25.87 31.43

+30% SA OpenSubtitle 51.49 46.54 51.35 33.60 25.75 31.38

+40% SA OpenSubtitle 51.35 46.59 51.07 33.74 26.10 31.39

Baseline (B) Random 50.79 45.09 46.59 35.23 22.76 30.39

+10% SA Random 51.23 46.13 49.68 33.22 24.18 30.50

+20% SA Random 50.90 45.51 51.07 34.18 26.10 30.86

+30% SA Random 51.74 46.53 51.18 33.87 25.33 30.97

+40% SA Random 51.19 46.19 50.72 33.38 25.40 30.96

Baseline (C) SA Only 52.39 47.39 46.45 35.45 23.45 30.40

Ceiling (D) All 50.55 45.86 50.47 32.98 25.67 31.22

Big Data (E) S2S 58.32 54.04 52.87 37.23 26.65 32.72

Table 4: Translation quality measured using BLEU scores for language pair English→French. Best scores per experiment in

italics, globally best scores in bold face. Table compares Baseline system trained on General domain data to pseudo in-domain

DomainAdapt system trained on data obtained using the CED method.

distributional clues as to why SA data is useful, and what

may be causing this directional discrepancy. The next sec-

tion constitutes a very preliminary analysis of some of the

data and some of the features. We intend to expand this work

in the future. What is clear, however, is that there is some

sort of directionality bias, and that this bias interacts with the

sources of the data.

4.3. A Quick Look at the Conversational Style Features

in CED Output

In this section, we look at two main issues: First of all, we

look at the distribution of some of the values for a subset of

the conversational features, as described in Table 1, across

our subtitle, style-adapted, and random baselines, as well as

the Fisher corpus we used as our seed data. Second, we com-

pare the distribution of examples of these features in French

as well, to see if there are potential discrepancies. We then

propose a hypothesis of what might be causing the direction-

ality bias.

4.3.1. Distribution of Conversational Features

In Table 6 we look at the distribution of a subset of the fea-

tures described in Table 1, specifically, Contractions (F1),

Reductions (F2), and 1st and 2nd person forms (F4) (these

too are contractions, thus overlap with F1). A comparison

between the Subtitle, SA 20%, and the General (Random

Sample) shows some interesting tendencies. All three are

controlled such that their word counts are roughly the same;

the counts in Table 6 are thus effectively normalized (the

Fisher data stands out in this regard since it is smaller, and

thus is effectively not normalized). Contracted forms, Re-

ductions, and the Distribution of 1st and 2nd person forms

are much more frequent in the Subtitle data, suggesting that,

if these values are true indicators of conversational content,

it is far more conversational. The SA 20% data set is not

quite as strong as Subtitle in these feature sets, but it is much

stronger than the General data set in both Contracted and 1st

and 2nd person forms. Since both SA 20% and the General

data were sampled from the same General pool, this provides

strong evidence that the CED algorithm, drawing from dis-

tributional clues in the Fisher seed data, is selecting a better

sample of data for the conversational setting than a random

sample does.8 Noticeably weak in the SA 20% sample are re-

duced forms, suggesting that they do not occur frequently in

the general domain pool (and thus are not available for CED

to discover). Thus, in summary, as long as we accept that the

distribution of feature values listed here are representative of

conversational content, subtitle data does appear to be highly

conversational, in comparison with the other data, with the

SA 20% data coming in second. These data, in and of them-

selves, however, do not explain the directionality bias.

4.3.2. The Directionality Bias

We observed in Section 4.1 that our English→French base-

line (A) trainings do poorly on English-sourced test data as

8It would appear that the LM is, in fact, boosting conversational content

based on scoring against the Fisher LM, boosted further by CED due to the

absence of these values in the general pool (since those scores are subtracted

from the former by CED).
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French→English

Experiment Test sets

Data System SpeechEX,1 SpeechEX,2 SpeechXE Eval2000EX SocialXE WMT13

Baseline (A) OpenSubtitle 55.04 48.49 51.84 36.57 26.77 29.43

+10% SA OpenSubtitle 54.70 48.70 52.60 36.34 27.24 31.61

+20% SA OpenSubtitle 54.64 48.30 53.54 36.22 27.43 31.97

+30% SA OpenSubtitle 53.56 47.61 52.93 35.62 26.89 32.32

+40% SA OpenSubtitle 53.29 47.67 52.56 35.61 27.36 32.45

Baseline (B) Random 48.33 43.12 46.52 31.81 23.63 31.39

+10% SA Random 54.11 48.28 52.78 35.32 26.59 32.01

+20% SA Random 53.36 48.39 52.70 35.58 27.07 32.06

+30% SA Random 54.39 48.79 52.54 35.91 27.39 32.27

+40% SA Random 54.06 48.19 52.64 35.40 27.25 32.31

Baseline (C) SA Only 49.44 44.05 49.37 32.35 23.85 31.48

Ceiling (D) All 53.73 47.40 52.88 35.38 27.73 32.54

Big Data (E) S2S 57.80 51.71 55.54 37.25 27.32 33.30

Table 5: Translation quality measured using BLEU scores for language pair French→English.

compared to our SA baseline (C), but trump baseline (C) for

test sets that are French-sourced. Further, we observed that

baseline (A) does well on all conversational test sets irre-

spective of sourcing for the French→English trainings; the

baseline (A) trainings beat the SA baseline (C) in all cases.

Only on the French-sourced Facebook test set, SocialXE ,

does baseline (C) show weaker results.

These puzzling results could be caused by the discrep-

ancy in conversational features between the English and

French sides of our training data. Although we will not find

analogous contracted forms in the French, e.g., , for the same

person, verbal forms, etc., we can look at the distribution of

values for similar features between the two languages. In

Table 7 we show values for a small set of French features,

namely, (F1) Contractions and (F3) Slang, and a small set

of values for each. The (F1) feature is comparable to the

same in English in Table 6; (F3) was not tabulated for En-

glish, but since the French argot forms are often reductions,

they are somewhat comparable to (F2) Reductions. When

we compare the two tables, Table 7 and Table 6, we can see

a much clearer difference between the conversational data

(whether seed, subtitle, or SA) and the general data: the ratio

of conversational features between conversational vs. gen-

eral is much larger in French than in English. There are at

least two possible reasons for this: (1) English speech is far

more colloquial than French, indicated by a higher number of

colloquial expressions that occur in conversational data than

in written content. Or (2), transcribed English is more likely

to preserve the colloquialisms than is transcribed French. (2)

could result either from difference in transcription rules be-

tween the two languages, or an unconscious bias by French

transcribers to avoid transcribing colloquialisms, at least, to

avoid transcribing them literally or phonetically.

How might that affect BLEU scores and contribute to a

directionality bias? If the English side has a larger number

of colloquial expressions, there may likewise be a larger ratio

of many-to-one mappings between English and French than

in the other direction. In other words, for any given French

expression, there will be a higher likelihood of at least two

mappings on the English side for that expression (with all

the English expressions essentially meaning the same thing,

just written differently). Take, for example, the English fu-

ture marker gonna. In formal English, gonna is always writ-

ten as going to. A speaker, referring to himself, might say

I’m gonna, but would never write it that way—I’m going

to would be the way to write it formally. However, a tran-

scriber, wishing to be true to the input, especially, it would

appear, when tasked with captioning movie content, is more

likely to write I’m gonna. The most common French expres-

sion for either is je vais, which is the standard form; there is

no formal/informal dichotomy for this term in French. In the

English→French trainings, both I’m gonna and I’m going to

would resolve to je vais, effectively creating a 2:1 mapping,

which would have little or no consequence in evaluations on

conversational test data for the English→French direction.

However, in the reverse direction, the 1:2 mapping could lead

to occurrences of both forms in the output, causing a failure

to match against the test data in a certain percentage of cases,

effectively causing a reduction in BLEU scores. Multiply-

ing this effect across the multitude of conversational forms

showing in English, and absent in French, could explain the

discrepancies observed in the two different directions of the

trainings against the test data.
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Feature Seed (Fisher) Subtitle (A) SA 20 (C) General (B)

F1 – Contractions

don’t 81,997 412,479 31,797 9,846

can’t 13,717 135,393 9,401 2,707

shouldn’t 1,345 13,009 1,156 325

wouldn’t 6,439 36,347 2,448 586

couldn’t 3,616 26,697 2,767 713

they’ll 2,925 2 1,221 295

he’ll 1,529 11 535 144

she’ll 591 3 161 57

they’re 30,713 71,153 7,716 1,780

she’s 6,778 77,729 1,452 395

he’s 18,842 235,203 4,622 1,352

F2 – Reductions

gonna 9,588 3,473 4 5

wanna 3,819 960 21 30

shoulda 1 27 2 1

coulda 29 36 2 5

woulda 1 35 1 1

musta 33 1,404 352 707

kinda 7,575 3,671 149 50

F4 – First/Second

I’m 67,814 460,910 17,981 4,542

I’ll 5,735 107 3,775 894

you’re 23,699 288,031 13,722 3,508

you’ll 1,375 80 7,626 2,232

we’re 14,028 125,116 12,589 3,491

we’ll 1,817 10 4,000 1,124

Table 6: Distribution of conversational features across different data sets (English-only)

5. Conclusion and Future Work

Overall, the CED algorithm performs well in selecting con-

versational data from a general pool, as evidenced by the re-

sults in both Tables 4 and 5. The algorithm appears to select

data in the conversational style, preserving many of the fea-

tures observed in the conversational source data in the sam-

pled output. The distribution of conversational features in

“style” adapted data is not as strong as for conversational

data, such as subtitle data, but it still captures a larger sam-

ple of conversational features than an equivalently sized ran-

dom sample does. As shown in the experimentation, “style-

adapted” data, that is, data selected by CED, is conversa-

tional enough to boost the quality of conversational MT sys-

tems. Further, we show that given much larger stores of data,

we see even more marked improvements. The continued ex-

pansion of the CommonCrawl parallel data, as well as other

publicly available sources, can only benefit the larger S2S

community as it will consequently increase the pool of read-

ily available (pseudo-)conversational content.

Although we touched upon the directionality

bias observed between the English→French vs. the

French→English trainings, and hypothesized a potential

transcription “bias” between the two languages, the evi-

dence presented was not particularly strong. Since further

experimentation with a much larger general pool of data,

upwards of 500 million sentence pairs, is showing the

same directionality bias effects9, further investigation in

reasons behind this bias is warranted. In our future work, we

plan to continue investigating the bias, which includes the

exploration of conversational style adaptation for additional

languages. We also plan to look at a much more complete

set of conversational features (as discussed in [7]). We are

also now experimenting with applying CED using other seed

sources of data, including data sampled from conversations

of Skype Translator users.
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Abstract
This paper presents a source discriminative word lexicon that
performs translation disambiguation for individual source
words using structural features, such as context and depen-
dency relations in the sentence. The individual translation
predictions are combined into sentence scores that are used in
N -best list re-ranking to improve the translation output of a
state of the art phrase-based machine translation system. The
approach is used to improve explicitly the translation of word
categories that require grammatical agreement to hold in the
target language after translation, e.g. pronouns, as well as
subjects and verbs. The results show that the translation pre-
dictions provided by the source discriminative word lexicon
increase the prediction accuracy by up to 10%. The transla-
tion quality can be improved by up to 0.6 BLEU points on
English-German translation.

1. Introduction
Ambiguity of words is a big challenge for all natural lan-
guage processing tasks. Already within the same language,
words can be ambiguous with regard to their part-of-speech
(can, n. - can, v.), word sense (bank, n., financial institu-
tion - bank, n., side of a river) or what they are referring
to in the given context (The monkey eats the banana. It is
brown.). For translation, such ambiguities pose an additional
difficulty. Unless the very same ambiguity exists in the target
language, the ambiguity needs to be resolved in order to gen-
erate the correct translation. When translating into German,
for example, depending on the correct part-of-speech, word
sense and antecedent in the sentence, the translation for each
of those examples is a different one.

The word(s) indicating which is the correct word sense or
antecedent for an ambiguous word in a given context, could
occur in a more distant part of the sentence. That means
long-range dependencies need to be considered in order to
generate the correct translation. We propose a discriminative
framework for modeling these dependencies utilizing any
conceivable set of features for predicting the correct trans-
lation. We show the potential of this approach in detail on
the third type of ambiguity mentioned above: The transla-
tion of pronouns, which is conditioned on the translation of
the antecedent they refer to, since the pronoun in the target
language needs to share the morphological properties of the

antecedent in the target language.
An approach to explicitly performing anaphora resolu-

tion to uncover the pronoun-antecedent relationship for pro-
noun translation disambiguation was carried out in [1]. Their
experiments motivated the present work, however the ap-
proach was adapted in the following ways: Instead of focus-
ing only on third person pronouns, we include all personal
pronouns and also take translations into other word cate-
gories into account. In order to allow for a more comprehen-
sive exploration of the source discriminative word lexicon
approach we apply it for translation disambiguation for all
words and perform separate evaluation of the performance on
pronouns. We further evaluate it on another difficult agree-
ment task, the agreement of subject and verb in a sentence.

State-of-the-art machine translation systems struggle
with these particular kinds of linguistic requirements [2].
Hence, we believe our approach can provide a comprehen-
sive solution for many of these challenges where long-range
dependencies have to be met in order to ensure congruency
of linguistic features.

2. Related Work
Already one of the early statistical approaches performs word
sense disambiguation by defining senses according to the dif-
ferent translations of a word [3]. Since then, several ap-
proaches integrate word sense disambiguation into phrase-
based [4] or hierarchical [5] translation systems or use it in
N -best list re-ranking [6]. Context features as well as depen-
dencies have been used to perform word sense disambigua-
tion for different close and distant language pairs [7, 8].

Apart from applying actual word sense disambiguation
in machine translation, linguistic information, such as con-
text words, dependencies or syntax can be integrated in ma-
chine translation as additional features in order to improve
the translation quality [9, 10].

Among the approaches that particularly model transla-
tion prediction as is done in this paper, [11] predict the oc-
currence of a target word in a translated sentence given the
source words using a discriminative approach. Similar ap-
proaches operating use a multilayer perceptron [12] or a
bilingual neural network to learn abstract word representa-
tions and features in order to predict word, stem and suffix
translations for source words given the source context [13].
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An approach that integrates discriminative classifier predic-
tions based on context and POS tags into decoding is pre-
sented in [14].

There is limited research on modeling anaphora resolu-
tion for the translation of pronouns in a statistical machine
translation system. The first approaches integrate the out-
put of explicit anaphora resolution components within the
MT system [15] often focusing in particular on neuter pro-
nouns [16, 17, 18] with limited improvements. [19] perform
a classification using automatic anaphora resolution output,
discriminating between the possible French pronouns in the
translation. Their neural network approach surpasses max-
imum entropy classification and can even be extended to
perform latent anaphora resolution and translation prediction
jointly. An approach for translation of the English pronoun
it into Czech is modeled by classification of the pronoun into
one of three classes triggering different treatment in the tree-
to-tree-based machine translation system [20].

Since the success of machine translation depends to a
great deal on the morphological complexity of the target lan-
guage [21], modeling target morphology in various ways is
a popular direction of research. There are many approaches
that perform a prediction of the inflected word forms in the
target language. Conditional random fields are a popular ap-
proach to sequence labeling which is applied to predict mor-
phemes [22], morphosyntactic properties [23], or inflection
[24, 25, 26] on the target side. The latter perform a two-step
translation process, first translating into stemmed forms or
lemmas and then predicting the fully inflected forms. Two-
step translation into Czech [27] applies two translation sys-
tems sequentially, to translate first into simplified Czech and
then into fully inflected Czech. Factored translation models
treat word, lemma, part-of-speech and morphological fea-
tures as separate factors and perform morphological gener-
ation in a phrase-based machine translation system [28]. En-
riching the source language with linguistic information in or-
der to address noun phrase and subject-verb agreement [29].
and using fixed-length suffixes in order to improve grammat-
icality of the translation output [30] are further applications
of the factored model.

The presented approach is modeled based on the idea of
the discriminative word lexicon [11, 31], however operating
on the source side instead of the target side and predicting
translations given source side features. In contrast to ap-
proaches operating on the phrase level, we model predictions
for individual words, however taking a up to 6 neighbor-
ing words into account and therefore covering longer context
than included in the average phrase length. The approach is
closely related to [14], but differs by modeling predictions
for words instead of phrases, which are less sparse and there-
fore should provide better estimates. In addition, we include
dependency features which can cover longer distances and
more implicit dependencies in the sentence.

3. Source Discriminative Word Lexicon

We implement the translation disambiguation as a predic-
tion task. The prediction is motivated by the discriminative
word lexicon [31]. While the discriminative word lexicon
(DWL) operates on the target side and learns to predict for
each target word whether it should occur in a given target
sentence, the source discriminative word lexicon (SDWL)
operates on the source side. For every source word a classi-
fier is trained to predict its translation in the given sentence.
We perform a multi-class classification task by identifying
for every source word the 20 most frequent translations as
provided by the word alignment generated with GIZA++.
All target language words that occur less often than the 20
most frequent words are assigned to one class, called other.
Alignments to the NULL word on the target side are treated
in the same way as if NULL were a word. We limit the
source vocabulary to the words occurring in the test data and
train up to 20 classifiers for each source word. In reality,
most words have a lot less than 20 alternative translation op-
tions. The SDWL uses binary maximum entropy classifiers
trained using the one-against-all scheme. That means we use
a maximum entropy model to estimate p(e|f, c(f)), where
e is the target word we want to predict given source word
f and its context/dependency features c(f). During training
the maximum entropy models for the individual classes for
each source word are learned based on the given set of fea-
tures extracted from the source sentence and the correct class
of each training example. For the prediction, the test data is
first separated into words. For each word the features are ex-
tracted from the source sentence it stems from. Then all the
binary maximum entropy models for the multiple classes are
applied and each of them produces a prediction. The final
prediction corresponds to the class with the highest predic-
tion probability.

3.1. Structural Features

The training examples and test data for the classifiers are
represented by a set of features and the class this example
belongs to. We experiment with different types of features
representing the structure of a sentence to varying degrees.

3.1.1. Bag-of-Words

A straight forward way to represent the source sentence for
this classification task is to use the bag-of-words approach.
This is the least structural informative feature which does not
provide any knowledge about the sentence beyond the mere
existence of the words in it.

3.1.2. Context

The context feature adds structural information about the lo-
cal context of the modeled source word in the sentence. In
addition to the context words themselves, their position is
encoded in the feature such that the same word occurring at
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a different position (relative to the source word in question)
would result in a different feature. We include up to six con-
text words, three on each side of the source word. Hence,
this feature type provides structural information by means of
sequential order within a limited context.

3.1.3. Dependency Relations

The feature contributing the most information about the sen-
tence structure is based on the relations between the source
sentence words in a dependency tree. In order to obtain the
dependency relations, we extract a dependency tree from a
constituency parse tree using the Stanford Parser [32, 33].
Then we include the dependency relations between the
source word and its parent and children in the dependency
tree as features. That means, we form a feature consisting of
the governance relation (parent or child of the source word),
the dependency relation type (from the set of dependency re-
lations described in [34] e. g., nsubj, dobj, vmod, ...) and the
connected word itself. This type of feature allows to capture
structure by means of semantic dependencies that can range
over longer distances in the sentence, but are relevant due to
the semantic connection to the current source word. An ex-
ample for the features for the word it in a given sentence is
presented in Example 3.1.

Sentence: Well it obviously is not.

Features:
bag-of-words not is it obviously well .
context −1 well +1 obviously +2 is
dependency dep parent nsubj is

Example 3.1: Representation of the source word ”it” by the
different features

3.2. Word Representation

We compare two methods to represent the words in the fea-
tures: word IDs and word vectors.

3.2.1. Word IDs

When representing words by word IDs, we use the source vo-
cabulary size Vsource as the dimension of the feature space,
a word’s ID in the vocabulary as a feature and we set the
feature to 1 if it is used in the example. All other fea-
tures are set to 0. For accommodating the context features
(context), we extend the size of the features space such that
Vcontext = c ∗ Vsource where c equals the size of the con-
text. Each position of a word in the context hence has its
own range in the features space, and words in different con-
text positions can be distinguished accordingly. The fea-
tures representing dependency relations (dep) are included
in a similar fashion. Again, a new feature space is defined
as Vdep = d ∗ Vsource where d equals the amount of all
dependency relations, where parent and child relations are
counted separately. The feature types can be combined by

simply concatenating the individual feature spaces. That
means when all three types of features are used the size of
the feature space amounts to Vsource + Vcontext + Vdep. It is
obvious, that with this strategy for design the feature space
grows quite big, possibly leading to data sparseness prob-
lems. In order to reduce dimensions, the representation via
word vectors seemed an appropriate measure.

3.2.2. Word Vectors

The word vectors for feature representation are generated us-
ing word2vec [35] with the number of dimensions set to 100.
That means each word is represented by a 100-dimensional
vector. However, it is not straight forward how multiple
words should be expressed in this representation, so that the
representation by word vectors is not applied for the bag-
of-words features, but only for the context and dependency
features. In case of the vector representation of the context
features (contextVec), each position in the context words re-
ceives its own range in the feature space. Hence, the size of
the feature space equals to VcontextV ec = c∗dim, where c is
the context size and dim the dimension of the vector repre-
sentation. This amounts to a significant reduction compared
to Vcontext used in the representation method via word IDs.
The feature space for dependency relations using word vec-
tors (depVec) equals to VdepV ec = d ∗ dim with d being the
inventory of dependency relations. Compared to Vdep, again
a huge reduction. In addition to the depVec feature, further
variants of the dependency feature are compared:

parentDepVec
For this feature, only the dependency relation to the
parent word is represented in vector representation.

parentWordVec
This feature consists of the vector representation of the
parent word and an additional binary feature that is 1
if the parent word is the root of the dependency tree.

parentWordVec+DepRel
In addition to the parentWordVec feature, the depen-
dency relation to the parent word is encoded as a vec-
tor.

As for the word-based features, word vector features can
be combined by concatenation of feature spaces.

3.3. Integration of SDWL Predictions

In order to integrate the individual translation predictions
into a machine translation system we use the prediction prob-
abilities for individual words to produce scores for whole
sentences. The combination of individual translation predic-
tions for words into a sentence score is explained in the fol-
lowing. These scores are then used in N -best list re-ranking.
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3.3.1. SDWL-based Re-ranking Scores

For each of the translation hypotheses in the N -best list, we
generate a sentence score based on the translation predictions
for the individual words in the sentence. We compare four
methods to combine the individual word scores into a sen-
tence score for a particular translation hypothesis.

Absolute number of predicted words
We count the number of word translations in the sen-
tence that coincide with the predicted translations by
the translation prediction model.

Relative number of predicted words
As an alternative score we again count the number of
words in the translation hypothesis that coincide with
the predicted translation. This number of matches is
then divided by the total number of target words gen-
erated by the source words according to the alignment.

Sum of prediction probabilities
For every source word we sum up the prediction prob-
abilities associated with their aligned words in the hy-
pothesis.

Sum of prediction ranks
Instead of summing up the prediction probabilities of
the words in the hypothesis, we sum up the ranks of
the words according to their prediction probability.

All these scores were both used individually and col-
lectively as additional sentence scores for N -best list re-
ranking, in order to find out which of them are most bene-
ficial for judging translation quality.

4. Experiments
We perform two types of experiments with the presented
source discriminative word lexicon. First we use it indepen-
dently to predict the translation for individual source words
in the sentence and measure the prediction accuracy against
the reference translation. Afterwards, we combine the indi-
vidual predictions for words into a sentence score and use it
in N -best list re-ranking of machine translation output.

4.1. Data

We train the classifiers on the parallel training data consisting
of TED talks provided for the IWSLT 2014 evaluation cam-
paign. Due to the limitation of the source vocabulary to the
test data, we train 26,498 classifiers for 5,389 source words,
which equals to an average of 4.9 translation alternatives per
word. The prediction accuracy of the source discriminative
word lexicon is measured on test2011 and test2012 com-
bined. The impact of the source discriminative word lexi-
con on translation quality is measured after N -best list re-
ranking the output of a machine translation system with the
SDWL sentence score. The translation system is tuned on
test2011 and tested on test2012. For N -best list re-ranking

the three data sets test2010, dev2010, and test2011 are used.
Translation quality before and after rescoring is reported on
test2012.

4.2. Translation System

The re-ranking experiment is done using a phrase-based ma-
chine translation system. The phrase table is built using the
Moses toolkit [36] and n-gram language models are trained
with the SRILM toolkit [37]. Translations are generated with
a phrase-based MT decoder [38]. Optimization is done with
a variant of MERT [39]. Translation quality is measured in
BLEU [40].

In addition to the basic translation model and language
model, the system applies several word-based, POS-based
and cluster-based language models, as well as a bilingual lan-
guage model. Furthermore, an original discriminative word
lexicon for the target side is included. Several word reorder-
ing models are used. Tree-based and POS-based reordering
rules produce reordering variants of each source sentence
stored in a word lattice and a lexicalized reordering model
provides probability scores for the order of phrases in the
translation hypotheses produced by the decoder. The trans-
lation system is described in detail in [41]. In addition, the
SDWL in reduced form using only bag-of-words and context
features is applied in three other systems. A German-English
News system [42], an English-German and German-English
TED system [43].

4.3. N-best List Re-Ranking

As mentioned above the predictions from the SDWL are
combined into sentence scores for the translation hypotheses
in the N -best list produced by the translation system. Then
N -best list re-ranking is performed as described in [41] using
the ListNet algorithm [44].

5. Results
This section presents the results of the translation prediction
model tested on English-to-German translation of TED talks.
First, we will show that the prediction accuracy improves
when applying the proposed set of structural features. In ad-
dition, the translation quality can be improved when using
the translation predictions for N -best list re-ranking to find a
better translation among the hypotheses in the N -best list of
the translation system.

5.1. Translation Prediction

We compare the different features for representing the sen-
tence and context for the translation prediction of individual
source words described above. We measure the accuracy of
the translation prediction achieved with each of the features
and feature combinations. Table 1 presents an overview of
the experiments. It shows the average prediction accuracy on
all words in the data used for testing.
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The baseline prediction is performed with a maximum
likelihood classifier, which a priori chooses the most frequent
class, without using any features at all. We can see that using
the bag-of-words features consisting of the words contained
in the source sentence already improves over the baseline
prediction. When applying the more structurally informative
features, both context and dependency features individually
improve considerably over the simple bag-of-words features.
Among the context feature variants, the vector representation
with 2 words of context in both directions performs best. For
the dependency features, it is the vector representation using
both parent and child relations, which leads to the best pre-
dictions. Combining the two best performing features con-
textVec and depVec, holds another small improvement lead-
ing to a prediction accuracy that is more than 7% higher than
the baseline prediction, which corresponds to 14% relative
improvement.

Prediction Accuracy
Baseline 52.09
Bag-of-Words 53.29
Context (+/- 2 words) 58.74
ContextVec (+/- 2 words) 58.97
ContextVec (+/- 3 words) 57.48
Dep 56.07
DepVec 57.27
ParentDepVec 55.02
ParentWordVec 54.65
ParentWordVec+DepRel 55.20
ContextVec (+/-2) + DepVec 59.37

Table 1: Translation prediction results: all words

5.1.1. Pronoun Translation

In order to explicitly measure the accuracy of the translation
prediction for pronouns, we selected the pronouns among
the source words and measured the prediction accuracy of
those words. Table 2 presents the prediction accuracy of
source language pronouns. The pronouns achieve higher ab-
solute numbers of translation accuracy. However, the im-
provements by the different types of features is comparable
to the improvements on all words. The use of structural fea-
tures led to an absolute and relative increase in prediction
accuracy by more than 5% and 9%, respectively.

5.1.2. Subject-Verb Agreement

We also analyzed the accuracy of prediction features with re-
spect to subject-verb agreement. For this purpose all word
pairs connected by a subject relation were extracted from the
dependency trees for the source sentences. All words pos-
ing as parents in such a dependency relation were taken to be
possible verbs, and all children in a subject relation are con-
sidered as possible subjects. It has to be noted, though, that

Prediction Accuracy
all words pronouns

Baseline 52.09 59.58
Bag-of-Words 53.29 60.03
ContextVec (+/- 2 words) 58.97 64.89
DepVec 57.27 63.12
ContextVec (+/-2) + DepVec 59.37 65.08

Table 2: Translation prediction results: pronouns

the subject and verb list can also contain words of other parts-
of-speech, since relations such as the one between nouns and
adjectives can also be defined as a subjective relation in a de-
pendency tree. However, manual inspection confirmed that
apart from a few outliers it was indeed mostly words quali-
fying as subjects and verbs in the extracted list and we chose
not to apply an additional manual filter. In order to produce
comparable results, we measured the prediction accuracy of
the words in the subject and verb lists in the same way as all
words and pronouns in the results reported above. The results
are presented in Table 3. We can see that the improvements
of subjects and verbs are even higher than the ones on pro-
nouns or all words, getting as close as 10% absolute and 20%
relative over the baseline prediction.

Prediction Accuracy
all words subj. verbs

Baseline 52.09 46.81 46.71
ContextVec (+/-2) + DepVec 59.37 56.00 54.12

Table 3: Translation prediction results: subjects and verbs

5.2. N -Best List Re-ranking

The results of improved prediction accuracy of the SDWL
model with structural informative features presented above
are encouraging. Therefore, we want to use the predictions
to judge the quality of a particular translation hypothesis
in N -best list re-ranking. For the baseline, an N -best list
re-ranking is performed, using the original sentence-based
scores available from the translation system. Then we com-
pare the four ways of generating an additional score for a
given hypothesis based on the individual word translation
predictions described above: absolute and relative number
of predicted words in the hypothesis, sum of the prediction
probabilities of the words chosen in the hypothesis and rank
of the words in the hypothesis according to prediction prob-
abilities. We use the SDWL features that performed best in
the previous experiment, i.e. the context vectors with context
+/-2 words and the dependency vectors.

Table 4 shows an overview over the results. Three of
the methods to create the sentence score perform very simi-
lar, providing about 0.2 BLEU points of improvement. Only
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Source: I memorized in my anatomy class the origins and exertions of every muscle [...]
Baseline: Ich in meinem Anatomie der Klasse die Ursprünge und Strapazen eines jeden Muskel [...] auswendig [...]
+SDWL: Ich in meiner Klasse Anatomie die Ursprünge und Strapazen jeder Muskel [...] auswendig [...]
Reference: In meiner Anatomievorlesung lernte ich die Ursprünge und Ausläufer jedes Muskels [...]

Example 5.1: Correct gender for pronoun

Source: There I think that the arts and film can perhaps fill the gap, and simulation.
Baseline: Ich glaube, dass die Kunst und Film kann vielleicht die Lücke füllen, und Simulation.
+SDWL: Ich glaube, dass die Kunst und Film, vielleicht können die Lücke füllen, und Simulation.
Reference: Hier können, denke ich, die Kunst und der Film vielleicht die Lücke füllen, sowie Simulationen.

Example 5.2: Correct case agreement between subject and verb

when using the prediction ranks of the words in the hypoth-
esis, the translation quality is not increased. That means that
the translation predictions can indeed serve as an indicator
for translation quality when combined in one of the three pro-
posed ways. By using the SDWL-based scores it is possible
to select an even better hypothesis from the N -best list com-
pared to using only the available scores from the translation
system.

Translation System TED (2014)
EN-DE

Baseline 24.04
SDWL: Abs 24.20
SDWL: Rel 24.22
SDWL: Sum 24.21
SDWL: Rank 23.98

Table 4: Prediction features in re-ranking: EN-DE TED

5.2.1. Additional Systems

The SDWL was further applied in several other translation
systems in recent evaluation campaigns. Due to time con-
straints only the context features consisting of +/-3 words
were used for the translation prediction. Table 5 shows the
improvements that were gained from N -best list re-ranking
with the SDWL on German-English translation of News in
the WMT 2015 shared translation task as well as German-
English and English-German translation of TED talks in the
IWSLT 2015 machine translation task. Depending on the
language and the task between 0.3 and 0.6 BLEU points
can be gained from including the translation predictions even
when using only the surrounding 3 context words.

Translation System News TED (2015)
DE-EN DE-EN EN-DE

Baseline 27.87 29.59 26.36
SDWL (ContextVec +/-3) 28.18 29.87 26.90

Table 5: Prediction features in re-ranking: additional results

5.3. Translation Examples

Example 5.1 shows an improvement in pronoun translation
that was achieved with the SDWL. In this translation the
baseline translation produces the pronoun where the gender
is incorrect. Within the prepositional phrase the gender of the
possessive pronoun needs to agree with its associated noun
Klasse, which is feminine. When using the SDWL the cor-
rect gender is generated in the translation.

Example 5.2 shows that the translation prediction model
also encourages morphological agreement between subject
and verb. Since the information that the verb is actually in
plural form is not encoded in the source language (The En-
glish verb can, can be both singular and plural), rendering a
plural verb in the translation is not straight forward. Hence,
the structural features are able to capture the plural subject
in the dependency feature and/or the plural indicator and in
the context feature, and rank the hypothesis higher where the
plural verb (können) occurs in the translation.

6. Conclusions

We have presented a model for translation disambiguation
using structural features in a classification task. The transla-
tion of a source word in a given sentence is predicted based
on the classification into one of its 20 most frequent trans-
lation options. Structural features such as source context
words and relations in the dependency tree of the source sen-
tence allow to include knowledge about the sentence struc-
ture when modeling the prediction. The model is in particu-
lar aimed at improving challenging linguistic issues like the
translation of pronouns and generating morphological agree-
ment in the translated sentence.

The prediction results have shown that the accuracy of
predicting a translation for individual source words increases
considerably when including the context and dependency
features. Representing the features by a word2vec word
vector representation both reduces dimensions and increases
prediction accuracy. Even though the context and depen-
dency features contribute similar improvements individually,
their combination provides the highest prediction accuracy.
A separate inspection of pronouns, subjects and verbs con-
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firms that these were improved in particular by up to 10%.
The individual translation predictions for the source

words in each sentence are combined into a sentence score
used in N -best list re-ranking. Using the prediction scores
in re-ranking provides between 0.2 and 0.6 BLEU points of
improvement.

Directions for future work could be the investigation of
features that include more semantic information such as the
semantic distance between words, or the replacement of the
current classification approach by other machine learning
techniques such as neural networks which are able to model
more implicit dependencies. Furthermore, we would expect
a positive effect on the phrase selection, if the predictions
were made available already at decoding time.
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Abstract
The paper presents the first attempt to perform quality es-
timation (QE) of machine translation (MT) at the level of
phrases. Automatically translated sentences directly or indi-
rectly labelled by humans for quality at the word level are
used to devise phrase-level quality labels. We suggest meth-
ods of segmenting sentences into phrases which mimic the
actual segmentation that generated the translations. For the
prediction models, we apply two sets of phrase-level fea-
tures: (1) features used in sentence-level QE work, (2) fea-
tures based on word vector representations. Our experiments
show that the phrase-level models can improve over word-
level models in terms of how well they detect errors.

1. Introduction
Quality estimation (QE) of machine translation (MT) aims
at determining the quality of an automatically translated text
without comparing it to a reference translation. This task of-
ten arises in real-world applications of MT, e.g. when users
of an MT system translate new data and are interested in un-
derstanding how reliable the system output is. No reference
translations are available for such data, and therefore the use
of standard MT evaluation metrics is not possible. The only
way of determining the quality of the automatic translation
is the use of indirect evidence. QE is particularly useful in
applications which provide automatic translations for gisting
and in computer-assisted translation (CAT) settings where
automatic translation is followed by post-editing by humans.

The QE task started as the estimation of confidence of
individual words in a translated sentence with respect to a
particular translation model. Back then the task focused on
the confidence of a particular MT system about an automatic
translation, and as such explored features that required infor-
mation from the MT system, such as hypotheses and n-best
lists statistics [1], word posterior probabilities [2], n-gram
posterior probabilities [3].

More recently QE acquired a broader sense [4]: esti-
mating the quality of a translation for a particular purpose
(e.g. gisting or further post-editing), often disregarding the
MT system that generated it. The features currently used in
QE are thus system-independent; they use properties of the
source text and its translation (e.g. number of tokens, num-
bers, punctuation marks in sentences) or information from

external resources not related to the MT system that pro-
duced the translation (POS tags, syntactic features, perplex-
ity under external LMs) [5].

The labelling of translations (and therefore the score to
estimate) has changed as well: instead of using automatic
MT evaluation metrics to produce labels, the labelling is
more often done by humans (e.g. post-editing effort of a sen-
tence within to a 1-5 point scale [4]) or deduced from man-
ually generated data (e.g. post-editing effort defined by the
percentage of editing a translator performed, or post-editing
time measured by a CAT tool [6]). These are all labels for
sentence-level QE. Word-level labels, on the other hand, are
less clearly defined.

The task of word-level QE has regained attention since
2013, when it became part of the WMT evaluation campaign
[6]. The post-editing of MT output was used to automatically
collect translations annotated for quality at the word level: a
word left unchanged by a translator was labelled as “OK”,
while a word edited was labelled as “BAD”. However, fram-
ing the QE task in this way has serious limitations. Notably,
the fact that errors in different words are not independent
from one another. For example, if two words agree in their
grammatical features, changing one of them will most likely
cause the need to change the other one as well. For exam-
ple, if we translate the English phrase “My dear friend” into
French, a possible translation is “Mon cher ami”. However,
a post-editor will change it into “Ma chère amie” if “friend”
refers to a feminine entity. Here one mistranslation (“ami”
instead of “amie”) will have resulted in three corrections.

Such groups of related edits were defined in [7] as post-
editing actions (PEAs) — minimal units that should be post-
edited jointly in one action according to some pattern. The
MQM (Multidimensional Quality Metrics) framework [8] for
translation error analysis also focuses on defining errors that
can span phrases of any length. This leads us to the idea
that QE should be done at the level of phrases, as opposed
to words. Analysing groups of words jointly can provide ad-
ditional information which is not available at the word level,
and notifying a user that the errors in several adjacent words
are related can help them use quality predictions more effi-
ciently.

Another motivation for phrase-level QE is the fact that
the most widely used MT engines are phrase-based, i.e. at
each step the MT decoder extends the translation hypothe-
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sis with a phrase. In other words, decisions are made over
phrases, rather than over single words. Therefore, it is likely
that translation errors can also be generated at the phrase-
level. In addition, phrase-level QE models could be used to
guide decoding to avoid certain errors.

Previous work on word-level QE has highlighted the in-
tuition that errors can span over entire phrases. [9] use a
number of features that rely on the source phrase that gen-
erated the current target phrase. In [2] the word posterior
probability is computed at the phrase level: it is regarded as
the probability of a word being generated by a source phrase
rather than by the entire source sentence. However, in pre-
vious research the quality labels are defined for every word,
and thus our work represents the first effort to estimate the
quality of a target phrase as an atomic unit. We identify the
main challenges in this task and suggest ways of dealing with
them.

The biggest challenge in phrase-level QE is segmenta-
tion: the task requires the automatic translations to be seg-
mented into phrases, and each phrase to be labelled for qual-
ity. Although there exist datasets labelled for errors at the
phrase level (e.g. using the MQM framework [10]), they do
not provide a segmentation that can be used directly for the
task. Since only errors are labelled, very long sequences of
error-free segments are found in these datasets, and there is
no clear way to segment them. If we train a classifier based
on such data to discriminate between good and bad phrases,
it is very likely to be biased by a phrase length and to classify
shorter phrases as bad and longer phrases as good regardless
of their actual quality. In addition, if the phrase segmenta-
tion is done based on the reference labels, we have no way of
segmenting unseen data, for example the test data to evaluate
the model’s performance.

Since no existing phrase-labelled datasets can be used for
the task, we explore and adapt datasets labelled for quality
at the word level. We expand this labelling by performing
decoder-like segmentation. We test different sets of features
and compare the performance of phrase-level QE models on
different feature sets.

The rest of the paper is organised as follows. In Section 2
we describe our segmentation strategies and ways of adapt-
ing word-level labels for phrases. Sections 3 and 4 describe
the feature sets and training algorithms and in Section 5 we
report the results of our experiments.

2. Segmentation and labelling
Phrase-level QE relies heavily upon appropriate sentence
segmentation. One of the main difficulties involved in the
segmentation task is the lack of a strict definition of what
a phrase is for this purpose. In linguistics, phrase is a unit
where words are connected by dependency relationships. In
statistical MT, phrases are simply sequences of words that
frequently co-occur and are aligned with the same source
word sequences.

Given that a lot of the translation data is likely to be pro-

duced by statistical MT systems nowadays, for this work we
assume the latter notion of segmentation and reproduce the
segmentation produced by a statistical MT decoder. Since
we do not have access to the MT system that produced the
translations, we re-decode the source data with a statistical
MT system and reproduce its phrase segmentation. We are
not guaranteed that this segmentation will match the original
one, i.e., the one that generated the target data. However, the
two MT systems are very similar, and thus we hope to get
similar segments. We suggest two ways of segmenting sen-
tences into Moses-like phrases [11]: segmentation of both
source and target sentences jointly with a source-target MT
system, and independent segmentation of target sentences.

2.1. Source segmentation

The datasets we use for QE systems training have source sen-
tences and their automatic translations. If we had access to
the MT system which generated the translation, we could re-
produce the original segmentation accurately by simply re-
decoding the source sentences. However, such MT models
are rarely made available, and we are not guaranteed to get
the same output using another MT system, even if it trained
on the same data.

One possible solution is to constrain the decoder to use
only phrases that appear in the target sentence. However,
constrained decoding is often unable to fully reach the trans-
lation provided, usually because of out-of-vocabulary (OOV)
words or lack of suitable phrases in the phrase table. In or-
der to supply the system with this information we trained an
additional phrase table on the data to be decoded (i.e. phrase-
level QE data), and produced translations using both phrase
tables.

Despite this additional data-specific phrase table, a small
percentage of sentences still could not be decoded. In those
cases we considered each word of the sentence a separate
phrase, and the corresponding source phrase as the word
aligned to it. Therefore, for some “phrases” of such sen-
tences, the source phrase will be empty.

2.2. Target segmentation

Our second technique consists in segmenting only the target
sentence with an MT system which translates from the target
language into the source language. We translate the target
sentence with no constraints and retrieve the phrase segmen-
tation for it. The actual translation will not match the source
side of our data, which is not an issue as we will not use it.
Moreover, we suppose that the output language of such a sys-
tem is not important, because we only use it to segment the
input sentence.

We obtain the source segmentation by combining the tar-
get segmentation and source-target alignments: for each tar-
get phrase, the corresponding source phrase is composed of
all source words aligned to the words in the target phrase.
The source phrase needs to be continuous, i.e. if two source
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Figure 1: Overlapping source phrases generated by projection of target phrases onto the source sentence. Red lines denote word
alignments, blue lines denote phrase alignments.

words aligned to one target phrase have an unaligned word
(or a word aligned to another target phrase) in between, this
unaligned word also has to be included into the correspond-
ing target phrase. Figure 1 shows this case: the phrase “usted
lo” is aligned to two source words: “you” and “it”. They
have two words between them, so the source phrase will be
“you look for it”. The figure also gives an example of over-
lapping source phrases.

This approach has a few drawbacks: it can include a
source word in more than one phrase, it does not guaran-
tee the full coverage of a source sentence and it can generate
an empty source phrase if all words in the target phrase are
unaligned. In addition to that, when performing this type of
segmentation we feed the automatically translated sentences
to the decoder, because the target side of our QE training data
has been generated by an MT system. Since the majority of
these sentences contain errors, the phrase segmentation for
them can be different from the one generated for a valid tar-
get language sentence.

2.3. Phrase labelling

Datasets with post-edited machine translations can be la-
belled at the word level by comparing the automatic transla-
tions with its post-edited version. This can be done with edit
distance metrics such as the one implemented in the Tercom
tool [12]. This tool identifies an edit operation (substitution,
deletion, shift) which needs to be performed on a word to
make the automatic translation match its post-edition. The
word labels could thus be the edit operations which need to
be performed on words to improve the sentence translation,
as in the dataset created for the WMT-13 QE shared task
[6]. Other datasets have incorrect words manually labelled
with fine-grained error classes (grammatical error, mistrans-
lation, etc.) [10]. However, since the number of errors is
relatively small (10-30% for different datasets), in order to
reduce sparsity, binary (“OK”/“BAD”) labels are often used
[10, 13]. They indicate simply whether a word suits the con-
text or needs to be edited. However, both these types of labels
are defined over words only. When segmenting a sentence
with one of the techniques described above, we are likely to
face a situation where words put together into a phrase have
different tags. Thus we need to combine word labels to get
to a single phrase label.

The most obvious combination strategy is majority la-
belling, i.e. to assign the most common label of the words in
the phrase to that phrase. However, such a strategy is likely to
further increase the skewed discrepancies between the num-
ber of occurrences of “BAD” and “OK” labels. The majority
tagging strategy can reduce even more the number of “BAD”
tags, which will in turn make learning harder. We propose
three alternative labelling strategies to mitigate this issue:

• optimistic — if half or more of words have a label
“OK”, the phrase has the label “OK” (majority tag-
ging),

• pessimistic — if 30% words or more have a label
“BAD”, the phrase has the label “BAD”,

• super-pessimistic — if any word in the phrase has a
label “BAD”, the whole phrase has the label “BAD”.

The latter strategy is motivated by the possibility of us-
ing phrase-level QE to support phrase-based MT decoding.
At each step of the search process the decoder chooses a new
phrase, and the best candidate phrase should contain only
“good” words. If one of the words does not fit into the con-
text, the entire phrase should be considered unsuitable.

2.4. Joint target+data segmentation

Instead of changing the edit distance-based labels, we can get
rid of phrases with ambiguous tags if we combine the phrase
borders identified by the decoder with the borders of “OK”
and “BAD” spans in our data. Let us consider the following
example. The target phrase “¿Sabes lo que voy a hacer, sin
embargo?” and its original edit distance-based tagging “OK
OK OK OK BAD BAD BAD BAD BAD BAD OK” create the
following segmentation:

[ ¿ Sabes lo que ] [ voy a hacer , sin embargo ] [ ? ]

The target segmentation procedure for the same sen-
tence returns a different segmentation with ambiguous tags:

[ ¿ Sabes ] [ lo que voy a hacer ] [ , ] [ sin embargo ] [ ? ]

OK OK/BAD BAD BAD OK

However, if we combine two sets of borders, we convert
one phrase with ambiguous tagging (“lo que voy a hacer” —
2 “OK”, 3 “BAD” words) into two unambiguous phrases:
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[ ¿ Sabes ] [ lo que ] [ voy a hacer ] [ , ] [ sin embargo ] [ ? ]

OK OK BAD BAD BAD OK
Note that we can join the phrase borders with the label

span borders only for the target segmentation, because the
source segmentation has the corresponding source phrases,
which cannot be segmented into “BAD” and “OK” segments.

2.5. Evaluation

In order to implement a phrase-level QE system we need to
segment both training and test data, and then label the test
phrases with a trained model. However, the phrase-level out-
put currently cannot be evaluated directly, because we have
no datasets with phrase-level annotation. Therefore, we seg-
ment the test sentences into phrases and label them, and then
we propagate the phrase labels onto all words of the phrase.
After that the test output can be evaluated at the word level.

3. Features
The the majority of features used in word-level QE systems
cannot be applied to phrases. However, most of the sentence-
level features are suitable for any sequence of words, not only
full sentences. For our experiments we used a list of 79 sen-
tence features used in the QuEst QE framework [14]1. These
features are called “black-box” because they do not use the
information from MT system. Some examples:

• LM features: language models (LM) score of source
and target phrases under source and target LMs.

• POS features: numbers of verbs, nouns and other parts
of speech in the source and the target.

• Features that indicate the number of tokens from dif-
ferent closed classes: numbers, alphanumeric tokens,
punctuation marks.

• Average number of translations of source words.
• Average number of n-grams in different frequency

quartiles.

Another set of features we use relies on source-only in-
formation, namely vector representations of words gener-
ated with word2vec tool2. Word2vec assigns every word
a fixed-size vector of numbers that encodes information on
the word’s contexts. Therefore, similar words should have
similar vectors (for a detailed description of word2vec see
[15]). The vectors are word-level, but unlike other word-
level features they can be easily combined for phrases that
are longer than one word. We can use two vector operations
to combine two or more vectors of the same size while keep-
ing the dimensionality of these vectors: element-wise sum or
average of the vectors. According to our preliminary exper-
iments, systems trained on summed vectors showed higher
performance than systems with averaged vectors, so in the
experiments reported below we use the sum of the vectors.

1For the complete list of features: http://www.quest.dcs.
shef.ac.uk/quest_files/features_blackbox

2https://code.google.com/p/word2vec/

4. Training algorithms
Most word-level QE approaches rely on sequence labelling
algorithms. One of the best-performing sequence labelling
techniques is conditional random fields (CRF) [16], which
has been used by many word-level QE systems [17, 18].
However, a CRF model might be less helpful for phrase-
level QE. The errors in words may be dependent on each
other, and thus the labels of neighbouring tokens can influ-
ence each other. Linear chain CRFs are well suited for mod-
elling this type of dependency. However, in phrase-level QE
the relatedness of word-level errors is already captured by
the phrases. In other words, if the segmentation is accurate,
it encapsulates related errors in one unit. While there are no
constraints on labels of adjacent phrases (i.e., two or more
OK/BAD phrases can occur consecutively), these labels are
not expected to be as closely related as those in word-level
QE. Therefore, we also explore a standard classifier, a ran-
dom forest classifier [19], which showed good performance
in our previous experiments on word-level QE.

5. Experiments
We performed a set of experiments to test how phrase-level
systems compare to previous work on word-level QE and to
find the optimal parameters for the phrase-level training. We
tested performance varying the following parameters:

• Segmentation: target segmentation, source segmenta-
tion, target+data segmentation,

• Phrases labelling: optimistic, pessimistic or super-
pessimistic,

• Feature set: sentence-level features from QuEst, com-
bined word2vec word vectors, both sets of features,

• Models: CRF or Random forest.

We conducted our experiments on two datasets used for
the QE shared tasks in 2014 and 2015, so we can compare
the performance of our systems with state-of-the-art results.

5.1. Systems

The training of a phrase-level QE system was performed with
the open-source QE tool Marmot3. We trained three distinct
systems on three datasets:

• phrase-wmt-14: trained on the WMT-14 dataset la-
belled with error types [10].

• Two systems were trained on fractions of the WMT-15
dataset [13]. This dataset has 11,000 post-edited auto-
matic translations. However, the majority of them con-
tain too few errors, and QE systems trained on the full
dataset tend to perform overly optimistic labellings.
Therefore, following [20] we use only sentences with
the highest HTER score (i.e. largest number of errors
normalised by the sentence length):

3https://github.com/qe-team/marmot/tree/phrase_
level
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– phrase-wmt-15-2000: trained on the 2,000
worst sentences from WMT-15,

– phrase-wmt-15-5000: trained on the 5,000
worst sentences from WMT-15.

We also compare our system with the following represen-
tative systems that participated in the WMT-14 and WMT-15
QE shared tasks at the word level:

• Systems from WMT-14:

– Baseline-all-bad — trivial baseline strategy that
assigns the tag “BAD” to all words. No other
system could beat it in terms of F1-BAD score.

– FBK-UPV-UEDIN [18] — system with features
from word posterior probabilities and confusion
network descriptors computed over 100,000-best
translations. Tagging was done with bidirec-
tional long short-term memory recurrent neural
networks. This was the best system in WMT-14.

– LIG [17] — system with 25 black-box features
and was trained with CRF. It was the 3rd best
system in WMT-14.

• Systems from WMT-15:

– Baseline [13] — system that was used as a base-
line at the WMT-15 word-level QE task.

– Baseline-all-bad — the same “all-bad” strategy.
– UAlacant [21] — system that used features

drawn from pseudo-references (automatic trans-
lations of the source sentence) generated by dif-
ferent MT systems, and baseline features re-
leased for the task. Best best-performing system.

– Shef-word2vec [22] — system that used word
vector representations as features and performed
labelling with a CRF model. This system was
ranked 3rd out of 8.

5.2. Tools and datasets

Besides the training and test sets, a QE system requires vari-
ous resources and tools for feature extraction:

• The word alignment model was trained on the Europarl
corpus [23] using the fast-align tool4.

• LM and n-gram count features were extracted using
LMs trained on the Europarl corpus using SRILM5.

• POS features were extracted with TreeTagger [24].
• The translation probability features were computed us-

ing lexical probability tables trained with Moses sys-
tem [11] on the Europarl corpus.

• The word vector representations were computed
with gensim [25] — Python implementation of
word2vec models. The training data for the vectors
is the concatenation of Europarl, News-commentary6

4https://github.com/clab/fast_align
5http://www.speech.sri.com/projects/srilm/
6http://statmt.org/wmt15/

and News crawl7 corpora. The vectors are 500-
dimensional.

5.3. Segmentation properties
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Figure 2: Phrase length frequencies for different segmenta-
tion techniques.

The segments produced by two segmentation strategies
differ substantially. The main difference is the distribution
of phrase lengths: while the target segmentation tended to
segment the sentences into shorter phrases, the majority of
phrases used by the source segmentation are 5-word long
(see Figure 2). This is explained by the fact that the former
strategy uses an independent translation table, whereas the
latter decodes the sentences with a translation table trained
on the same sentences, so it contains longer phrases.
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Figure 3: Percentages of word labels modified for
datasets segmented with different segmentation techniques
(source/target) and re-labelled with either of the labelling
strategies (optimistic/pessimistic/super-pessimistic).

We also looked at the amount of word labels that were
modified by different labelling strategies under the target-

7http://statmt.org/wmt14/
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Figure 4: Results for systems with pessimistic and super-
pessimistic phrase tagging schemes. Results of systems that
differ only in terms of tagging strategy are joined with a line.

based and source-based segmentation types. Figure 3 shows
the percentage of words in different datasets that needed to
change the label from “OK” to “BAD” and vice-versa. Under
source segmentation all labelling techniques become more
aggressive, i.e. they change more words. The “optimistic”
strategy changes zero or few words from “OK” to “BAD”,
whereas the “super-pessimistic” strategy does not change
words from “BAD” to “OK”. Datasets converted with the
“pessimistic” strategy contain both types of conversions, but
tend to add “BAD” labels rather than “OK” labels.

5.4. Selection of optimal parameters

Here we study which parameters we should use to achieve
the best prediction quality for our datasets. We found that
most of the parameters depend on datasets and values of
other parameters. In addition, the performance of a system
is difficult to define: as the F1 score for the “BAD” class
(primary metric for the word-level QE task used for systems
comparison in [13]) grows, the F1 score for the “OK” class
drops. In order to account for both of them we plot the F1-
BAD with respect to F1-OK scores. In each plot we compare
systems that differ in one parameter. They are usually shown
as items of different colours and shapes. Some items of the
same configuration can lie quite far apart. That happens be-
cause other parameters of a given pair of systems influenced
their performance.

The performance of systems that use different labelling
schemes follow a certain pattern: the F1-BAD grows as more
negative data is added, while the F1-OK score drops. Thus,
the ‘optimistic’ labelling scheme is almost always inferior
to the other two strategies. The ‘pessimistic’ and ‘super-
pessimistic’ schemes perform closer, but the latter returns
higher F1-BAD scores for most settings (Figure 4).

This can also be attributed to the source segmentation
strategy, which generates longer phrases and therefore re-
quires more words to change tag from “OK” to “BAD”. Fig-

ure 5 shows the comparison of different segmentation strate-
gies and training algorithms. It can be seen that CRF pro-
duced the best- as well as the worst-performing systems de-
pending on the type of segmentation: the source-segmented
data achieves high F1-BAD score, whereas target segmenta-
tion does not perform well in terms of F1-BAD. On the other
hand, the systems trained with the Random Forest classifier
do not discriminate between the segmentation types. In ad-
dition to that, these systems proved very unstable, whereas
CRF always returned the same results for a given configu-
ration. In order to get more meaningful results, we ran the
Random Forest classifier 20 times for each configuration and
averaged the results.
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Figure 5: Differences between target and source segmenta-
tion and between classification and sequence labelling for
phrase-level systems.
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Figure 6: Performance of systems with different feature sets.

The different sets of features do not lead to as much vari-
ance in performance as the other parameters. However, we
can notice that systems with word2vec features are more
stable and less dependent on other parameters: all systems
which use these features perform closely. The use of QuEst
and word2vec features in combination can lead to the im-
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proved performance, whereas systems using only QuEst fea-
tures are the least stable.

The settings that returned the highest F1-BAD scores for
all the datasets were similar: source segmentation, super-
pessimistic labelling, system trained with CRF (see yellow
star in Figure 5). The optimal feature sets differ for differ-
ent datasets. All the figures in this section show the perfor-
mance of systems trained on 5,000 sentences from the WMT-
15 dataset, but the the trends hold for the rest of the systems.

5.5. Comparison to word-level systems

We trained our phrase-level systems on datasets used in the
WMT-14 and WMT-15 QE shared tasks, so that we can com-
pare our systems with word-level systems for the task. The
WMT-14 system used QuEst features, the WMT-15 system
with 2,000 sentences — word2vec features, the WMT-15
system with 5,000 sentence — the combination of QuEst and
word2vec features (although for both WMT-15 systems all
feature sets performed closely). The rest of the parameters
were fixed for all the datasets: source segmentation, super-
pessimistic labelling, CRF.

System F1-BAD ↑ F1-OK Weighted F1
phrase-wmt-14 62.76 39.07 56.80
Baseline-all-bad 52.52 0.0 18.7
FBK-UPV-UEDIN 48.72 69.33 61.99
LIG 44.47 74.09 63.54

Table 1: Performance on WMT-14 test set, systems sorted
from best to worst, our system in bold.

System F1-BAD ↑ F1-OK Weighted F1
phrase-wmt-15-5000 51.84 49.38 51.08
phrase-wmt-15-2000 51.57 49.05 50.79
UAlacant 43.12 78.07 71.47
SHEF-word2vec 38.43 71.63 65.37
Baseline-all-bad 31.75 0.0 5.99
Baseline 16.78 88.93 75.31

Table 2: Performance on WMT-15 test set, systems sorted
from best to worst, our systems in bold.

Table 1 shows the performance of systems trained and
tested on the QE dataset released for the WMT-14 shared
task. Our system is the only system which beats the triv-
ial all-bad baseline strategy in terms of F1-BAD score. The
same trend is seen in Table 2, which shows the performance
of systems on the WMT-15 data. Both our systems outper-
form all other system including the winner. They achieve
very close scores, which confirms that sentences with less
errors do not contribute much for word-level QE.

6. Conclusions and future work
We introduced an approach for quality estimation of MT at
the phrase level. To the best of our knowledge, this is the first

attempt to label MT phrases with quality. We found that our
phrase-level systems outperform word-level systems.

We tested a number of different parameters and found
that sentence-level features give better results than word em-
bedding features, CRF model performs better than Random
Forest classifier, and the best segmentation strategy is to per-
form decoding of a source sentence restricting the decoder to
output the target sentence, and use the phrase segmentation
generated during the decoding. The best tagging strategy is
to assume that every phrase that contains at least one “BAD”
word should be tagged as “BAD”.

In future work we will investigate the performance of
other training algorithms. We believe that phrase-level QE
can benefit from more advanced algorithms that take into ac-
count the segmentation of a sentence in subsequences. For
example, Semi-Markov CRFs [26] are designed to solve
segmentation and labelling tasks jointly, and higher order
CRFs [27] explicitly consider relations between non-adjacent
words which can be useful for modelling phrase errors.

An issue with phrase-level QE is that all available
datasets are annotated only at the word level. Another di-
rection for future work will thus be the development of a
dataset of automatic translations annotated for quality at the
level of phrases. From an application perspective, we assume
that the phrase segmentation should be guided by segments
in statistical MT rather than linguistic properties of the data.
However, it would also be interesting to test the usefulness
linguistically-informed segmentation.

Finally, further research is necessary to design features
that are specific for phrase-level QE. Phrases combine prop-
erties of sentences and words: they are sequences, like sen-
tences, but can be quite short, so sentence-level features may
be uninformative. The usefulness of linguistically motivated
features in particular needs to be tested: as the phrase seg-
mentation performed by an MT decoder does not take into
account linguistic information, features indicating whether a
phrase is valid based on linguistic information may not suit
the task. On the other hand, linguistic information can be
useful as it is often unknown to the MT system.

Phrase-level QE of MT is a new field of research. In this
paper we proposed the first strategy for the task, highlighted
some of its challenges and outlined possible directions of fu-
ture work.
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Abstract
In this paper we introduce a novel method to improve the
continuous space language models using auxiliary features.
The suggested auxiliary features include text genre, line
length, various types of context vector representations. We
report perplexity improvements of around 7.5% of the En-
glish Penn Treebank data set. We also report an improve-
ment on a translation task up to 1.1 BLEU point on test by
re-scoring the n-best list generated by our phrase-based sta-
tistical machine translation system.

1. Introduction
The neural network LM (also known as continuous space
LM or CSLM) tries to overcome the disadvantages of
back-off n-gram LMs. One of these disadvantages is that the
probabilities are estimated in a discrete space which does
not allow directly the estimation of non-observed n-gram in
the training data. In a neural network LM, the words are
projected into a continuous space during the training. [1]
proposes a multi-layer neural network model that jointly
learns the word projection and the probability estimation.
The basic architecture of this neural network is shown in
Figure 1.

A CSLM has many advantages, it can be used to estimate
the probability of long n-gram (also short n-gram ) which can
not be directly estimated using n-gram back-off LMs. Also,
it can be trained using longer context with just small increase
in the complexity which is not possible for n-gram back-off
LMs.

The CSLM was successfully applied to large vocabulary
speech recognition. It is usually used to rescore lattices and
improvement of the word error rate by about one point were
obtained for many languages and domains, for instance [3, 4,
5, 6]. More recently, the CSLM was also successfully applied
to statistical machine translation [7, 8, 9, 10].

In this paper, we present improvements of the CSLM.
The idea is to provide additional information at the input of
the neural network in a similar for recurrent NN LM by [18].
We call these additional inputs ”auxiliary features”. We use
different types of auxiliary features including line length,
text genre, line context vector representation,... etc. By these
means, better domain and context specific LM estimations
can be obtained.

P P P
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Input Layer

Output Layer
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layer

Shared Projection

Probability
Estimation

Neural Network 

N

0 1 0 0 .............0 0.....0 1 0  ....0 0.................0 1 0

wj−n+1 wj−n+2 wj−1

P (wj = 1|hj) P (wj = i|hj) P (wj = n|hj)

projection
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Figure 1: The neural network language model
architecture.P,N and H are the size of one projection,
one hidden layer and the output layer respectively. hj

denotes the context wj−1
j−(n−1).

We report the results using perplexity as well as when
these improved CSLMs are integrated into an SMT system.
This is performed by re-scoring the n-best list and adding an
additional feature function.

2. Modified architecture
The basic architecture of a CSLM with auxiliary data is
shown in Figure 2. The example in the figure shows only one
additional auxiliary feature vector. This architecture would
allow different auxiliary information for each n-gram, but
since our goal is to model the topic or long-term context,
we made the choice to keep the auxiliary data constant for
all n-grams of one sentence. Therefore, the auxiliary data
is loaded once for each sentence. If more than one auxil-
iary feature is desired, the dimension of the auxiliary feature
vector will be equal to the sum of the individual feature di-
mensions. In this case the auxiliary feature vector will be the
concatenation of two or more feature vectors. This architec-
ture also allows us to use sentence-level features as well as
document (or corpus) level features by using the same auxil-
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iary vector for all lines in the document (or corpus).
The functionality of auxiliary features has been integrated in
the open-source CSLM toolkit 1 [9].
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Neural Network 

N
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layer 

Auxiliary Data

P AUX

P(wj=1|hj) P(wj=i|hj) P(wj=n|hj)

wj-n+1 wj-n+2 wj-1
auxiliary vector

Figure 2: CSLM modified architecture with additional new
auxiliary data input to the neural network

3. Related work
Although, we focus on improving CSLM in this work, some
related research focus on improving the standard n-gram
language models by integrating more context or semantic
knowledge. Kuhn and De Mori [12] proposed to calculate
the probabilities which correspond to the relative proportion
of the last N words. They present a combined LM that inter-
polates a general trigram LM and another LM called a cache-
based LM which is trained on the last N words. The rel-
ative interpolation weights assigned to each component are
based on the POS of each word. The cache component as-
signs higher probability to recently encountered words. In
our work, the context is represented as a continuous space
vector. It can be one line or the whole history back to the
beginning of the document. In the latter case more weight is
given to recent lines.

Bellegarda [13] proposed a method to use more global
constraints to improve LM since local constraints are already
captured by the n-gram model. They use latent semantic
analysis (LSA) which automatically discovers the semantic
relationships between words and documents in a given cor-
pus. In their approach, words and documents are mapped
into a continuous semantic vector space, in which clustering
techniques are used. This allows the characterization of par-
allel layers of semantic knowledge in the space, with variable
granularity. The resulting LMs complement the conventional
n-gram LMs. They suggested to use hybrid n-gram+LSA

1Available for download from https://github.com/hschwenk/cslm-toolkit

models to benefit from the advantages of several smoothing
techniques.

In a similar work, Coccaro and Jurafsky [14] integrated
semantic knowledge into an n-gram LM using LSA and a
word similarity algorithm. Since LSA is a bad predictor of
frequent words, they used a geometric instead of a linear
combination based on a per-word confidence metric. In our
work, instead of using LSA , we use the line context vector
representations which is calculated using the embeddings of
the words in this line. The word embeddings are the pro-
jections learned during CSLM training. We were motivated
by what was reported recently by Baroni et al. [15] that
the context predictive models (i.e. word embedding) out-
perform classic count-vector-based distributional semantic
approaches.

Other works, like the work of Iyer and Ostendorf [16]
focused on developing a sentence-level mixture language
model that takes advantage of the topic constraints in a
sentence or article. They proposed topic-dependent dynamic
cache adaptation techniques in the framework of mixture
models. An automatic clustering algorithm was used to
classify text with two levels of mixture models for smooth-
ing. In our work a predefined genre is assigned to different
corpora, which is used as additional input to the neural
network. However, it is also possible to use topics instead of
genres and to assign the topic dynamically by using similar
automatic clustering algorithm like the one used by [16].

Khudanpur and Wu [17] proposed an LM that combines
collocational dependencies with the syntactic structure and
the topic of the sentence. They integrate these dependen-
cies using a maximum entropy technique. They report a
substantial improvement in perplexity and in the accuracy
of a speech recognition task. In our work, instead of using
topic, we used the genre of the sentence. Since we are
using auxiliary features on the sentence level, it could be
envisioned to extend our work to use syntactic features.

Mikolov and Zweig [18] focused on improving the
performance of recurrent neural network language models
(RNNLMs) by using a topic-conditioned RNNLM. They
used a contextual real-value input vector in association with
each input word. This vector is used to convey contextual
information about the sentence being modeled. They
use Latent Dirichlet Allocation (LDA) to get a compact
vector-space representation of a long span context which
they conventionally interpreted as a topic representation.
They argue that their approach has the key advantage of
avoiding the data fragmentation associated with building
multiple topic models on different data subsets. The main
differences with our work are, that we used a feed-forward
neural network and context vector representation instead of
LDA. Also, we evaluated the impact of using various types
of auxiliary feature as explained in Section 4.

152

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



4. Auxiliary features
In this work, we experimented with two types of auxiliary
features: the first one provides a feature of the current line
itself (e.g. the number of words or genre) which allows
us to train feature-conditioned continuous space language
models. Some of these features are motivated by research
in the machine translation quality estimation literature. The
second type of auxiliary feature aims at providing a larger
context. Table 1 summarizes the auxiliary features of this
type that we have experimented with. Each auxiliary feature
has a reference name that we are using in this paper.

One of the basic auxiliary feature we used is LineLen
or the line length, expressed in number of words. We used
an 1-of-n encoding to generate this feature vector. The ith
value in the vector is set to 1 if the line length is equal to i,
and zeros otherwise. We considered a maximum line length
of n = 200, so if the line length exceeded 200 words, we
use n = 200. In our experiments this 1-of-n encoding is
projected into a continuous space like for the words.

Aux feature Embeddings
CurrLine words in the current line
PrecLine words in the preceding line
PrecHCurrLines current line and h preceding

lines
AllPrecCurrWords words in the current and all

preceding lines
AllPrecWords words in all preceding lines
AllPrecLines all preceding lines

Table 1: Auxiliary features using normalized weighted sum
of different embeddings

The Genre consists of a binary vector with dimension
equal to the number of genres we have. As for LineLen,
we used a 1-of-n encoding. In our training data, we have 5
genres as shown in Table 3.
For the context vector representation auxiliary features, We
used various ways to compose them. One of the composition
is CurrLine α̂l of a line l. This will be the normalized sum
of the word embeddings ew of all tokens w ∈ l computed as
follows:

α̂l =

∑
w∈l ew

||∑w∈l ew||
(1)

Similarly, PrecLine auxiliary feature β̂l is calculated as
follows:

β̂l =

∑
w∈l−1 ew

||∑w∈l−1 ew||
(2)

For PrecHCurrLines, we calculate the weighted sum of
the context vector representation of the current line α̂l and
the preceding H lines. The farther the line is in the past, the
lower the weight is. The vector of a line l is calculated as
follows:

η̂l,H =

∑l
i=l−H α̂iλ

l−i

||∑l
i=l−H α̂iλl−i||

(3)

In our experiments we used different values of H=10,
30, 50 and λ=0.95.

The differences between AllPrecLines and PrecHCur-
rLines is that the first one does not include the current line
context vector representation in the calculation of its vector
and that it uses all preceding lines not just the H preceding
lines. The equation used to calculate the feature vector of
AllPrecLines of a line l is as follows:

ω̂l =

∑l−1
i=1 α̂iλ

l−i

||∑l−1
i=1 α̂iλl−i||

(4)

For the first line, we used the context vector represen-
tation of itself (i.e. ω̂1= α̂1). In our experiments, we used
several weights: λ = 0.85, 0.95, 0.98.

For AllPrecCurrWords, the line context vector repre-
sentation σ̂l is calculated using all preceding words with a
weight λ that gives more weight to the near history words
and lower weight to the far history words. The equation used
to calculate the feature vector of AllPrecCurrWords of a line
l is the following:

σ̂l =

∑W ′−1
i=1 ewiλ

W ′−i

||∑W ′−1
i=1 ewi

λW ′−i||
(5)

where W ′ is the number of words in the current and
all preceding lines. In our work we experiment with the
following weights: λ = 0.75, 0.85, 0.95.

AllPrecWords is calculated in a similar way as AllPrec-
CurrWords, but excluding the words of the current line.

5. Evaluation on Penn Treebank
We first evaluated our work on the English Penn Treebank
(PTB) corpus [19]. This is a very small corpus (< 1 million
words training data), but it has the advantage that many com-
parable results are published. We limited our evaluation on
PTB to use only the preceding line auxiliary feature (i.e. Pre-
cLine). The features LineLen and CurrLine can not be used
when using perplexity to evaluate an LM since they provide
information on the future. However, it is valid and useful
to apply them in an n-best list re-scoring framework, as dis-
cussed later in this paper.
The perplexity values on PTB for several configurations are
shown in Table 2. We experiment with different learning rate
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scales for the first layer of the neural network as shown in the
third column in Table 2. This means that the first layer learn-
ing rate is scaled by this value which means that the network
learns the weights faster than other layers weights and pos-
sibly learns better projection weights. Copy means that no
weights are learned and the auxiliary feature vector is copied
to the next layer directly.
In CSLM1, using auxiliary features and unified learning
rate scale decreased the perplexity slightly. The same hap-
pen when we replaced Copy by a sequence of double hy-
perbolic tangent in CSLM3, and when we increased the
learning rate scale to 2 in CSLM4, comparing to Baseline2.
Changing the learning rate scale to 3 in CSLM5, again, de-
creased the perplexity by 7.5 on dev and 7.2 on test vs. Base-
line2. So the perplexity of CSLM5 compared to Baseline1
decreased by 7.6% on dev and 7.5% on test.

System Aux layer lrs DevSet TestSet
PPL PPL

Baseline1 - 1 133.19 127.66
(No Aux)
Baseline2 - 2 130.48 125.28
(No Aux)
CSLM1 Copy 1 128.26 123.45
CSLM2 Copy 2 124.80 120.32
CSLM3 Seq. of two tanh 1 127.15 121.93
CSLM4 Seq. of two tanh 2 124.22 118.57
CSLM5 Seq. of two tanh 3 122.98 118.08

Table 2: Perplexity on Penn Treebank using the PrecLine
auxiliary feature with different auxiliary layer topology and
learning rate scale (lrs) for the first layer.

To understand these results, we compared systems with
the same setup except for one variable. Comparing Base-
line1 and Baseline2 shows the impact of increasing the learn-
ing rate scale from unified to 2. Also comparing CSLM1
and CSLM2 gives us the impact related to the increase of
learning rate scale for word embeddings only since the Copy
layer used for auxiliary feature does not have any weights.
Also comparing CSLM1 and CSLM3, gives us the impact
of using sequence of double hyperbolic tangent layer for
auxiliary data instead of Copy. We observed that this al-
lows the network to deeply learn from the auxiliary data.
These three comparisons accumulated a perplexity decrease
of 7.28 on dev and 7.03 on test. We concluded that using aux-
iliary feature decreases the perplexity with different meta-
configuration and topology by around 7.5% on dev and test.

6. SMT experimental results
We evaluate the performance of our improved CSLMs which
use auxiliary features in the context of SMT. This is done by
using them to re-score the n-best list provided by an SMT
system. A new CSLM score is added to the n-best list for

each hypothesis and the coefficients of all feature functions
are optimized. In the following subsections, we describe our
baseline system and the rescoring results with some discus-
sions.

6.1. Baseline system of SMS/Chat

The language pair of the baseline system is Arabic Egyptian
dialect into the English. The translation task is SMS/Chat
translation in the context of DARPA BOLT project. The sys-
tem is a standard phrase-based system trained using Moses
toolkit [21], SRILM [22], KenLM [23], and GIZA++ [20].
Log linear weights are optimized using MERT [20]. We eval-
uated the translation quality using BLEU [24].
We used the following technique to build our baseline SMT
system:

• Data selection: We selected the most relevant sen-
tences to the task from the bilingual corpora based on
the work of [25] using XenC [26] open source toolkit
. The selected sentences are used to train our phrase-
based system. Since our SMT system is for SMS/Chat
genre, the training data size using data selection is
4.7m words only as shown in Table 3 compared to
the full available bilingual corpora size of 191.26m.
Another advantage of using data selection is to have
smaller translation model. Dev and test sets are shown
in Table 4. Dev set is used for tuning the weights of
the feature functions.

corpus corpus genre selected size
Ar/En tokens

smschat SMS/CHAT (Egyptian) 648k/845k
gale

Modern Standard Arabic

128k/158k
e103 44k/46k
fix 73k/84k
ummah (MSA) 36k/37k
isi 354k/348k
bolt FORUM (Egyptian) 136k/165k
bbnturk 167k/177k
bbnlev FORUM (Levantine) 111k/124k
un FORMAL MSA (UN) 1.34m/1.27m
cts CALLS (Egyptian) 1.24m/1.45m
Total - 4.28m/4.7m

Table 3: The size of the selected data from bilingual corpora
for SMS/CHAT SMT baseline system

type # Arabic # English genretokens tokens
dev 19.7k 25.6k SMS/CHAT
test 19.4k 24.6k SMS/CHAT

Table 4: Development and test sets of SMS/Chat SMT system
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• Data weighting: This method is used to weight the
bilingual sub-corpora models according to their im-
portance to the translation task. We used a method
based on the work of [27] using perplexity minimiza-
tion given the development set. if s and t denote the
source and target phrase respectively, we are instantly
optimizing the weight of the four features: p(s|t),
lex(s|t), p(t|s) and lex(t|s) in the Moses translation
model.

• Language modeling: We used data selection method
based on [28] to select the relevant monolingual data
for our 4-gram back-off language model. The back-
off LM was used in SMT decoding for generating the
1000-best translation output. We used this back-off
LM also in CSLM re-scoring to calculate the proba-
bility of words not in the CSLM shortlist.

type data set # English genretokens

train

gale 5.01 MSA

bolt 2.05m FORUM
(Egyptian)

smschat 845k SMS/CHAT
Total 7.9m -

dev smschat dev 25.6k SMS/CHAT

Table 5: Training corpora and dev set used to train and tune
the CSLM models

6.2. Result and analysis of re-scoring the n-best list

CSLM models with various auxiliary features were trained
using CSLM toolkit on three English corpora (total of 7.91m
words) which are the target side of the bilingual corpora
shown in Table 5.
The results obtained by re-scoring the n-best list created by
the baseline system are summarized in Table 6. The table
contains the best result for each auxiliary feature. Detailed
results can be found in Tables 7 and 8. Since the test set
BLEU scores of both SMT Baseline and CSLM Baseline
without auxiliary data are the same, we decided to use SMT
Baseline as the Baseline for the result analysis.

The CSLMs English training corpora used in these ex-
periments is about 7.9m tokens (see Table 5). These results
were obtained with the best meta-parameters (i.e. H and λ).
In Table 6, we described the CSLM model, auxiliary feature
dimension, auxiliary feature projection dimension along
with the BLEU scores on dev and test. We used projection
layer for LineLen auxiliary feature, Copy layer for Genre
auxiliary feature, sequence of double hyperbolic tangent
layer for the rest of auxiliary features. All experiments are
trained with 24-gram context size.

System Aux dim/proj. Dev Test
SMT Baseline - 27.35 25.72

CSLM Baseline - 28.04 25.67
(No AuxData)

LineLen 1/200 28.65 26.14
Genre 5/- 28.90 26.32

CurrLine 320/- 28.29 26.09
PrecLine 320/- 28.67 26.33

PrecHCurrLines 320/- 28.92 26.26
λ=0.95, h=50

AllPrecCurrWords 320/- 28.52 25.86
λ=0.75

AllPrecWords 320/- 28.77 26.82
λ=0.95

AllPrecLines 320/- 28.63 26.52
λ=0.98

Table 6: BLEU scores obtained when re-scoring the n-best
list using different auxiliary data.

Looking at Table 6, we observed a good improvement us-
ing LineLen auxiliary feature, but Genre has relatively better
gain on both dev and test. This means that Genre is better
discriminative auxiliary feature.

We observed that PrecLine provides better performance
due to better context information compared to CurrLine.
We also observed that CSLMs with auxiliary features
which contain the current line (i.e. AllPrecCurrWords,
PrecHCurrLines) generally have lower BLEU scores than
CSLMs with auxiliary features which do not contain the
current line. We concluded that using current line is not so
useful for re-scoring n-best list because instead of predicting
the next word, the CSLM would rather learn to find the next
word from the input auxiliary feature making undesirable
cycle in the model.

PrecLine has +0.6 BLEU gain on test. If one preceding
line is useful, two or more preceding lines would be more
useful (possibly weighted). We can verify this assumption
by looking at AllPrecLines result, which uses auxiliary fea-
ture that does not contain the current line (i.e. both AllPrec-
CurrWords, PrecHCurrLines contain the current line). The
results of AllPrecLines is 26.52 on test which is the second
best BLEU score in Table 5, which confirms that our assump-
tion is correct.

Looking at the additional results of AllPrecLines with
different λ(s) in Table 7, we observed that larger λ weight
improved the BLEU score on both dev and test sets. The best
BLEU scores are obtained using AllPrecWords CSLM. The
only difference between AllPrecLines and AllPrecWords is
that the second one is weighted sum of words’ embeddings,
while the first one is the weighted sum of lines’ embeddings.
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System λ Dev Test
SMT baseline - 27.35 25.72

CSLM Baseline - 28.04 25.67
CurrLine - 28.29 26.09
PrecLine - 28.67 26.33

AllPrecLines 0.85 28.06 25.52
AllPrecLines 0.95 28.59 26.42
AllPrecLines 0.98 28.63 26.52
AllPrecWords 0.75 28.37 26.36
AllPrecWords 0.85 28.74 26.49
AllPrecWords 0.95 28.77 26.82

AllPrecCurrWords 0.75 28.52 25.86
AllPrecCurrWords 0.85 28.23 25.59
AllPrecCurrWords 0.95 28.21 25.64

Table 7: BLEU scores of re-scoring n-best list using AllPre-
cLines, AllPrecWords and AllPrecCurrWords auxiliary fea-
tures with various weights. Auxiliary layer is a sequence of
two tanh 320x320.

It means that AllPrecWords auxiliary feature includes better
and consistent context information. One possible reason for
this is that for AllPrecLines auxiliary feature vector, each
line has a different length, and hence the weight on each
line controls the contribution of a variable number of words.
This clearly is less stable than using the weighted sum of
individual words embeddings and hence the auxiliary feature
vector will be independent of individual lines lengths. In
Table 7, we noticed the same relation between λ and the
BLEU scores as we discussed for AllPrecWords auxiliary
feature.
Looking at the results of AllPrecCurrWords auxiliary feature
in Table 7, we observed that the results also are inconsistent
on test, λ=0.75 gives better scores than λ=0.85, but also,
λ=0.95 gives better scores than λ=0.85. We concluded
that including word embeddings of both current line and
preceding lines in the same auxiliary feature gives inconsis-
tent results. For the results of PrecHCurrLines in Table 8,

System H Dev Test
SMT baseline - 27.35 25.72

CSLM Baseline - 28.04 25.67
CurrLine - 28.29 26.09
PrecLine - 28.67 26.33

PrecHCurrLines 10 28.70 26.21
PrecHCurrLines 30 28.28 26.26
PrecHCurrLines 50 28.92 26.26

Table 8: BLEU scores using PrecHCurrLines auxiliary fea-
ture with number of preceding lines H and λ = 0.95. Auxil-
iary layer is a sequence of two tanh 320x320.

generally, we observed that including more preceding lines
does not give better scores on test (we used maximum 50
preceding lines in these experiments), even with H=50, the
scores are not better than just one preceding line PrecLine.
We concluded that the reason is that this auxiliary feature in-
cludes the current line embeddings which cause inconsistent
results on dev and almost no improvement on test.

7. Conclusions
In this paper we introduced a novel method to improve the
continuous space language model using auxiliary features.
We used different features which some of them are motivated
by the important features in machine translation quality
estimation literature. The suggested auxiliary features
include text genre, line length and various types of context
vector representations.

We reported perplexity improvement around 7.5% on
dev and test using the English Penn Treebank dataset. We
also reported an improvement on a translation task up to
1.42 BLEU on dev and 1.1 on test by re-scoring n-best list
of a strong baseline phrase-based SMT system. Also, the
results show that the weighted sum of the word embeddings
is more stable and outperforms the line level weighted sum
of embeddings. These results need to be validated on other
tasks with different language pairs, genres and data sets.

In future work, we would like to try using combined fea-
tures and explore syntactic features. Also we would like to
experiment with additional features like source language fea-
tures and study their impact on the CSLM performance.
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Abstract
This paper presents and examines multifeature modular deep
neural network acoustic models. The proposed setup uses
well trained bottleneck networks to extract features from
multiple combinations of input features and combines them
using a classification deep neural network (DNN).

The effectiveness of each feature combination is eval-
uated empirically on multiple test sets for both a classical
DNN as well as a for modular DNNs using only a single
module. Modular DNNs using two or more modules are
shown to reduce the WER by up to 11.5% relatively com-
pared to a baseline DNN and give the best overall perfor-
mance on both test sets.

1. Introduction
The first step in speech recognition is to extract a stream of
feature vectors form the audio. Although many of these so
called front-ends are fundamentally similar and equally use-
ful, they are still, to some extent, complementary and the
outputs of ASR systems trained separately on different front-
ends can be combined in such a manner that the combined
output contains fewer transcription errors than either of the
individual outputs [1, 2]. While very useful, this high level
combination method has the disadvantage of requiring mul-
tiple ASR systems to be run in parallel.

In this paper an alternative approach is proposed that uses
modular deep neural networks (mDNNs [3]) to combine the
features in a single acoustic model. An mDNN can be seen
as an extension of a time-delay neural network (TDNN) [4].
TDNNs are designed to be time invariant and work on se-
quences of feature vectors. As well as the current feature
vector xt the neurons of the first hidden layer are also con-
nected to a few of the preceding feature vectors xt−1xt−2, ....
The time-delay procedure is applied at the transition from the
first hidden layer to the second hidden layer. The neurons of
the second hidden layer also possess connections to the first
hidden layer’s outputs at the preceding steps.

While both TDNNs [5] and CNNs [6, 7] may have many
time-delayed or convolutional layers these layers are nor-
mally directly connected to their preceding layers. Modular
DNNs on the other hand use well trained deep neural net-
works to connect the input layer to the time-delayed layer.

As these network modules are trained as bottleneck features
(BNF) [8] we refer to this layer as the bottleneck layer. In
this paper we show how using multiple features as inputs to
the BNF modules can improve the performance of an mDNN
and go on to experiment with using an mDNN to combine
multiple different BNF modules.

This paper is structured as follows: after an overview of
the relevant related work in section 2 a multifeature DNN
AM is introduced as well as all the features used throughout
this paper. This is followed in section 3 by a description of
the proposed multifeature DNN. Section 5 explains how the
neural networks are evaluated the presents and results after
which section 6 concludes the paper with a short summary.

2. Related Work

A method of using BNFs to combine multiple feature streams
proposed in [9], shows that combining MFCC, PLP and gam-
matone features in the input layer of an MLP can lead to a
system that performs better than the system combination of
the lattices of the individual systems. The MLP using the
combined input feature also outperforms the best single fea-
ture MLP by a small amount. In contrast to this work they,
however, only look at shallow networks. Instead the authers
later focus on integrating the multiple features into a shal-
low RNN [10] trained to classify the phone targets. Stacking
MFCCs and MVDRs (Minimum Variance Distortionless Re-
sponse) at the input of a DNN was also found to be help-
ful in bottleneck feature extraction for German Broadcast
News [11] as well as for the NIST 2013 OpenKWS evalu-
ation [12].

In [13] various tonal models and methods of integrating
tonal features are analyzed on both tonal and non tonal lan-
guages. That work reports, for the first time, results of us-
ing fundamental frequency variation [14] features for speech
recognition of tonal languages and finds that early integrat-
ing tonal features consistently leads to a reduction in WER
even on non-tonal languages.

A version of the modular DNN designed for low resource
languages is discussed in [3] and modified to make use of
language resources outside of the target language [15].
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Figure 1: An example of a deep neural network with 4 hid-
den layers and an output layer with corresponding CD phone
states. Its input is a 2s+1 frame window containing both
MFCC and MVDR features.

3. Multifeature Deep Neural Network
Accoustic Models

Multifeature DNN-AMs are feed forward neural networks
that merge multiple different input feature in the input layer
of the neural network. An example DNN AM is shown in fig-
ure 1. It has an input layer that uses stacked MVDR+MFCC
features in a window spanning from s frames prior to the cur-
rent frame to s frames after the current time frame, followed
by four hidden layers that use the sigmoid activation function
and a softmax output layer where the neurons correspond to
the context dependent phone states. The example contains
two of the four different input feature used in this paper:

• Mel Frequency Cepstral Coefficients (MFCC):
MFCCs have established themselves as the most com-
mon front-end feature in speech recognition. They are
computed by applying a discrete cosine transformation
to log Mel features.

• Minimum Variance Distortionless Response
(MVDR) Spectrum: MVDR [16] features are an
improvment on basic linear prediction features [17].
In some circumstances warped Minimum Variance
Distortionless Response (MVDR) features for speech
recognition have been shown to be better than MFCC
features.

The other two features used in this paper are:

• Log-MEL Features (lMEL): Motivated by the phys-
iology of human hearing, the mel scale developed by
[18] is applied after performing a short-time Fourier
transformation of the audio. In large DNN AMs lMEL
features tend to outperform MFCC.
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Figure 2: An example DBNF with 4 hidden layers prior to
the bottleneck layer

• Tonal Features: The tonal features used are a com-
bination of Kjell Schubert’s [19] pitch based features
and Laskowski’s [14] FFV features. Tonal features are
not suitable as stand-alone features and are only used
to augment the other features.

4. Multifeature Modular Deep Neural
Network Accoustic Models (mDNN-AMs)

In this section the proposed modular deep neural network
acoustic model is introduced. Feed forward DNN AM such
as the one depicted in figure 1 have been analyzed and ex-
amined by many authors [20, 21]. Both their observations
and ours indicate that the addition of further hidden layers
does not result in any noticeable improvement for DNNs af-
ter about 5-8 layers. One possible explanation is that the
lower layers are being poorly trained because the gradient
decreases with each layer it is passed back though. In order
to solve this problem the mDNN-AMs use a well trained bot-
tleneck feature (BNF) module as the basis for the DNN-AM.

4.1. Multifeature Bottleneck Feature (BNF) Modules

In an MLP the outputs of a given layer can be thought of as
an alternative representation of the input feature vector. A
small hidden layer in the middle of an MLP will, therefore,
provide compact alternative features, with the number of co-
efficients being controlled by the number of neurons in the
hidden layer.

An example of such a network with 4 hidden layers prior
to the bottleneck layer is given in Figure 2. Bottleneck fea-
tures are discriminatingly trained using context dependent
subphone states as targets. After training all the layers fol-
lowing the bottleneck are discarded. In a classic GMM sys-
tem BNFs are typically used to transform the input feature
stream into a stream of bottleneck features which are then
stacked over a temporal window. An LDA or PCA is then
used to reduce the dimension back to the desired input size
for the GMM.
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Multifeature-BNFs concatenate multiple different fea-
tures into a single large input vector. Using combinations
of the features described in section 3 seven different BNF
modules are analyzed in this paper.

4.2. mDNN Topology

An example modular DNN (mDNN) AM using
MVDR+MFCC features is shown in figure 3. Two
features (MFCC & MVDR) are extracted at each frame and
used together with their neighbours in a stack as the inputs
to a BNF network.

The final layers of a modular DNN-AM are same as the
final layers in a normal DNN-AM. Instead of a normal input
layer the modular DNN-AM has a bottleneck layer which
consists of stacked BNF frames from an already fine-tuned
BNF network. We refer to those final layers as the classifica-
tion module (or DNN-module) and after integration the BNF
network is referred to as the BNF module. If the classifica-
tion module has an input context of 2r + 1 (r-BNF frames
before and after the current frame) and the BNF module has
a input context of 2s + 1 then the total network requires an
input context of 2(r + s) + 1 frames. For the BNF frame
at t − i the input frames from t − i − s to t − i + s have
to be stacked and used as the input to the BNF-module. The
BNF-module is applied 2r + 1 times to generate each of the
2r + 1 BNF frames in the BNF layer.

4.3. Weight Tying

During fine tuning the weights of the BNF-module are tied.
Errors can be propagated back past the BNF-layer into all
applications. Weight tying allows the modular DNN-AM to
continue on using a single BNF-module. Its weights are up-
dated using the average update:

∆wj =
2r+1∑

k=1

∆wk
j (1)

such that a single BNF-module learns to produce BNFs that
can be used in any part of a stack BNF layer.

4.4. Integration

Although the total computation cost for a single frame is very
high, the BNF frames can be cached and reused for the next
frame. At frame t the DNN-module of the example mDNN
in figure 3 requires the output of the BNF-module for 2r+ 1
different inputs from t−r to t+r. For frame t−1 it requires
outputs from the BNF-module for the inputs from t − 1 − r
to t− 1+ r. So with the exception of the output of the BNF-
module at t + r all of the required outputs for frame t have
already been produced and cached.

The BNF-module is simply used to convert a stream (or
multiple streams) of input features into a stream of BNF fea-
tures which are then used as the input stream for the DNN-
module. In an offline setting the stream of input feature vec-
tors from an utterance forms a matrix and the BNF-module

converts this matrix into a matrix where the columns are
BNFs.

Because it is faster to perform a single matrix times ma-
trix operation using a fast BLAS (Basic Linear Algebra Sub-
programs) library than it is to perform many vector times ma-
trix operations, it makes sense to compute the first hidden
layer for all features at the same time. So in an mDNN, if T
features are extracted from the audio of an utterance they are
first transformed into T activations of the first hidden layer of
the BNF-module, then to T activations of the 2nd, 3rd and so
on hidden layers and then to T bottleneck features followed
by T activations of the first hidden layer of the DNN-module.
After transitioning though all the hidden layers the T proba-
bility distributions over the cd-phone states are all produced
at the same time.

If T features are extracted from the utterance then com-
puting the BNF at frames t = T or t = 1 could be problem-
atic since these frames require information about the features
at t = T + r or t = −r. To solve this every requested fea-
ture vector prior to the first one is set to the value of the first
feature and the final feature vector is used for every feature
that could follow it. The same out of bounds rule is applied
when the BNFs are used as an input to the DNN-module of
the mDNN.

4.5. Modular DNNs with multiple BNF-modules

The modular DNN is not restricted to a single BNF-module
and can use multiple BNF-modules at the same time. Fig-
ure 4 shows an example mDNN with two 4 layer BNF-
modules. The upper BNF-module uses MFCC features as
its input and the lower BNF-module uses MVDR features as
its input. Although both networks in this example have an
input window of 2s+1 frames they could, if it were desired,
have different sized input windows and they could also have a
differing number of hidden layers. The outputs of both mod-
ule’s BNF layers are concatenated and stacked over a 2r + 1
window.

5. Experimental Evaluation
All experiments are performed on both the German 2010
Quaero evaluation set (eval2012 [22]) which contains 3 hours
and 34 minutes of broadcast news and conversational speech
as well as on the 2 hour German IWSLT 2012 development
set (dev2012 [23]) that contains TED talks. The results of the
systems are measured using WER and reported with an ac-
curacy of two decimal places for the larger eval2012 test set
and with an accuracy of a single decimal place for smaller
dev2012 test set on which differences smaller than 0.1%
would not be statically significant. Statical significance is
measured using McNemer’s test of significance.

5.1. Speech Recognition System

The decoding and GMM AM training uses the Janus Recog-
nition Tool-kit (JRTk) with the Ibis single pass decoder [24].
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Figure 3: An example mDNN with 4 hidden layers in the BNF-module and 4 hidden layers in the DNN-module. The input of the
DNN-module requires 2r+1 outputs of the BNF-module at different frames. The BNF-module uses a 2s+1 frame window as its
input so the whole mDNN network requires 2(s+ r) + 1 input features which in the example are a concatenation of both MVDR
and MFCC features.

The JrTk [24] is extended with a DNN AM object that imple-
ments the same interface to the Ibis decoder as the existing
GMM AM. A diverse range of topologies are supported by
allowing their computation to be controlled by a tcl script.
All acoustic models use a left to right HMM without skip
states where each of the 46 normal phonemes have three
HMM states and the silence phoneme has only a single state.
The cluster tree is built with 6016 leaves.

5.2. Neural Network Training

Each neural network is pretrained layerwise using denoising
autoencoders with a 20% corruption and a constant learning
rate for 2 million mini batches. After pretraining the final
layer is added, with the output layer using the softmax acti-
vation function. The full DNN is then fine-tuned using the
newbob learning rate schedule. All training is performed us-
ing Theano[25].

5.3. Analysis of Multifeature DNNs

Since tonal features can only be used as augmented features
and not as individual feature the following combination of
input feature were tested:

• Single feature: MFCC, MVDR, lMEL

• 2 features: MFCC+MVDR, lMEL+T1

• 3 features: MFCC+MVDR+T

• 4 features: MFCC+MVDR+lMEL+T

Both the MVDR and MFCC features use 20 coefficients
while the lMEL features have 40 coefficients and are the
same size as the merged MVDR+MFCC feature vector. The
addition of 14 tonal features brings the input sizes up to
54 for both the MVDR+MFCC+T (m2+t) and the lMEL+T

1T=tonal
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Figure 4: An example mDNN with a 4 layer DNN-module built on top of two BNF-modules: a 4 layer MFCC BNF-module and a
4 layer MVDR BNF-module. The input of the DNN-module requires 2r+1 outputs of both the BNF-modules at different frames.

(lmel+t) networks. The final MVDR+MFCC+T+lMEL
(m3+t) MLP that contains all available features has an input
of 94.

Each feature combination is trained on multiple topolo-
gies that only vary in their size (1200-2000) and number (4-
8) of hidden layers. The reported numbers always use the
best topology for the feature combination.

Combining the MVDR and MFCC input features results
in a network with a significantly (p < 0.005) lower WER
than either of the individual features and on about par with
networks using the lMEL feature that have the same num-
ber of coefficients. The lMEL system is 0.06% better on the
eval2010 test set but 0.2% poorer on the dev2012 test set.
A pattern in the results shown in table 1 can be found that

suggests that input features using more coefficients tend to
perform better. The addition of tonal features always results
in an improvement.

The best results on the eval2010 test set are achieved
by using all input features which is slightly but significantly
(p < 0.005) better than the lmel+t DNNs.

5.4. Evaluation of Multifeature mDNNs

The mDNN topology is evaluated using the same combina-
tions of input features used in the previous experiment and
compared with those results. The BNF-modules used in the
experiment are taken from working GMM systems where the
use of the multifeature deep BNFs were evaluated.
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Best normal DNN Modular DNN Comparable CNC
BNF-Module Name Features eval2010 dev2012 eval2010 dev2012 eval2010 dev2012

MFCC mfcc 1 15.88 20.3 15.35 19.5 - -
+MVDR m2 2 15.45 19.9 14.71 19.4 15.55 20.0
+T m2+t 3 14.96 19.8 14.54 19.3 - -
+lMEL m3+t 4 14.72 19.4 14.31 18.9 15.09 19.6
lMEL lmel 1 15.31 20.1 14.72 19.5 - -
+T lmel+t 2 14.77 19.6 14.52 19.0 - -
MVDR mvdr 1 15.58 20.2 14.81 19.5 - -

Table 2: Results of the multifeature mDNNs compared with both normal DNN using the same input feature combinations and
equivalent confusion network combinations. Tested on both the eval2010 and dev2012 test set.

eval2010 dev2012
MFCC 15.88 20.3
+MVDR 15.45 19.9
+T 14.96 19.8
+lMEL 14.72 19.4
lMEL 15.31 20.1
+T 14.77 19.6
MVDR 15.56 20.2

Table 1: Evaluation of DNNs using various combinations of
MFCC, MVDR, T and lMEL input features. Result presented
on the IWSLT dev2012 and Quaero eval2010 test sets.

The DNN-modules are pretrained by first mapping the
input features into the bottleneck feature space and per-
formed by training and stacking denoising autoencoders. Af-
ter pretraining the classification layer is added and the whole
mDNN network is jointly finetuned. The input feature sizes
range from 20 for the mfcc network features to 94 for the
m3+t network. With r, the number of BNF frames before
and after the current frame used as the input to the DNN-
module, set to 7 and each BNF layer containing 42 neurons
the DNN-modules input layer has 630 neuron. All mDNN
networks have the same topology. Both their BNF-modules
and their DNN-modules have 4 hidden layers of 2000 neu-
rons. The whole network, therefore, has 9 hidden layers.

The results of this experiment are shown in table 2. As
a comparison, for each input feature combination its best
result with a normal DNN, regardless of the topology, is
shown in columns of the table. The last column contains
a comparison to a system combination using confusion net-
works performed on the DNN output lattices of single fea-
ture DNNs. The cnc comparison result in line two of table is
a combination of the best MVDR DNN and the best MFCC
DNN and although it is slightly better than both of them it
is outperformed by both the MVDR+MFCC DNN and the
MVDR+MFCC mDNN. The cnc comparable to the m3+t
network is a combination of the MFCC DNN, the MVDR
DNN, and the lmel+t DNN and does not even improve on
the performance of the lmel+t DNN.

For all input feature combinations the mDNN outper-
forms the normal DNN by 0.5% absolute or more on the

dev2012 test set. On the eval2010 test set the improvements
varied from an improvement of 0.25% on the lmel+t features
to over 0.7% on both the MVDR and MVDR+MFCC fea-
tures. The relative usefulness of features is not altered by us-
ing an mDNN. With 19.4% on dev2012 the m3+t DNN has
4.5% relative lower WER than the basic MFCC DNN which
has a WER of 20.3 and a 3.5% lower WER than the lMEL
DNN which is the best single feature DNN. In the modular
case the improvements are slightly less. All single feature
mDNNs have a WER on dev2012 of 19.5% and the m3+t
network has a 3% lower WER at 18.9%. For the single fea-
ture inputs the mDNN results in improvements of 3-4% com-
pared to the normal DNN while the multifeature inputs are
only improved by 2.5-3.5%.

Using only lMEL features as inputs performs as well
as using the combined MVDR+MFCC feature in both the
DNN and the mDNN and on both test sets. The addition of
tonal features boosts the performance of the lMEL DNN and
mDNN more than the MVDR+MFCC DNN and mDNN.

In total the best multifeature mDNN reduces the WER of
a basic MFCC DNN by 7% relative from 20.3% to 18.9%
on the dev2012 test set and by 10% relative from 15.88% to
14.31% on the eval2010 test set. Compared to the best single
feature DNN, lMEL, it still improves the dev2012 test set by
6% and the eval2010 test set by 6.5%.

5.5. Evaluation of mDNNs with multiple BNF-modules

The effectiveness of the mDNN with multiple BNF-modules
is evaluated by training 8 mDNNs with between two and
seven BNF-modules. The results are compared to perform-
ing a CNC on normal DNN networks that use the same input
features and the BNF-modules. The BNF-modules are the
same as in the multifeature mDNN experiment and can them-
selves contain multiple input features. After mapping the
training data into the bottleneck feature spaces of all BNF-
modules used. The DNN-module is pretrained on the merged
BNF features. All other training parameters are the same as
in the previous experiments.

In all cases the mDNN outperformed the confusion net-
work combination of DNN systems using the same input fea-
tures. The best mDNN with multiple BNF-modules m2+t ⊕
lmel+t ⊕ m3+t (⊕ is used to indicate that a combination of

164

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



Modular DNN Comparable CNC
BNF-Modules Features Name eval2010 dev2012 eval2010 dev2012

mfcc 1 1 15.35 19.5 - -
⊕ mvdr 2 2 sys01 14.54 19.2 15.55 20.0
⊕ m2 3 2 sys03 14.73 19.3 15.44 19.9
mfcc ⊕ mvdr ⊕ lmel+t 3 4 sys02 14.24 18.7 15.09 19.6
m2+t ⊕ lmel+t 2 4 sys04 14.19 18.8 14.68 19.4
⊕ m3+t 3 4 sys08 14.06 18.7 14.45 19.2
⊕ mfcc ⊕ mvdr 5 4 sys06 14.33 18.9 14.83 19.4
⊕ m2 ⊕ lmel 7 4 sys05 14.44 18.8 14.69 19.4
m2 ⊕ lmel 2 4 sys07 14.34 19.1 15.07 19.8

Table 3: Comparison of mDNNs using multiple BNF-modules with confusion network combinations of normal DNNs using the
same input features. The ⊕ is used to indicate that multiple BNF-modules are combined in a single mDNN.

BNF-modules) improves the best single module mDNN by
0.2% from a WER 18.9% to 18.7% on the dev2012 test set
and by 0.25% from 4.31% to 14.06% on the eval2010 test
set. Using McNemar’s significance test this is found to be
significant at p < 0.005. The overview of the results given in
table 3 begins with a single BNF-module mDNN using mfcc
input features that achieves a WER of 15.35% on eval2010
and 19.5% on dev2012. The next entry augments that mDNN
with an MVDR BNF-module and improves dev2012 by
0.3% to 19.2% and eval by 0.81% from 15.35% to 14.54%.
The further addition of the MVDR+MFCC BNF-module de-
graded the dev2012 test set to 19.3% and the eval2010 test
set to 14.73%. If instead of the MVDR+MFCC BNF-module
the lmel+t BNF-module is added to the mfcc ⊕ mvdr mDNN
then it is further improved to 14.24% on eval2010 and 18.7%
on dev2012.

The best mDNN with two BNF-modules is the m2+t ⊕
lmel+t mDNN which has a WER of 14.19% on eval2010 and
18.8% on dev2012. The addition of an m3+t BNF-module
improves it slightly by 0.13% to 14.06% on the eval2010 test
set and by 0.1% to 18.7% on the dev2012. The further inclu-
sion of both the MVDR BNF-module and the MFCC BNF-
module slightly increases the WER on both sets. Increasing
the number of BNF-modules to 7 by also including the m2
and lmel BNF-modules into the mDNN results in another
slight increase in WER.

The usefulness of tonal features can be clearly seen by
comparing the m2 ⊕ lmel mDNN to the m2+t ⊕ lmel+t DNN
which add tonal features to the input to both of the BNF-
modules. They are able to improve the dev2012 test set by
0.3% and the eval2010 test set by 0.15%.

Using an mDNN with multiple BNF-modules increases
the mDNNs overall improvement compared to an MFCC-
DNN by 8% relative on the dev2012 test and by 11.5% on
the eval2010 test set. Compared to an lMEL DNN it reduced
the WER by 7% relative from 20.1% to 18.7% on dev2012
and by 8% relative from 15.31% to 14.07%.

6. Conclusion
The modular deep neural network acoustic model presented
in this paper incorporates the well trained feature extraction
networks using multiple input features. It is initially eval-
uated using only a single feature extraction module. This
evaluation demonstrates the usefulness of using multiple dif-
ferent input feature vectors. Modular deep neural networks,
whose sole feature extraction network uses multiple features,
outperform those using fewer features or even a single fea-
ture.

Using two or more different feature extraction networks
as modules in the same modular deep neural network results
in further improvements. The best approaches use three fea-
ture extraction networks that are, in turn, each trained using
multiple input features. The best modular deep neural net-
work is able to reduce the word error rate on the test data sets
by up to 11.5% relative improvement compared to a baseline
deep neural network..
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Abstract

Building Large Vocabulary Continuous Speech Recognition
(LVCSR) systems for under-resourced languages is a chal-
lenging task. While plenty of data is available for English,
many other languages suffer from a lack of data. There are
different methods for tackling this challenge. One possibility
is to use data from different languages to boost the perfor-
mance of a system for a particular target language. With the
emerging of LVCSR systems using neural networks (NNs),
many research groups have demonstrated the benefits from
using additional data in order to improve the system perfor-
mance. In this work, we propose a method for providing the
language information directly to the network, thus enabling
it to become language adaptive. We demonstrate the effec-
tiveness of our approach in a series of experiments.

1. Introduction
With the emergance of Deep Neural Networks (DNNs) in the
field of automatic speech recognition, different methods have
been explored to improve the performance of Large Vocabu-
lary Continuous Speech Recognition (LVCSR) systems. Al-
though DNNs improve the overall system performance, they
require a rather large amount of training data to produce rea-
sonable results.

While there are plenty of resources available for English,
this does not necessarily hold true when building a system
for another language. One possible solution for this problem
is to use data from other languages if there is only a lim-
ited amount of data available for a particular target language.
Several methods have been explored to make use of multi-
lingual data during system training. By using additional data
sets, it is for instance possible to either reduce the training
time [1] or decrease the word error rate (WER) [2].

Our proposed method aims towards making better use of
the provided multilingual data by explicitly providing a lan-
guage code to the DNN. By doing so, the DNN becomes
aware of the different languages used and is able to implic-
itly learn language specific features. The resulting DNN is
language adaptive (LA-DNN) as it processes the language
information in addition to the other input features. We eval-
uate our proposed method by using different ways of adding

the language information to the training pipeline.
This paper is structured as follows: In section 2 we re-

view work related to our experiments. In the following sec-
tion 3 we describe our proposed method for the network
training. Section 4 explains our experimental setup and in
section 5 we describe and evaluate the results. Finally, we
conclude our paper with section 6 where we review our pro-
posed method and also point towards future work.

2. Related work
Current state-of-the-art speech recognition systems rely on
using NNs. The networks are being used in various com-
ponents like audio pre-processing, language modelling and
acoustic modelling. In this work, we concentrate on the use
of NNs as a part of the audio pre-processing pipeline and the
acoustic model.

2.1. Deep Belief Botteneck Features

Deep Belief Neural Networks (DBNFs)[3] process audio
features which were extracted from the raw audio us-
ing common approaches like mel-scaled cepstral coeffi-
cients (MFCC) or logarithmic mel-scaled spectral coeffi-
cients (lMel). DBNFs are feed forward neural networks
featuring multiple hidden layers. We first pre-train the net-
work using de-noising auto-encoders [4]. This step initializes
the network parameters and guides them into an appropriate
range. In the next step, the parameters are fine-tuned us-
ing Stochastic Gradient Descent (SGD) [5] with mini-batch
updates. For the extraction of the features, the layers after
the bottleneck are discarded and the output of the bottleneck
layer is used as features.

2.2. Multilingual DBNFs

Since neural networks are good at learning different tasks
[6], DBNFs can be trained using multiple languages. Fur-
thermore, [7] has shown that the pre-training step is language
independent. Therefore it is possible to increase the perfor-
mance of the network by using the combined data from mul-
tiple languages for training the network. After pre-training,
the network is fine-tuned. There are two possibilities to deal
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with multiple languages at this stage. It is possible to use a
merged phoneme set [8] or share the hidden representations
among different languages but use language specific output
layers ([9], [10], [11], [12]), see figure 1.

AF stack Output layers

Figure 1: Neural network featuring shared hidden layers and
multiple output layers. In our setup, each output layer corre-
sponds to a language specific phone set.

2.3. Augmented Input Features for Neural Networks

Recent publications show that augmenting the input features
of the network with additional information like i-Vectors
[13] or Bottleneck Speaker Vectors (BSV) [14] increases the
overall performance of the system. By providing this addi-
tional information, the network adapts to different speakers
or acoustic conditions [15]. Since neural networks can pro-
cess multimodal input data, adding additional information to
the features is possible. By doing so, we can provide addi-
tional cues to the network. While this was done in the past to
provide information about speakers or channels, but, to our
knowledge, the use of language codes for building systems
in a multilingual environment has not been investigated.

3. Language Adaptive Deep Neural Networks
Augmenting input features with additional information in-
creases the performance of neural networks. Here, we
present our approach to add language codes during neural
network training in a multilingual environment. By provid-
ing this language information in addition to the acoustic fea-
tures, the network is able take advantage of the language in-
formation. As multilingual data can boost the performance
of a system when little or no data from the target language is
available, we show that this boost can be increased through
a language code. As for this code, we chose to encode the
language information using 1-of-N coding. This results in a

feature vector with one dimension per language.
As pointed out in the related work section, there are

multiple possibilities to add data from additional languages
throughout the network training. One possibility is to
directly merge the available data sets: Create a unified
phoneme set, join the different dictionaries and use the au-
dio data jointly to train the system. Another possibility is
to build systems for each language individually and then use
the individual systems to create language dependent training
data for the NNs. It is then possible to share the hidden rep-
resentations and use language specific output layers. This
training technique can be applied to both DBNFs and Hybrid
systems. In the latter, the Gaussian Mixture Models (GMMs)
are being replaced using a NN.

The language code can be added to the training process of
each network. Figure 2 shows the different positions where
the language code can be added. It is possible to do an early
fusion by appending the language code to the stacked feature
frames from the audio pre-processing. Doing so would help
the network to discriminate between different languages, but
as we will see, this might not be beneficial in all cases. Per-
forming a late fusion is also possible by augmenting the
stacked bottleneck features with the language code.

4. Experimental Setup
We conducted a series of experiments in order to assess the
performance of our approach. The question is how to aug-
ment the existing features with the language code. For train-
ing our systems, we use a speech corpus consisting of record-
ings from Euronews1, a TV news station [16]. It consists
of approximately 70h of acoustic training data per language,
sampled at 16 kHz. We use data from 6 languages (English,
French, German, Italian, Russian and Turkish), as shown in
Table 1. For testing, we used 1.1h of English TV reports.

The pronunciation dictionaries were automatically cre-
ated using MaryTTS [17]. We selected the languages based
on the availability of both recordings from Euronews and
pronunciations from MaryTTS. We built the systems using
the Janus Recognition Toolkit (JRTk) [18] which features the
IBIS decoder [19]. The neural networks were trained using a
setup based on Theano ([20], [21]).

Language Audio Data # Phonemes

English 72.8h 36
French 68.1h 32
German 73.2h 41
Italian 77.2h 31
Russian 72.2h 27
Turkish 70.4h 31

Total 433.9h 43

Table 1: Overview of used datasets

1www.euronews.com
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AF stack

LI
early fusion

LI
late fusion

BNF stack Output layer

Figure 2: Overview of the network architecture used in our setup. Starting with stacking the acoustic input features (AF), we
augment them with a language information (LI) code before feeding them into a DBNF in order to extract BNFs. The BNFs are
being stacked as well and the LI code is added. The second DNN computes the phoneme posteriors.

4.1. System Training

For building an initial system, we use a flatstart approach to
bootstrap the acoustic models. The audio is pre-processed
using 13 dimensional lMEL input features with ∆ and ∆∆
coefficients which are computed over a window of 16ms that
is shifted with 10ms over the audio recording. Based on
this inital system, we built a context-dependent system us-
ing 6000 context-dependent states. Preliminary experiments
have shown that a system using 6000 states has reasonable
performance given the amount of available training data.

4.2. DBNF Training

Based on this initial context-dependent system, we extracted
samples for training the DBNF network. For training the net-
work, we extracted the samples using a combination of lMel,
fundamental frequency variation (FFV) [22] and pitch [23]
acoustic features. For the extraction of FFV and pitch, we
use a window size of 32ms. The use of additional tonal fea-
tures has lead to improvements in combination with NNs,
even for non-tonal languages such as English [24]. The in-
put features are being stacked using a context of 6 on each
side. This results in 13 stacked feature frames being fed into
the network at each time step. These stacked frames are then
optionally augmented by our 6 dimensional language code
which indicates the current language.

The network is layer-wise pre-trained using de-noising
auto-encoders. It consists of 5 hidden layers with 1000 neu-
rons per layer. The bottleneck is a narrow layer with only 42
neurons. For fine-tuning, we use stochastic gradient descent
with new bob scheduling and log-linear regression. Based
on the features extracted by this network, we trained another

GMM/HMM system.

4.3. Hybrid System Training

We use the BNF GMM/HMM system to extract a new set of
samples for training a DNN. For training this network, we
stack features with a context of 7 BNF-frames in each direc-
tion, resulting in a total context of 15 frames being fed into
the network. This network features 6 hidden layers with a
size of 1600 neurons per layer. We use this network as a re-
placement for the GMMs to estimate the phoneme posterior
probabilities. Similar to the training of the DBNF, the in-
put vector for this network is optionally augmented with the
language code.

4.4. Merged Phoneme Set

In the first set of experiments, we built a system with lan-
guage independent models. For training this system, we
merged the different training data sets and the pronunciation
dictionaries. As we used MaryTTS for generating the dictio-
naries, we did not need to do a phoneme conversion between
the different languages, as all the phonemes already originate
from the same phoneme set.

The baseline GMM/HMM system is bootstrapped using
all available acoustic data from the 6 languages. This results
in 433h of training data for the acoustic model of the system.
Based on this initial system, we follow the training proce-
dure described in order to build the BNF based system and
the Hybrid system. In order to reduce the training time, we
limited the amount of data for the neural network training to
30h per language. To obtain this subset of 30h, we selected a
subset of TV reports randomly.
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4.5. Language Dependent Phoneme Sets

In a second set of experiments, we built systems with lan-
guage specific phoneme sets. We used monolingual systems
for the extraction of training data for the BNF. Based on this
data, we trained a multilingual DBNF by training the hidden
layers jointly over all languages and using separate output
layers for each language. Based on the multilingual BNF,
we again trained systems monolingual for all languages and
used them to extract the training data for the Hybrid systems.
As for the Hybrid systems, we employed the same training
strategy by sharing the hidden layers among languages. The
language code was appended to the stacked BNFs.

5. Results
The results section is divided into three different parts. First
we present the results from the systems with the merged
phoneme set. Next, we show the results from the systems
with language specific phoneme sets. This section concludes
with a comparison between the multilingual systems and a
system trained monolingually.

5.1. Merged Phoneme Sets

The initial GMM/HMM system with a merged phoneme
set features a WER of 26.3% as displayed in Table 2.
This is rather high, but expected for this type of system:
GMM/HMM systems tend to have a poor performance when
trained in this multilingual fashion. Using bottleneck fea-
tures decreases the WER to 21.7% without the language in-
formation and 21.2% when adding the language code. The
system with the LA-DNN is by 2.4% relative better com-
pared to the system without that additional information. This
trend continues for the Hybrid systems. The use of the lan-
guage information results in a total relative gain of 9.0%. Us-
ing a merged phoneme set, adding the language code at both
stages (early and late fusion) of network training is benefi-
cial.

System Baseline LA-DNN rel. gain

GMM/HMM 26.3% 26.3% -
BNF 21.7% 21.2% 2.4%
Hybrid 19.3% 17.7% 9.0%

Table 2: Overview of results for systems with a merged
phoneme set, showing WERs.

5.2. Language Dependent Phoneme Sets

The baseline system with a language dependent phoneme set
for English has a WER of 18.9% (see Table 3). This is to
a great extend better compared to the system with a merged
phoneme set. It is interesting to see that the system with
bottleneck features does not benefit from the language code:
Providing the language code to the network results in a WER

of 18.7%, while the WER is 17.5% when training it without
the language information. We therefore use the system with-
out the language code (and the better performance) to write
samples for training both Hybrid systems. Based on the per-
formance of the Hybrid systems, it can be seen that adding
the language code at the bottleneck layer helps improving the
system by 3.5% relative: The system with the language in-
formation has a WER of 14.4%, compared to 14.9% WER to
the system without. Here, only the late fusion approach leads
to improvements.

System Baseline LA-DNN rel. gain

GMM/HMM 18.9% 18.9% -
BNF 17.5% 18.7% -6.4%
Hybrid 14.9% 14.4% 3.5%

Table 3: Overview of results for systems using separate
phoneme sets per language, showing WERs.

5.3. Comparison to Monolingual Systems

In a final set of experiments, we compared the performance
of monolingual systems to the best multilingual systems. As
shown in Table 4, the multilingual systems outperform the
systems trained on only one language. Although the rela-
tive gain for the hybrid systems (1.4%) decreases compared
to the systems using only BNFs (6.3%), we still achieve an
improvement by augmenting the input features with the lan-
guage code.

System Monol. ML EN P. Set rel. gain

GMM/HMM 18.9% 18.9% -
BNF 18.6% 17.5% 6.3%
Hybrid 14.6% 14.4% 1.4%

Table 4: Overview of results using language dependent out-
put layers of the neural network, showing WERs.

6. Conclusion
We have presented a method for improving the performance
of NN based systems for LVCSR by augmenting the acoustic
input features with a language code in a multilingual setup.
Gains can be seen throughout different conditions. Depend-
ing on the condition, the addition of the language code at ei-
ther an early and/or a later stage shows the biggest improve-
ments. With the addition of the language information, the
DNN becomes language adaptive and is able to better learn
the characteristics of different languages.

With our proposed method, the LA-DNN is able to ex-
ploit the training data from different languages in a more ef-
ficient manner. One of the next steps is to find a replacement
for the explicitly coded language information and to auto-
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matically extract the language information from the training
material in a way similar to i-Vectors or BSVs.
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Abstract
Sentence segmentation and punctuation insertion in the

output of automatic recognition systems is essential for its
readability as well as for the performance of subsequent ap-
plications, such as machine translation systems. While a
longer context can boost the accuracy of inserted punctua-
tion marks, it drastically increases the delay in the spoken
language translation system.

In this work, we investigate the impact of shorter context
in punctuation insertion task on simultaneous speech trans-
lation system. We suggest a new scheme within stream de-
coding where the time delay consumed on punctuation pre-
diction is avoided. Our evaluations on the English TED talks
show that our suggested scheme can be used as an efficient
method to punctuate recognized streams in real-time scenar-
ios. While outperforming a conventional language model
and prosody based punctuation prediction system, our model
maintains a comparable performance compared to systems
that require longer contexts.

1. Introduction
Inserting reliable punctuation marks and sentence segmen-
tation into automatically recognized transcripts plays an
important role in spoken language translation (SLT) sys-
tems. Many of the conventional automatic speech recogni-
tion (ASR) systems generate either no or unreliable punctu-
ation marks. Without a proper punctuation insertion compo-
nent, therefore, the automatically recognized output is hard
to read for humans. Also, it affects the performance when
the ASR output is used in subsequent applications of natu-
ral language processing (NLP), such as machine translation
(MT) systems. Missing proper punctuation marks especially
degrades the performance of MT systems, since most of them
are trained using well-structured texts, such as news corpus,
where sentence boundaries are clear and well-formed.

One of the commonly used methods for inserting punctu-
ation marks into the ASR output is the language model (LM)
and prosody based scheme as discussed in [1]. It has an
advantage that it incorporates acoustic features keeping the
process relatively fast. Recently, punctuation insertion mod-
els using a monolingual translation system [2, 3] have shown
the effectiveness in improving the performance of MT sys-
tems when they are applied to the ASR output. A mono-

lingual translation system is an MT system which translates
non-punctuated input text into punctuated text. The conven-
tional monolingual translation system suggested in previous
work uses overlapping window for input. Since it can pro-
vide a very long context, a great performance improvement
on the MT for ASR outputs can be achieved using this tech-
nique. Overlapping windows, however, make the system dif-
ficult to be used in real-time scenarios without long latencies.

One indisputably crucial aspect in inserting punctuation
marks for real-time speech translation is the time delay.
Longer context is preferred for better prediction performance
but it causes more delay.

In this paper, we suggest an efficient punctuation inser-
tion scheme for real-time SLT systems, using the monolin-
gual translation system. Our punctuation insertion and sen-
tence segmentation system is designed to take the output of
a stream decoding ASR system. The input to the monolin-
gual translation system is modified so that latency can be de-
creased while maintaining similar translation performance.
We performed experiments both on audio streams as well as
manual transcripts, in order to give in-depth analysis on the
impact of different length of context in the punctuation inser-
tion scheme.

This paper is organized as follows. In Section 2, a brief
overview of past research on punctuation insertion for varied
scenarios is given. The task of inserting punctuation marks
for real-time translation systems and its related challenges
are discussed in Section 3. Section 4 describes how we model
the punctuation insertion system for real-time speech transla-
tion scenario. The systems we used throughout this work are
described in detail in 5. Section 6 shows our experimental
setups and results, followed by Section 7 where we conclude
our discussion.

2. Related Work
In previous work [4], sentence segmentation for ASR output
was modeled based on LM probabilities and prosody. The
authors emphasized that choosing a proper segment length
for the different MT systems boosts the translation perfor-
mance. In this work, commas and final periods are not con-
sidered separately, but together in order to form segment
boundaries. A threshold was used to control the average
number of segments per sentence.
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Recently MT-driven approaches have emerged as an ef-
fective method to insert punctuation marks in ASR output.
An approach using a modified phrase table was introduced
in [5] as a method to restore commas. Sentence boundaries
are generated based on a decision tree on the source side.
Applied to three different language pairs, their method sig-
nificantly improved translation performance.

Among different MT-driven techniques to model punctu-
ation marks for spoken language, the monolingual translation
system [3, 2] has shown an outstanding performance in im-
proving machine translation quality in evaluation campaigns
[6, 7]. Using this system, a non-punctuated source language
is translated monolingually into punctuated source language.
In [3], authors made in-depth analysis on three different ap-
proaches to restore punctuation marks using an MT system.
Among the three systems, they achieved their best perfor-
mance when using the translation system to translate non-
punctuated text into punctuated one. In their work, however,
it was assumed that reliable sentence boundaries are already
given. Therefore, punctuation marks within each of the given
sentence boundaries are restored.

Based on the work in [3], authors in [2] extended the sys-
tem so that sentence boundaries can also be predicted. In
order to model the possibility to insert a final period every-
where given a segment, they randomly cut the training data
for the monolingual translation system. Also, the test data
was prepared with a shifting window of 10 words.

While the work mentioned above focused on enhancing
punctuation accuracy or the machine translation performance
when using the punctuated ASR output, the authors in [8]
made an extensive study on different segmentation strategies
and latency. They inserted segments based on various tech-
niques into ASR output for real-time translation experiments.
It was shown that a good performance can be achieved when
they use the conjunction-based segmentation strategy along
with a comma-based segmentation.

The input segment length and machine translation qual-
ity are studied in [9]. In this work, a statistical machine
translation (SMT) decoder which processes a continuous in-
put stream was suggested. Using the decoder they achieved
improved translation quality at relatively low latencies.

3. Real-time Spoken Language Translation
In order to be useful a real-time spoken language translation
system has to, among many other challenges, deal with the
problem of latency. The latency of a real-time spoken lan-
guage translation system is the time between when a word
is spoken and when its transcription and translation are dis-
played to the user [1]. If the latency is more than a few sec-
onds then the whole translation system becomes unusable
and frustrating for the user. Each component adds to the
latency, due to computation time, communication time and
required future context.

Communication time can be kept to a minimum by hav-
ing a fast connection and low overhead between the indi-

vidual components. Computation time may be reduced by
running the components on fast servers with multiple cores
and by parallelizing those parts of the individual components
that can be. It may also require sacrificing accuracy by using
smaller faster models.

In order to reduce the apparent latency the speech recog-
nition component can be configured to output its current best
hypothesis about once a second. The displayed output is
then often updated by a newer, possibly better, hypothesis.
This type of setup has a much higher user acceptance than
the alternative setup where the speech recognition compo-
nent waits until it has a stable hypothesis before outputting it
which can sometimes result in 8 or more words appearing at
once.

The MT component is even more dependent on context
than the speech recognition component and often has to wait
for the whole sentence to be recognized before it can be prop-
erly translated. A fast enough MT system can re-translate the
sentence each time the ASR system recognizes a new word
and change the output displayed to the user. For this to work,
however, the MT system requires the ASR output to be seg-
mented into proper sentences.

These design decisions for both the ASR component,
the MT component and the real-time spoken language trans-
lation system as a whole pose some significant challenges
for the punctuation prediction component that converts the
stream text output stream of the ASR component into proper
sentences required for the MT system. A major side affect
of the ASR component constantly updating its current hy-
pothesis is that the punctuation prediction component has to
deal with possibly changing inputs. It also has to have a fast
computation time because the ASR system is sending up-
dates very frequently. As the MT component requires sen-
tence boundary information as soon as possible in order to
function properly the punctuation prediction component has
function well with only very little future context.

Although the monolingual translation system [2] shows
a good performance in the subsequent application, adopting
this system for the real-time speech translation system causes
an unacceptable amount of latency due to its long shifting
window of 10 words. This component alone would intro-
duce more latency into the whole system than the desired
total average latency.

4. Model
In order to decrease the delay in the real-time speech transla-
tion system, we use a streaming input scheme instead of the
overlapping window. In this section, we describe how the
streaming input scheme works.

Our in-house stream decoding ASR system stores its
recognition in two separate stacks. In one stack it saves its
final 1-best list for words w = {wl, . . . , wm}. Their follow-
ing words are stored in another stack v = {vm+1, . . . , vn},
which is not the final recognition yet. Since this stack v is
flexible depending on the upcoming context, it is updated
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based on the context and whenever it is updated, the changes
are shown to users.

In our punctuation insertion setup, we introduce another
stack for recognized words before w, in order to consider
more context. The history stack h is defined as:

h = {hl−c, . . . , hl−1} (1)

The context c is chosen as four throughout this work. When
there are fewer previous words available in the initial part of
the recognition, only upto available context is used.

The newly punctuated string is then obtained by

w′ = m(h+ w) (2)

where m denotes the monolingual translation system. Its
scheme will be described in detail in Section 5.3. Parts of
the generated output is taken as the final string.

s = {w′
l−c, . . . , w

′
m−4} (3)

At the same time the history stack is updated.

h = {w′
m−3, . . . , w

′
m} (4)

Thereby we input punctuated text into the monolingual
translation system and repunctuate it. Although this leads to
a slight mismatch between training and testing data, using
this way we can guarantee punctuation can be inserted when
the longest context is available.

Table 1 shows how an excerpt from an automatically rec-
ognized transcript is punctuated in our monolingual transla-
tion system scheme. History stack is marked in blue box.

Input OK but then after a while
Output OK. But then, after a while,

Input then, after a while, I realized this is
Output then, after a while, I realized this is

Input I realized this is my life this is six months of
Output I realized this is my life. This is six months of

Input is six months of my life and
Output is six months of my life. And

Input of my life. And this . . .
Output of my life. And this . . .

Table 1: History stack and punctuation output

For the non-final ASR recognition stack v, we generate
the possible output string m(h+ v) and show it to users.

An advantage of this model is that while longer history is
utilized, the decision on punctuation insertion on the current
window can be made instantly, minimizing the time delay
consumed on sentence segmentation. Also, by supporting

and I said, “OK, it ’s the huge file. OK,
I said, “OK, it ’s the huge file. OK, but
said, “OK, it ’s the huge file. OK, but then
OK. it ’s the huge file. OK, but then, after
it ’s the huge file. OK, but then, after a
’s the huge file. OK, but then, after a while,
the huge file. OK, but then, after a while, I
huge file. OK, but then, after a while, I realised
file. OK, but then, after a while, I realised this
OK , but then, after a while, I realized. this is
but then, after a while, I realized. this is my
then , after a while, I realized. this is my life.
after a while, I realized. this is my life. this
a while, I realized. this is my life. this is
while I realized. this is my life. this is six
I realized. this is my life. this is six months
realized . this is my life. this is six months of
this is my life. this is six months of my
is my life. this is six months of my life
my life. this is six months of my life, and

life . this is six months of my life, and this
this is six months of my life. and this fire
is six months of my life. and this fire. so
six months of my life. and this fire. so, I
months of my life. and this fire. so I was
of my life. and this fire. so I was a
my life. and this fire. so I was a little

life , and this fire. so I was a little bit
and this fire. so I was a little bit skeptical
this fire. so I was a little bit skeptical of

Table 2: Output of monolingual translation system with over-
lapping window of 10

the stream decoding, users can see the updating recognition
as well as its most probable punctuation marks within.

As a comparison, Table 2 shows the actual output of
monolingual translation system with overlapping input, for
the same segments shown in Table 1. Since the system is
using an overlapping window of 10 words, each encounter-
ing word (marked in red box) has to be translated 10 times
as well. In this overlapping window system [2], each token
is translated ten times and a punctuation mark is inserted de-
pending on how often it occurs after this token. For example,
augmenting a punctuation mark after the first encountering
word OK needs previous ten translations.

From the comparison between Table 1 and Table 2, we
can observe that the streaming segmentation system can de-
crease the latency introduced by using the monolingual trans-
lation system with overlapping window. While the suggested
streaming segmentation will punctuate the given segments in
only 5 times of translation, using the overlapping window
requires 30 times of translation.
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5. System Description

In this section, we discuss the systems we use throughout
this work. The English audio data is decoded using our ASR
system. A brief description on our LM and prosody based
segmenter, which is used as one of the baseline systems, is
also given. Once the punctuation marks are inserted using
different segmentation strategies, we translate this test data
into German in order to measure the performance of the real-
time punctuation insertion system.

5.1. English ASR System

The speech recognition is performed using in-house de-
coder in an online setup. Using a framesize of 32ms and a
frameshift of 10ms the audio stream is converted in a stream
of 40 dimensional lMel feature vectors.

The hybrid DNN/HMM acoustic model uses a context
dependent quinphone setup with three states per phoneme, a
left-to-right HMM topology without skip states. The neural
network has in input window of ±6 frames leading to an in-
put layer size of 520 neurons, this is followed by 4 layers of
2k neurons and a finial classification output layer containing
just over 8k neurons.

The neural network is pretrained layerwise using denois-
ing autoencoders with a 20 million mini batches. After pre-
training the final layer is added, with the output layer using
the softmax activation function. The full DNN is then fine-
tuned using the newbob learning rate schedule. All training
is performed using Theano [10] on the TED [11] and Quaero
data [12].

For the language model training texts from various
sources such as webdumps, scraped newspapers and tran-
scripts are used. The 120k vocabulary is selected by build-
ing a Witten-Bell smoothed unigram language model using
the union of all the text sources vocabulary as the language
models’ vocabulary (global vocabulary). With the help of the
maximum likelihood count estimation method described in
[13] we found the best mixture weights for representing the
tuning set’s vocabulary as a weighted mixture of the sources
word counts thereby giving us a ranking of all the words in
the global by their relevance to the tuning set.

Using this vocabulary language models are built from
each of the sources and interpolated using the SRILM toolkit
[14] so as to maximally reduce the perplexity of the tuning
set.

5.2. LM and Prosody based Segmentation

The language model and prosody based segmenter employs a
4-gram language model trained on punctuated text. In order
to predict punctuation marks a context of four words, two
prior and two after the possible punctuation mark, is taken
into consideration.

The language model is used to calculate three scores. The

first one is the score without an inserted punctuation mark as

P (wi−1, wi, wi+1, wi+2) (5)

while the second one is the score with a comma.

P (wi−1, wi,@COMMA, wi+1, wi+2) (6)

The last one is calculated by followings.

P (wi−1, wi,@STOP, wi+1, wi+2) (7)

A dynamic scaling factor is applied to the punctuation
mark scores in order to prevent both very short sentences
and very long sentences. In parallel to the language model
a prosody component searches for pauses over tθ seconds
and then force terminates any sentences.

5.3. Monolingual Translation System

Monolingual translation system for punctuating English data
is trained on the English side of the European Parliament
data, News Commentary, TED1, and the common crawl cor-
pus.

As a preprocessing step, the noisy part of the common
crawl data is filtered out using an SVM model as described in
[15]. After preprocessing is applied, the normalized training
data is resegmented randomly so that punctuation marks can
be observed in all possible locations in each line.

For the source side of the training, we removed final pe-
riod, comma, question mark, and exclamation mark. Double
quotation marks are also removed as they are relatively fre-
quent in TED talks. In addition to processing the punctuation
marks, we also lowercased every single word on the source
side. Since automatically recognized words often miss cor-
rect case information, we aim to restore the case informa-
tion altogether with punctuation marks using this one system.
Altogether the training data consists of 10.1 million English
words.

The Moses package [16] is used to build the phrase table.
We build a 4-gram language model on the entire punctuated
target side using the SRILM Toolkit [17]. Word alignment
is learned automatically using the GIZA++ Toolkit [18]. A
bilingual language model [19] is used along with a 9-gram
part-of-speech (POS)-based language model. The POS is
learned from TreeTagger [20]. In addition to this POS-based
language model, we train a 1, 000 class cluster [21] and use
the cluster codes for the additional 9-gram language model.
The model weights were optimized on the official test set of
IWSLT evaluation campaign in 2012.

5.4. English-German MT System

For evaluating our online punctuation insertion schemes, we
translate the testsets with different segmentation and punctu-
ation marks into German. For the translation, we use online

1http://www.ted.com
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English to German phrase-based translation system. The sys-
tem is trained on the parallel corpus of Europarl, News com-
mentary, TED, and the noise-filtered common crawl data.
For the monolingual data we take the News Shuffle corpus.
Detailed statistics on corpus can be found in [7].

We build a 4-gram language model on the German side
of TED data which is used as an in-domain language model.
In addition to this language model, we used a bilingual lan-
guage model on all available parallel data as described in
[19]. Also, we used a 4-gram language model that is built
based on cross entropy with the development data. For the
in-domain TED data, we applied the cluster algorithm [21].
Once the TED data is clustered into 1, 000 classes, we build
a 9-gram language model and used it as an additional model.

In order to address the word order difference between En-
glish and German, we use the POS-based reordering [22]
along with the tree-based [23] and lexicalized reordering
rules. For optimization of the log-linear combination of mod-
els, we use minimum error rate training [24].

For evaluating differently segmented testsets, we use the
Levenshtein minimum edit distance algorithm [25] in order
to align hypothesis against the reference translation.

5.4.1. Phrase Table Preparation

For online translation systems, it is impossible to generate
a perfectly fitting phrase table for each input data. There-
fore, we build a phrase table based on the vocabulary in the
training data. In order to decrease the size of the model for
online scenario, we first filtered out words which occurred in
the corpus less than four times. Also, phrases that are longer
than 4-grams are filtered out as well.

6. Experiments and Results
In order to measure the impact of different segmentation
methods and models on MT, we experiment on the offi-
cial test set of IWSLT evaluation campaign 2013. The En-
glish manual transcript of this test data has 993 sentences, or
17.8K tokens. The audio is 2h 16m long.

The proposed streaming punctuating prediction
(StreamingInput) system is compared to both a low latency
baseline language model and prosody based punctuation
prediction (LM, Prosody) system as well the high latency
but highly accurate monolingual translation (Baseline)
system using a 10 word moving window. Table 3 presents
these systems’ translation performance of the test data. The
numbers are reported in case-sensitive BLEU [26].

In the first row, we first show the translation performance
when using the simple LM and prosody based segmentation,
available only for the ASR output. In the baseline system,
both ASR output and manual transcript are punctuated using
the conventional monolingual translation system, using over-
lapping windows, as shown in [2]. Therefore, the shift win-
dow is applied so that each word is translated for ten times.
As it is not for online scenario, the phrase table is also gen-

Punctuation ASR Output Manual Transcript
LM, Prosody 9.74 -
Baseline 11.18 19.57
StreamingInput 11.55 19.41

Table 3: Translation performance of the proposed system
compared to a fast LM, prosody based model as well as a
high latency, but highly performant monolingual system us-
ing an overlapping window

erated upon the knowledge of the each test data.

We can see that when we use the suggested punctuation
insertion scheme, we achieve 11.55 BLEU points in the ASR
test data, beating the conventional LM and prosody based
model by 1.8 BLEU points. Even though this system is using
relatively shorter context and the less-fitting phrase table than
the traditional monolingual translation system, the transla-
tion performance is comparable with the baseline mono-
lingual translation system’s. Although the translation was
slightly worse when using this system for punctuating the
manual transcript, we achieve an improvement of 0.4 BLEU
in the ASR translation task which is its intended use case.

Due to the small model footprint and the use of an ef-
ficient MT decoder the stream-based punctuation prediction
setup incurs only minimal computational cost, comparable
to the punctuation model based on LM and prosody with-
out having much future context requirements. This fast sys-
tem also allows for updated punctuation when new data is
received. As this component does not add further commu-
nication overhead, the total latency of the real-time speech
translation system is not negatively impacted.

7. Conclusions

In this paper, we present a new punctuation insertion scheme
for real-time spoken language translation system. Taking
streamed input from an ASR decoder, the suggested scheme
can improve the output of the speech translation without
negatively impacting the speech translation system’s latency.
The experiments show that our low-latency real-time punctu-
ation insertion system can achieve a comparable performance
to an offline system requiring a large context window.

As future work, we intend to evaluate the system perfor-
mance on further language pairs. We would also like to in-
vestigate the possible integration of neural network and con-
ditional random field-based punctuation prediction models.
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Abstract

We present a simple method for representing text that
explicitly encodes differences between two corpora in a
domain adaptation or data selection scenario. We do
this by replacing every word in the corpora with its
part-of-speech tag plus a suffix that indicates the rela-
tive bias of the word, or how much likelier it is to be in
the task corpus versus the pool. By changing the repre-
sentation of the text, we can use basic n-gram models
to create language difference models that characterize
the difference between the corpora. This process en-
ables us to use common models with robust statistics
that are tailored to computing the similarity score via
cross-entropy difference.

These improvements come despite using zero of the
original words in the texts during our selection process.
We replace the entire vocabulary during the selection
process from 3.6M to under 200 automatically-derived
tags, greatly reducing the model size for selection.

When used to select data for machine translation
systems, our language difference models lead to MT
system improvements of up to +1.8 BLEU when used
in isolation, and up to +1.3 BLEU when used in a multi-
model translation system. Language models trained on
data selected with our method have 35% fewer OOV’s
on the task data than the most common approach. These
LMs also have a lower perplexity on in-domain data
than the baselines.

1. Introduction

Data selection is a popular approach to domain adap-
tation that requires quantifying the relevance to the do-
main of the sentences in a pooled corpus of additional
data. The pool is sorted by relevance score, the high-
est ranked portion is kept, and the rest of the data dis-
carded. By identifying the subset of the data pool that
is most like the in-domain corpus and using it instead

of the entire data pool, the resulting translation systems
are more compact and cheaper to train and run than the
full system trained on all of the available data. The un-
derlying assumption in data selection is that the large
corpus likely includes some sentences that fall within
the target domain. These in-domain sentences should
be used for training. Any large data pool will also con-
tain sentences that are irrelevant at best to the domain
of interest. At worse, these sentences that are so unlike
the in-domain data that their presence makes the down-
stream models worse, and thus they should be removed
from the training set.

We note that the models used for data selection are
n-gram language models. These are typically used to
characterize an entire corpus. However, the data selec-
tion scenario is not a characterization task, but a differ-
entiating one. For every sentence in some large, gen-
eral data pool of potentially dubious provenance, we
would like to compute its relevance to some particular
in-domain corpus, regardless of what it contains. One
could even claim that we do not care what the in-domain
data looks like, we just want more of whatever it is.

This supports the use of different models for select-
ing the data than for using the data in some downstream
application. In particular, during the selection process it
is more important to know how the corpora differ than
how they are alike. We present a simple method for
constructing a discriminative representation of the gen-
eral corpus, and use it to train a language model that is
focused on quantifying the difference between the in-
domain and general corpora.

2. Background

2.1. Data Selection

The standard approach for data selection uses cross-
entropy difference as the similarity metric [1]. This pro-
cedure leverages the mismatch between the data pool
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and the task domain. It first trains an in-domain lan-
guage model (LM) on the task data, and another LM on
the full pool of general data. It assigns to each full-pool
sentence s a cross-entropy difference score,

HLMIN
(s)−HLMPOOL

(s), (1)

where Hm(s) is the per-word cross entropy of s ac-
cording to language model m. Lower scores for cross-
entropy difference indicate more relevant sentences, i.e.
those that are most like the task and most unlike the
full pool average. In bilingual settings such as ma-
chine translation, the bilingual Moore-Lewis criterion
[2] combines the cross-entropy difference scores from
each side of the corpus; i.e. for sentence pair 〈s1, s2〉:

(HLMIN1
(s1)−HLMPOOL1

(s1))

+(HLMIN2
(s2)−HLMPOOL2

(s2)) (2)

After sorting on the relevant criterion, the top-n sen-
tences (or sentence pairs) are selected to create a task-
relevant training set. Typically a range of values for n is
considered, selecting the n that performs best on held-
out in-domain data.

Cross-entropy difference data selection methods are
a common pre-processing step for machine translation
applications where model size or domain specificity are
important. These methods have been extended within
the MT community, e.g. by [3] using IBM model
socres, edit distance [4], neural language models [5].
Furthermore, [6] showed improvements by using EM to
identify true out-of-domain data from the pool to con-
trast against the in-domain data. They also highlight the
distrinction between relevance and fluency that under-
lies the proposed language difference models. More re-
cently, [7] proposed abstracting away rare words while
training the models used for the selection step.

We present a simple method for modeling the dif-
ference between two corpora, one that is tailored to fit
existing cross-entropy methods for data selection and
can readily be applied to other problems.

2.2. Some Words Matter More

All words in a text do not contribute equally to charac-
terize the text. However, which words are more im-
portant than others depends on the application. The
most frequent words get higher probability in a normal
n-gram language model. In topic modeling, content
words are prized for what they convey and stopwords

are ignored. By contrast, content words are largely
ignored in stylometry when deciding the relevance of
a text collection to a particular author or genre. In-
stead, the relevance is determined using function word
and part of speech features together. In particular, [8]
uses the difference in word frequencies across authors,
genres, or eras. Syntactic structure or at least certain
syntactic constructions are a potentially more informa-
tive source of stylometric features, [9] and [10]. POS
tag sequences were introduced as stylometric features
by [11] for document classification. [12] subsequently
noted that the frequency of the word should be taken
into account, else the classifier learns too much about
rare events whose empirical estimates of counts and
contexts might be incomplete.

A common thread is abstracting words into classes
or groups that have more robust statistics. Sequences
of these classes, such as part-of-speech (POS) tags, are
then used as lightweight representations of the syntac-
tic structure of a sentence. These can be thought of as
a quantifiable proxy for sentence register, style, genre,
and other ways of characterizing a corpus. For the more
specific task of domain adaptation or data selection, re-
placing some words in the text with their POS tags is
a way of creating general templates of what the text is
like. This has been used in MT to build better domain-
adapted language models [13] and for broader-coverage
data selection [7] as mentioned previously.

3. Proposed Method

The method of [1] for data selection explicitly takes ad-
vantage of the inherent difference between the task and
the pool corpora. Looking for sentences that are like
the task corpus and are unlike the pool does not work
if the two corpora are very similar. The language mod-
els trained on similar corpora will have similar distribu-
tions, so the scores in Equation 1 will subtract to zero.

However, in a domain adaptation scenario, the ex-
istence of a substantial difference between the task and
pool corpora is axiomatic. If this were not the case,
then there would be no adaptation scenario! The cross-
entropy difference method exploits this difference be-
tween the corpora. Because the corpora must differ,
then so must be the language models trained on them.
Because the language models must differ, then subtract-
ing the scores finds more relevant sentences.

We perform a similar trick with the text itself:
where there is a difference between the language mod-
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els trained on the task and the pool, then there is a dif-
ference between the frequencies of certain words in the
corpora. Where the frequencies of words differ, the cor-
pora differ. Where they do not differ, neither do the
corpora, so we can expect to see them at the same rate.
We can exploit this difference, because we know we are
going to subtract the cross-entropy scores.

Words that appear with approximately the same fre-
quency in both texts will have roughly similar cross-
entropies according to both the task and pool language
model. These words contribute negligibly to the cross-
entropy difference scoring because the Moore-Lewis
criterion subtracts the two language model scores. This
means that the similarity score is only based on words
whose empirical distributions are substantially differ-
ent from one corpus to the other. These words appear
in n-grams whose probabilities also differ between the
corpora, and these are the non-zero components of the
cross-entropy difference score for the sentence.

Whether the word is common or rare or inherently
topical has little bearing on the score: if it appears simi-
larly often in both corpora – regardless of how often that
is – it will not contribute to the cross-entropy difference.
A word’s impact on data selection depends on the two
corpora being compared in a specific data selection or
domain adaptation scenario.

We can take advantage of this to construct mod-
els of the corpora that specifically capture which words
matter for computing cross-entropy difference between
these specific two in-domain and pool data sets. Rather
than build new infrastructure, we will simply construct
a representation of the text that captures this discrimi-
native information, and then train an n-gram language
model on the new representation. This approach has the
advantage of being readily reproducible. We call the re-
sulting model a language difference model, and use it to
compute the cross-entropy difference scores.

The representation of the text is straightforward: we
replace each and every word with a token consisting of
two parts: the POS tag of the word, and a suffix indicat-
ing how much more likely the word is to appear in the
task corpus than in the pool corpus.

We use the ratio of the word’s probabilities in the
corpora to determine how much the two specific cor-
pora differ with respect to a word. The ratio simply
divides the frequency of the word in the task corpus by
the frequency of the word in the pool corpus. This can
also be readily computed using unigram LMs trained on
each of the corpora.

In this particular work we distinguish this ratio as
being quantized by powers of ten, as shown in Table 1.
We also add an eighth suffix (“/low”) to indicate words
that occur fewer than 10 times, following the results
in [7]. This was done to enable direct comparison of
the contribution of the skew suffixes with prior work.
In general, we only bucketed the probability ratios by
powers of ten to demonstrate the potential of language
difference models for data selection. There is ample
room for exploration.

Frequency Ratio (Task
Pool ) Suffix Example Token

1000 ≤ x /+++ JJ/+++
100 ≤ x < 1000 /++ NNS/++
10 ≤ x < 100 /+ NN/+
10−1 ≤ x < 10 /0 DET/0
10−2 ≤ x < 10−1 /- NN/-
10−3 ≤ x < 10−2 /- - JJ/- -
x < 10−3 /- - - NNP/- - -

Table 1: Suffixes to indicate how indicative a word is of
one corpus or the other

Our class-based n-gram language difference model
representation condenses the entire vocabulary from
hundreds of thousands of words down to 150-190 total
types, as shown in Table 2. Each type conveys a class of
words’ syntactic information –which can be considered
a proxy for style – as well as information about how
indicative the words are of one corpus or the other.

Language Vocab (full) Labels (Task) Labels (Pool)
English 3,904,187 148 182
French 3,681,086 147 190

Table 2: Corpus vocabulary size before and after replac-
ing all words with discriminative labels

As an example, consider the word supermassive,
which appears 21 times in the in-domain corpus, and
35 times in the data pool. The task pool contains 4.2M
tokens, and the data pool contains 1,180M tokens. The
empirical frequency ratio:

Ctask(supermassive)

4.2M
÷ Cpool(supermassive)

1, 180M

is calculated by:

1, 180M

4.2M
× Ctask(supermassive)

Cpool(supermassive)
≈ 281 ∗ 21

35
= 169
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The derivation of the labels used to replace a phrase
such as supermassive black holes in the class-based lan-
guage difference representation used for data selection
is shown in Table 3.

words: supermassive black holes

POS: JJ JJ NNS

ratio: 100 ≤ 169 < 1000 10−1 ≤ 8 < 10 10 ≤ 28 < 100

label: JJ/++ JJ/0 NNS/+

Table 3: Deriving the discriminative representation of
a phrase. Only the tokens in the last line appear in the
language difference model, as they are 1-to-1 replace-
ments for the original words in first line.

Once the text has been transformed into the class-
based language difference representation, we proceed
with the standard cross-entropy difference algorithm.
After computing the similarity scores and using them
to re-rank the sentences in the pool corpus, we trans-
form the text back into the original words and train the
downstream LMs and SMT systems as normal. This
process enables us to use models with robust statistics
for how the corpora differ in order to compute the rele-
vance score, and then use the traditional, n-gram based
systems for the downstream MT pipeline.

4. Experimental Framework

Our experiments were based on the French-to-English
MT evaluation track for IWSLT 2015. The task do-
main was defined to be TED talks, a translation sub-
domain with only 207k parallel training sentences. The
data pool consisted of 41.3M parallel sentences from
assorted sources, described in Table 4. The parallel
Wikipedia and TED corpus were from the ISWLT 2015
website.1 The remaining corpora were obtained from
WMT 2015.2 Our systems were tuned on test2010 and
evaluated using BLEU [14] on test2012, and test2013
from the same TED source.

All parallel data was tokenized with the Europarl to-

1https://sites.google.com/site/
iwsltevaluation2015/data-provided

2http://www.statmt.org/wmt15/translation-task.
html

Dataset # of sentences
Europarl v7 2.0M
News Commentary 0.2M
Common Crawl 3.2M
109 Fr-En 22.5M
UN Corpus 12.8M
Wikipedia 0.4M
TED corpus 0.2M

Table 4: Provenance of the 41M sentence French-
English data pool.

kenizer3 and lowercased with the cdec tool. We found
it was necessary to further preprocess the data by us-
ing perl’s Encode module to encode as UTF-8 octets
and decode back to characters. We replaced fatally mal-
formed characters with the Unicode replacement char-
acter, U+FFFD.

We trained all SMT systems using cdec [15], tuned
with MIRA [16]. The (4-gram) language models used
for the selection process were all trained with KenLM
[17]. The Stanford part-of-speech tagger [18] generated
the POS tags for both English and French.4

5. Results and Discussion

The standard Moore-Lewis data selection method uses
normal n-gram language models to compute the cross-
entropy scores according to each of the task and pool
language models. These scores get subtracted into the
cross-entropy difference score that is used to rank each
sentence in the data pool. We have proposed computing
these cross-entropy values differently: using a language
model trained over the class-based language difference
labels for each word in the sentence, instead of the LM
trained on the words themselves.

As an experimental baseline, we perform Moore-
Lewis data selection in the standard way using the nor-
mal text corpora ("xediff"). This method is shown
in grey in all figures. The language models were stan-
dard n-gram word-based models, with order 4 and the
vocabulary fixed to be the pool lexicon minus single-
tons, plus the task lexicon. The final English-side vo-
cabulary contained 1,796,862 words, and the French
side 1,728,231, with the size reflecting the noisiness and

3http://www.statmt.org/europarl/v7/tools.tgz
4The Stanford NLP tools use the Penn tagsets, which comprise

43 tags for English and 31 for French.
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heterogeneity of the data pool.
For a slightly harder baseline, we compare against

the approach of [7] in WMT 2015, who replace all rare
words (count < 10) with their POS tag during the selec-
tion process ("min10"). This method is shown in dark
blue in all figures. This baseline is expected to provide
a modest improvement in translation quality and a large
improvement in lexical coverage. Finally we perform
our proposed method of language difference models,
replacing all words in the corpora with a class-based
difference representation during the selection process
("new"). These results are shown in orange.

Each of these variants produces a version of the full
pool in which the sentences are ranked by relevance
score. For each of those ranked pools, we evaluate lan-
guage models trained on increasingly larger slices of
the data ranging from the highest scoring n = 500K
to the highest scoring n = 5M sentence pairs out of
the 41M available. We performed all experiments three
times: using only monolingual score on each language,
and using the bilingual score. We report only results on
monolingual English method due to space; the trends
were the same in all tracks.

5.1. Language Modeling

Figure 1 shows language modeling results. We present
results only for monolingual English-side data selec-
tion, but the results for monolingual French-side and
bilingual data selection are similar. For each of the three
data selection methods, we trained language models on
the most relevant subsets of various sizes. The language
models were configured identically to those used for se-
lection (order 4, and vocabulary fixed).

We evaluated these models on their perplexity on
the entire TED training set (207k sentences). The re-
cent work of [7] "min10" does not beat the vanilla
Moore-Lewis baseline perplexity, although they con-
verge. On the left side of Figure 1, it can be seen that
proposed method of language difference models pro-
vides a clear and consistent reduction of 13 perplexity
(absolute; 10% relative) over the standard word-based
method. This is roughly the same perplexity improve-
ment as was shown in [1], so adding the discrimina-
tive information to the text doubles the effectiveness of
cross-entropy difference -based data selection.

The right-hand side of Figure 1 shows the number
of out-of-vocabulary (OOV) tokens in the TED task cor-
pus according to LMs trained on the selected data. We

confirm the large vocabulary coverage improvement re-
ported in [7], with "min10" having 43% (relative)
fewer OOV’s at the 2-3M selection mark. Our proposed
new method is almost as good, with 37% fewer OOV’s
on the task.

Figure 1: Comparison of perplexity scores and OOV to-
kens on the TED corpus for monolingual (English) data
selection with word only, words-and-POS, and with
language difference information.

5.2. Machine Translation

The machine translation results comparing textual rep-
resentations for each data selection variant are in Fig-
ure 2. The BLEU scores of systems from the class-
based language difference ("new") approach are all
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substantially better than either baseline on both tst2013
and tst2012.

Figure 2: Comparison of BLEU scores for monolin-
gual (English) data selection with word only, words-
and-POS, and with language difference information.

When selecting 3M selected sentences and evalu-
ating on the most recent public test set, test2013,
the Moore-Lewis baseline of [1] has a BLEU score
of 35.60, the fewer-words (”min10”) baseline from [7]
scores 36.05 (+0.45), and our new method scores 37.46,
+1.85 BLEU over the first baseline and +1.4 over the
second, more recent, update to the state-of-the-art. The
BLEU scores of the proposed method reach a higher
plateau, and do so earlier. Of note is that only the lan-
guage difference models select data that outperforms
the in-domain corpus (the black line labeled “TED
baseline” in Figure 3.

We also tested using the selected data to build
a multi-model system, where the translation model

trained on selected data is used in combination with
one trained on the task data. Each resulting system thus
had two grammars and two language models. Figure
3 contains the results of these multi-model experiments
using the monolingual (English) selection method, and
evaluated on “test2013”. All the data selection methods
provided some benefit when used in the multi-model
setup, but the proposed method using language differ-
ence models was up to +1 BLEU better than the base-
line in [7] (which did not show multi-model results), up
to +1.3 BLEU than the cross-entropy difference base-
line, and +2 BLEU over the in-domain data alone.

Figure 3: Using system trained on selected data as part
of a two-model translation system, along with a system
trained on the task corpus.

It is thus possible to use a wordless text represen-
tation to select data more usefully than a word-based
method. This is surprising to us, as the language mod-
els trained on our class-based language difference text
have no way of knowing if the sentences being scored
are topically relevant. Modeling the difference between
corpora in aggregate can thus be a stronger indicator of
relevance than the words themselves for selection. We
collapsed all of the words in the vocabulary as a patho-
logical test case; a more finely-tuned approach would
perhaps distinguish between words to keep and words
to abstract away into a difference class.

5.3. Model Size Improvements

In addition to the translation system improvements,
the memory requirements for the data selection pro-
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cess itself dominated by the language model built us-
ing the data pool is dramatically smaller with our
class-based n-gram language difference representation
than the baseline models. The standard data selection
method requires training a 12GB (binarized) language
model over each side of the full 42M sentence pool in
order to compute the cross-entropy score according to
the general-domain corpus. The equivalent full-corpus
model using our approach is 126M, or 1% as large, be-
cause the vocabulary size is negligible.

5.4. Requirements

One drawback to this use of language difference mod-
els as presented here is our use of a part-of-speech tag-
ger in at least one of the languages. Languages with
large amounts of data generally seem to have POS tag-
gers already developed. However, there are plenty of
languages for which such linguistic tools are not acces-
sible. To construct the language difference model, the
discriminative (or skew) information about each word
is combined with some generalization or group label for
the word that conveys part of the word’s information in
the sentence. POS tags are just one of many ways of
grouping words together so as to capture underlying re-
lationships within a sentence. As such, we hypothesize
that other methods, such as Brown clusters [19] or topic
model labels, would suffice. In the case where no word
clustering method at all is available nor can be induced
for the language, it seems doubtful that one could have
enough data where data selection would do any good.

6. Conclusion

The data selection method of [1] directly uses the fact
that the in-domain and general corpora differ in order
to quantify the relevance of sentences in a data pool to
an in-domain task text. This relevance is based on how
much a sentence is like the in-domain corpus and unlike
the pool corpus.

We have presented a way to further leverage the dis-
criminative mechanics of the Moore-Lewis data selec-
tion process to distill a corpus down to a representation
that explicitly encodes differences between the corpora
for the specific data selection scenario at hand. We do
this by replacing every word in the corpora with its part-
of-speech tag plus a suffix that indicates the relative bias
of the word, or how much likelier it is to be in the task
corpus versus the pool.

Language models trained on data selected with our

approach have -13 lower absolute perplexity on in-
domain data than the baselines, doubling the effective-
ness of the cross-entropy difference based method. The
trained language models also had 37% fewer OOV’s on
the task data than the standard baseline. Furthermore,
machine translation systems trained on data selected
with our approach outperform MT systems trained on
data selected with regular n-gram models by up to +1.8
BLEU, or can be stacked with in-domain translation
model for up to +1.3 BLEU. These improvements come
despite using zero of the original words in the texts for
our selection process, and reducing the corpus vocabu-
lary to under 200 automatically-derived tags.

By changing the representation of the text, we can
use basic n-gram models to characterize the difference
between the corpora. This process enables us to use
common models with robust statistics that are tailored
to computing the similarity score, instead of training a
separate classifier or ignoring the textual differences as
the standard approach does.

As a bonus, our new representation and language
difference models mean that the data selection process
itself is now no longer memory-bound. Because the
corpus vocabulary is so compact, the language models
required are also much smaller, and ordinary computa-
tional resources now suffice to perform data selection
on practically any size corpus.

Much work remains, as there are surely other useful
factors and more nuanced representations. What else is
there about a task that differentiates its language from
others, how can we quantify these features, and which
of them are useful when measuring the difference be-
tween two texts? We have not explored the parame-
ter space for our approach, either. One might wish in
the future to try use powers of 2, or e, or linear bucket
ranges, or adjust the ranges to ensure words are evenly
distributed amongst buckets. Furthermore, one might
not want to collapse the most discriminative words – the
ones with the highest contribution to the cross-entropy
difference score – into the same classes based on POS
tag. It might be the case that it is only important to lump
the least discriminative words together so as to focus the
selection model on the differences between the corpora.
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Abstract
Most statistical translation models rely on the unsupervized
computation of word-based alignments, which both serve to
identify elementary translation units and to uncover hidden
translation derivations. It is widely acknowledged that such
alignments can only be reliably established for languages that
share a sufficiently close notion of a word. When this is not
the case, the usual method is to pre-process the data so as
to balance the number of tokens on both sides of the cor-
pus. In this paper, we propose a factored alignment model
specifically designed to handle alignments involving a syn-
thetic language (using the case of the Czech:English lan-
guage pair). We show that this model can greatly reduce the
number of non-aligned words on the English side, yielding
more compact translation models, with little impact on the
translation quality in our testing conditions.

1. Introduction
Most statistical translation models rely on the unsupervized
computation of word-based alignments, which serve both to
identify elementary translation units, as in phrase-based [1]
and hierarchical [2] Machine Translation (MT) and to un-
cover hidden translation derivations, as in n-gram-based MT
[3]. The de-facto standard for computing such alignments is
to use the IBM models [4], as implemented in efficient soft-
ware packages such as GIZA++ [5, 6] or fast align [7].

It is however widely acknowledged that such alignments
can only be reliably established for languages that share a
sufficiently close notion of a word. When this is not the case,
the usual method is to pre-process the data so as to balance
the number of tokens on both sides of the corpus. Assum-
ing translation into English from a morphologically rich lan-
guage, this process will decompose complex source forms
into shorter segments, and/or neutralize morphological vari-
ations that are not overly marked (and thus not necessary for
the translation process) in the morphologically simpler one:
forms that only differ in their case marking can, for instance,
be collapsed into one non-marked version for the purpose of
translating into English. This situation also occurs, though
in a more extreme form, when translating from a language
without explicit word separators such as Chinese [8, 9].

This strategy has been successfully applied to many lan-
guage pairs in the context of MT applications: [10] is a first
attempt to cluster morphological variants when translating

from German into English; while [11] focuses on splitting
German compounds. Similar techniques have been proposed
for other language pairs such as Czech [12], Arabic [13, 14],
Spanish [15], Finnish [16], Turkish [17] to name a few early
studies. Note that the benefits (in terms of translation quality)
of such pre-processing can be limited, except for the transla-
tion of out-of-vocabulary words.

In this paper, we focus on a slightly different problem,
which arises when aligning English with a synthetic lan-
guage. In this situation, many English words, notably func-
tion words such as determiners, pronouns and prepositions,
may have no direct equivalent on the source side, in cases
where for example their function is expressed morphologi-
cally by bound morphemes. Such problems, and their detri-
mental consequences for MT, are more thoroughly discussed
in § 2 taking the Czech:English language pair as the main
source of examples. To mitigate this undesirable situation,
we propose a factored alignment model specifically designed
to handle alignments involving a synthetic language, (see § 3,
where we introduce these new variants of IBM Model 2). In
our experiments with MT from and into English (§ 4), we
show that this model can greatly reduce the number of non-
aligned words on the English side, yielding more compact
translation models, with little impact on the translation qual-
ity in our testing conditions. We finally discuss related work
(§ 5) and conclude with further prospects.

2. Alignments with a Synthetic Language

Czech is a morphologically rich language with complex
nominal, adjectival and verbal inflection systems. For in-
stance, compared to the English adjective, which is invari-
able, its Czech counterpart has many different forms, vary-
ing in case (7), number (2) and gender (3). Therefore, Czech
words contain more information than in English, which is
typical of a synthetic language. On the other hand, the same
kind of information may be encoded in a separate word in
English, a language that has analytical tendencies. For in-
stance, the Czech nominal genitive marker plays a similar
role to the English preposition of, as in the engine of the car
→ motor auta.

Therefore, when aligning those two languages, linking
a Czech noun (or verb, or adjective) solely to its English
counterpart is quite unsatisfactory, since the information en-
coded in the Czech word ending is then lost (see Figure 1);
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Table 1: Unaligned preposition causing a mistake (Czech-
English).

source Na seznamu jsou v prvnı́ řadě plány na
rozsáhlejšı́ spolupráci v oblasti jaderné energetiky.

output On the list are the first in a series of plans for
greater cooperation in the field of nuclear energy.

ref. High on the agenda are plans for greater nuclear
co-operation.

Figure 1: Lexical alignments missing the English pronoun
and preposition that are encoded in the Czech endings.

and it might be desirable to also align neighboring function
words on the English side. Missing these links indeed leads
to mistakes in the output. In the Moses [18] baseline for
Czech to English described in § 4, we often observed that
an unaligned English preposition is associated to the wrong
phrase, leading to a translation error, as illustrated in Table 1.
In this example, the Czech v prvnı́ řadě means literally in
first-Locative rank-Locative and the phrases that were se-
lected incorrectly include prepositions that were not aligned:

• v prvnı́ - first in: this phrase pair leaves out the trans-
lation of the Czech preposition v and includes an En-
glish preposition that has no equivalent in the source,
and might be erronously aligned to v.

• řadě - a series of: the Czech locative case is not trans-
lated and the English preposition of is not present on
the Czech side.

We observe that standard alignment toolkits tend to miss
such links. Table 2 reports the ratio of English words that
remained unaligned after we trained alignments in both di-
rections with symmetrization, using fast align. Among
the 7% unaligned words, almost 50% are determiners, which
was predictable, since Czech does not have articles. Prepo-
sitions account for 33.2% of the unaligned words, over 10
points more than what we observe when aligning French and
English. A similar situation happens with Russian, where
more than 20% of English prepositions have no alignment.
This suggests a difference between languages with synthetic
tendencies such as Czech or Russian and more analytical
ones such as English in the way they encode grammatical
features such as case. When running asymmetric alignments
from Czech to English, numbers are even worse, with 52.9%
of the English prepositions remaining unaligned. We con-
clude that there is often no preposition on the Czech side to
be linked to an English one. On the contrary, aligning French

or Spanish to English means fewer unlinked prepositions and
a higher rate of unaligned nouns. Hence, the problem of
function word alignments is less obvious and the informa-
tion we lose the most is lexical, rather than grammatical.

We argue that a more suitable alignment should extract
phrases in which the English preposition is more systemati-
cally co-aligned with its head noun. This would make the ex-
traction of phrases with a dangling, unaligned of less likely,
and contribute to fixing certain case agreement errors.

Unaligned words are not only a problem in terms of
the translation of prepositions. Since Czech is a pro-drop
language, many English subject personal pronouns have no
source to align to, leading to their omissions in many hypoth-
esis translations when translating into English, such as in the
clause with no subject found in one of the outputs of our
baseline systems and will go into it. Aligning more English
pronouns to Czech verbs should help to capture the necessity
of jointly translating a verb into a pronoun and a verb in the
target. In our English-to-Czech baseline (§ 4), we also often
encounter situations where a negative Czech verb is trans-
lated into an affirmative form in English. Since Czech nega-
tion is encoded as a prefix (ne-, see Table 3), it is difficult to
align it to English words such as not.1

Note that the units we need to find alignments for on the
Czech side always encode grammatical information: person,
negation and case, which should align to English function
words. This is the main motivation for our proposal to add
morphological alignments on top of lexical ones.

3. Morphological Alignment Model

3.1. Aligning words with feature vectors

Our model aims to make word-to-word alignments more
dense by linking morphological tags on the Czech side to
English function words. We first perform a morphological
analysis of Czech and obtain a vector-based representation
for each token, containing the lemma and various morpho-
logical labels (see § 2). Our model thus assumes sentences
taking the form of a vector e of I word forms on the En-
glish side and of a K × J matrix f on the Czech side, where
each row corresponds to various features of the word (such
as lemma, person and case, as shown in Figure 2.a). By con-
vention, we assume that the lemma is at index 1 in vector fj .

Using these notations, our alignment model is a simple
variant of IBM model 2 where (a) lemmas are aligned inde-
pendently from one another, and (b) tag alignments are inde-

1The adverb not makes up the majority of unaligned adverbs in Table 2.
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Table 2: Unaligned English words with symmetrized alignments across four language pairs using fast align. POS
unali. : rate of

unaligned occurrences of the POS over all unaligned words ; unali.
POS : rate of unaligned words over all occurrences of the POS.

POS Cs-En (asym) Cs-En (sym) Ru-En Fr-En Es-En
POS
unali.

unali.
POS

POS
unali.

unali.
POS

POS
unali.

unali.
POS

POS
unali.

unali.
POS

POS
unali.

unali.
POS

Determiners 26.2% 65.2% 48.7% 30.1% 16.2% 31.0% 13.0% 11.6% 15.1% 4.4%
Prepositions 28.6% 52.9% 33.2% 15.3% 19.1% 23.3% 20.1% 12.4% 32.4% 7.2%
Auxiliaries 9.7% 37.6% 4.3% 4.4% 5.4% 19.5% 6.4% 11.8% 11.9% 5.6%
Nouns 8.7% 8.8% 3.4% 0.9% 26.7% 14.8% 28.6% 7.6% 8.1% 1.1%
Adverbs 4.9% 26.8% 1.9% 2.5% 3.6% 17.8% 3.2% 9.6% 6.3% 4.1%
Pers. Pronouns 7.3% 65.5% 0.6% 1.2% 2.5% 15.8% 1.6% 9.9% 3.0% 2.5%
Aligned words 72.0% 93.0% 81.6% 90.3% 96.3%

Table 3: Unaligned negation adverb causing a mistake
(English-Czech).

source he is not at all aggressive
output je vůbec agresivnı́

he is at all aggressive

ref. nenı́ vůbec agresivnı́
he is not at all aggressive

(a) (b)

Figure 2: Morphological alignments. (a) The source 1st per-
son tag is aligned to the target pronoun I and the instrumental
case tag to the preposition by. (b) Lemma and tag alignments
are merged to provide links between word forms.

pendent given the alignment of their lemma, yielding:

p(f |e) =
∑

a

J∏

j=1

[
p(aj1|e)p(fj1|eaj1

) (1)

×
K∏

k=2

p(ajk|aj1)p(fjk|eajk
)
]

This model thus allows us to integrate into the alignment
probability the morphological properties of a lemma, which
should for instance reinforce the alignment of a Czech noun
with an English noun when the former is marked with a case
that often matches a nearby preposition of the latter. Note
that using the IBM model 2 is somewhat oversimplistic, as
it assumes for instance that morphological markers of close
words are unrelated, even though agreement rules enforce
similar cases for words within the same noun phrase. A more
realistic version, in which such dependencies would be mod-
eled at least indirectly, would be to use a better distortion

model to constrain the alignment of neighboring lemmas.
Given the implementation choices described above, it was
not necessary to develop this idea any further.

To complete the description, note that we assume that the
alignment of the lemma (aj1) only depends on j, I and J ;
and that the alignments of the morphological tags (ajk) only
depend on the difference (ajk − aj1). We further enforce
p(ajk|aj1) = 0 outside of a fixed-size window centered on
aj1 (3 words to the left side, one word to the right side).2 The
model defined in Equation (1) lends itself well to estimation
via EM. We however also performed experiments with more
constrained implementations, as described below.

3.2. Implementation variants

In the experiments reported below, we constrast various im-
plementations of this alignment model in the computation of
the Czech-to-English alignments; note that we use a standard
word-based IBM model for the other direction. A first con-
dition (joint//ibm in Table 10) uses a faithful implementation
of EM for the model of Equation (1), in which we initialize
uniformly the translation and the distortion parameters.

A second condition uses the output of a first pass align-
ment to better constraint the alignments of lemmas. The first
stage computes alignments between Czech lemmas and En-
glish words using standard word alignment pipelines: in our
experiments, we used both asymmetric alignments computed
with IBM model 2 and IBM model 4, or symmetrized align-
ments obtained by running these models in both directions.
In any case, we keep these alignment links fixed during the
second stage, in which we estimate the morphological align-
ment model and compute alignments links for tags.

A softer version of the second condition is to use the first
pass alignments to initialize the translation model, which are
then free to change in the course of the EM procedure.

Finally note that we also enforce a void alignment for
“null” morphological tags (eg. the case marking for verbs, or
the tense of nouns, see Figure 2.b).

For all conditions, training involves multiples iterations

2As for the right side, we consider only one position to target words like
not and ’s, as in can not, Hana ’s hand.
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of EM with models of increasing complexity for a fixed num-
ber of iterations. We first train the lemma-to-word align-
ments, before also considering the tags-to-word parameters.
A final decoding computes the optimal alignment for mor-
phological tags; at this stage, we only keep alignment links
that match a non-aligned word on the English side, and use
these to complete the baseline alignment, as shown in Fig-
ure 2.b. The rest of the training of the translation model
(phrase extraction, etc.) remains unchanged.

4. Experimental Results
4.1. Data and Experimental Setup

We used two datasets to train our SMT systems:

• A small dataset consisting of about 790k parallel sen-
tences taken from the Europarl [19] and News Com-
mentary corpora distributed for the shared translation
task of WMT 2015.3 The monolingual data is made
up of one side of the parallel corpora and the News
Crawl corpora (2014) and adds up to 29M sentences
for English and 37M for Czech.

• A bigger dataset of about 15M parallel sentences,
composed of the previous set and the Czeng 1.0 cor-
pus [20]. We added to the monolingual data one side
of the Czeng 1.0 corpus and the previous versions of
the News Crawl corpora (2007-2013). and obtained a
total of 52M Czech and 43M English sentences.

This data is tokenized and true-cased before starting the
alignment. The morphological analysis on the Czech side
is performed using MorphoDiTa [21]. After word alignment,
all downstream training steps are carried out using the Moses
toolkit [18]: this includes phrase extraction and scoring, lex-
ical weighting and learning the lexicalized reordering mod-
els. 4-gram language models are trained with KenLM [22]
for both languages. Tuning is performed using MERT [23]
on the test set of the WMT 2014 translation task. For the
sake of comparison, we also report results obtained with n-
gram-based systems trained with Ncode [3, 24].

4.2. Alignment Setup

We used M morphological features to fill the Czech word
vectors f in our experiments: case, person, time/mode, and
whether a verb has a negative form - Czech representations
have therefore M = 5 dimensions.

Regarding condition 1, where lexical alignments are
learnt jointly with morphological links (for Czech-to-
English), 4 strategies were tested:

• ibm//none: only forward (cs-en) alignments;

• joint//none: only forward (cs-en) alignments trained
according to our model;

3http://statmt.org/wmt15/

• ibm//ibm: forward and backward alignments sym-
metrized with the grow-diag-final-and heuristics;

• joint//ibm: symmetrization is performed with joint-
none and the backward (en-cs) alignments;

Regarding the training condition 2, we used
fast align (resp. Mgiza) to get initial IBM2 (resp.
IBM4) alignments between Czech lemmas and English
words. We added to the former 3 strategies to obtain
different alignment types:

• ibm+morph//none: forward and morphological align-
ments;

• ibm+morph//ibm: a symmetrized version also involv-
ing backward en:cz alignments;

• [ibm//ibm]+morph: morphological alignment is per-
formed after symmetrization.

During decoding, the most likely morphological align-
ments are subject to three constraints in order to be accepted:

• The candidate English lemma should not be aligned;

• The morphological alignment probability should be
higher than a threshold (0.05 in our experiments);

• The candidate English lemma should have a frequency
higher than 1,000 occurrences (15,000 for the bigger
data set) in the English part of the parallel corpus.

These heuristics help to improve the quality of align-
ment by reducing links with rare words that may have a high
probability, given a specific tag. Since the words we target
are mainly English function words (pronouns, prepositions,
etc.), it seems reasonable to focus on a small set of high fre-
quency tokens. Note finally that the same word alignments
were used both to train the en-cs and the cs-en systems.

4.3. Results

Morphological alignments effectively address the problem
of previously unaligned words by linking function words,
as reflected in Table 4, even though ibm+morph//none also
returns a few more alignments for nouns. This shows
that some lexical alignments had also been wrongly per-
formed, most of which are corrected by symmetrization in
the ibm+morph//ibm variant. The first impact of morpho-
logical alignments is a reduction of the phrase table size:
using fast align, we lost almost 1.5M phrases when
adding morphological alignments to the symmetrized base-
line, meaning that over 6% of initial phrases have been dis-
carded (see Table 5).4 Mgiza alignements show the clear-
est contrast, since the number of phrase pairs for ibm//ibm
(44M) is reduced to less than 28M in ibm+morph//ibm.

4Note that if the number of phrase pairs is lower, the average length of
phrases stay the same in every system. For instance, ibm//ibm has 3.77
tokens per Czech phrase and 4.26 per English one, which is very similar to
[ibm//ibm]+morph with respectively 3.79 and 4.25 tokens per phrase.
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Table 4: Links added by morphological alignments (Czech-English) using fast align. POS
unali. : rate of unaligned occurrences

of the POS over all unaligned words ; unali.
POS : rate of unaligned words over all occurrences of the POS.

POS ibm//none ibm+morph//none ibm//ibm [ibm//ibm]+morph joint//ibm
POS
unali.

unali.
POS

POS
unali.

unali.
POS

POS
unali.

unali.
POS

POS
unali.

unali.
POS

POS
unali.

unali.
POS

Determiners 26.2% 65.2% 32.6% 58.2% 48.7% 30.1% 58.7% 28.5% 51.6% 24.3%
Prepositions 28.6% 52.9% 25.6% 34.0% 33.2% 15.3% 24.4% 8.8% 31.3% 11.0%
Auxiliaries 9.7% 37.6% 7.0% 20.6% 4.3% 4.4% 3.3% 2.7% 4.5% 3.5%
Nouns 8.7% 8.8% 9.4% 6.9% 3.4% 0.9% 3.4% 0.7% 3.0% 0.6%
Adverbs 4.9% 26.8% 5.0% 19.8% 1.9% 2.5% 2.0% 2.2% 1.9% 2.0%
Pers. Pronouns 7.3% 65.5% 4.7% 25.7% 0.6% 1.2% 0.7% 1.0% 0.7% 1.0%
Aligned words 72.0% 79.3% 93.0% 94.4% 94.6%

Table 5: Results in BLEU for Czech-English (smaller data condition).

fast align (IBM2) Mgiza (IBM4)
Alignment Setup Ncode Moses Phrase Table Size Moses Phrase Table Size
ibm//none - 20.34 50,462,274 20.31 56,967,921
ibm+morph//none - 19.98 35,364,892 20.26 45,549,682
ibm+morph//ibm - 20.08 20,286,841 20.14 27,820,416
ibm//ibm 19.72 20.34 22,799,794 20.35 44,410,638
[ibm//ibm]+morph 19.68 20.26 21,247,701 20.33 40,805,062

Table 6: Results in BLEU for English-Czech (for the small
data condition). The size of the phrase tables is the same as
in Table 5.

fast align Mgiza
Alignment Setup Ncode Moses Moses
ibm//none - 13.94 14.24
ibm+morph//none - 13.90 14.03
ibm+morph//ibm - 14.02 13.91
ibm//ibm 14.02 14.09 14.45
[ibm//ibm]+morph 14.03 14.21 14.20

We evaluated our systems using the test set of the
WMT 2015 translation shared task. Even though the ef-
fect on the BLEU score is minor, we observe a slight im-
provement when translating into Czech with fast align5

(see Table 6), which is understandable, since case is the ma-
jor morphological category ignored by baseline alignments.
Thus the new phrase table helps to better predict case in-
flection, mainly according to the preposition in the source
sentence. Indeed, Table 7 shows the wrong translation of
the English preposition by in the ibm//ibm system where the
noun phrase is in nominative case. Our [ibm//ibm]+morph
system successfully translates the preposition by the instru-
mental case needed for such passive constructions. More-
over, in the same direction, handling negation also helped to
fix some baseline system errors, as for the example in Table 3
(our system actually outputs the reference sentence).

5The descriptions of our outputs relate to the alignments performed using

Table 7: Better case prediction (English-Czech).

source who are captured by Ukrainian soldiers
ibm//ibm kteřı́ zadržený ukrajinštı́ vojáci

who-Plur captured-Passive-Sing Ukrainian-Nom soldiers-Nom

[ibm//ibm]+morph kteřı́ jsou zajati ukrajinskými vojáky
who-Plur are captured-Passive-Plur Ukrainian-Ins soldiers-Ins

Note that a better management of case is also beneficial
in the inverse direction (Czech-English), as shown in Table 8,
where the erroneous phrase pairs described in § 2 (v prvnı́ -
first in; ) řadě - a series of get a lower probability, allowing
the correct translation to be selected during decoding. As a
result, we observe that the most frequent prepositions (of, to,
in, for) are generated less often in [ibm//ibm]+morph (4,070)
than in the ibm//ibm (4,190), which we interpret as a sign of
more relevant use of English prepositions in a morphology-
aware system.

For the same translation direction, the number of subject
personal pronouns is higher in [ibm//ibm]+morph (1,629)
than in ibm//ibm (1,561), which suggests better constructions
in the English output, such as in Table 9, where the Czech
verb with no subject expressed is translated by a verb with its
subject pronoun corresponding to the source word ending.

Furthermore, handling negation during the alignment
step also yields improvement when translating into English.
Indeed, the word not has 206 occurrences in ibm//ibm and
234 in [ibm//ibm]+morph, suggesting that the latter system

fast align.
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Table 8: Better preposition extraction for relevant phrases
(Czech-English).

source Na seznamu jsou v prvnı́ řadě plány na
rozsáhlejšı́ spolupráci v oblasti jaderné energetiky.

ibm//ibm On the list are the first in a series of plans for
greater cooperation in the field of nuclear energy.

[ibm//ibm]+morph On the list are primarily plans for greater
cooperation in the field of nuclear energy .

Table 9: Subject personal pronoun generation (Czech-
English).

source a budeme si ho rozebı́rat
and will-Ps1-Plur it analyse

ibm//ibm and will go into it
[ibm//ibm]+morph and we will discuss it

conveys negation more.
Alignments with the time and mode tags for verbs helped

to generate more correct English analytical constructions:
while ibm//ibm omits the auxiliary in the translation of a
Czech present verb into a passive form (who usually based),
[ibm//ibm]+morph generates the right construction, despite
the insertion of an adverb between both verbs: who are usu-
ally based. Nevertheless, for 2,639 auxiliaries in the former,
the latter contains 2,716 of them, bringing almost insignifi-
cant changes.

We notice slightly worse results with the condition 1,
where joint//ibm is 1 BLEU point below ibm//ibm for Czech-
English, and 0.6 for English-Czech (see Table 10). The num-
ber of phrase pairs is a lot lower here than with condition 2,
since more alignments are generated, as is shown in Table 4.
Nevertheless, the score of the joint//none systems in both di-
rections show that these alignments are very noisy, since they
greatly underperform the ibm//none system.

Finally, Table 11 suggests that no impact on the BLEU
score compared to the baseline is to be expected using more
data, while the total ratio of aligned words went from 91.7%
to 93.6% and 7% of initial phrases were discarded from the
table in [ibm//ibm]+morph.

Table 10: Results in BLEU with joint learning of morpho-
logical and lexical alignments using Moses for the small data
condition (+fast align init: parameter initialization with
fast align output)

Alignment Setup cs-en en-cs Phrase Table Size
ibm//none 20.34 13.94 50,462,274
joint//none 18.69 13.05 31,482,262
ibm//ibm 20.34 14.09 22,799,794
joint//ibm 19.33 13.47 15,179,849
+ fast align init 19.41 13.40 15,210,792

Table 11: Results in BLEU for the large data condition
(Mgiza with Moses)

Alignment Setup cs-en en-cs Phrase Table Size
ibm//ibm 24.04 16.48 324,969,903
[ibm//ibm]+morph 24.07 16.38 301,714,878

5. Related Work
Aligning English with “morphologically-complex” lan-
guages poses several challenges, depending on the exact dif-
ferences between the source and target – it has, over the
years, attracted a considerable amount of effort, which has
only been briefly reviewed here. In fact, morphological com-
plexity can have multiple consequences for alignment.

First, it is often assumed that the morphologically com-
plex language has more word types, due for instance to a
richer inflectional system: this is the case for French or Span-
ish, which have a much richer conjugation than English.
This, in turn, yields sparser counts, and less reliable prob-
ability estimates for the alignment models (notwithstanding
a high Out-of-Vocabulary (OOV) ratio at testing time). The
simplest remedy is to normalize the target side, using lem-
mas or other kinds of abstraction instead of words for the
purpose of the alignment [25, 26, 27]. Note that defining
the optimal level of abstraction is not obvious and often re-
quires a significant tuning effort. Going one step further, it
may also be interesting to keep these abstract representations
for translation, but this requires a non-trivial post-processing
step to restore the correct inflection when translating into the
morphologically rich language [28]. The alternative strategy,
which translates word forms, is plagued with OOV issues
and requires specific strategies to properly handle unknown
forms - as in the factored-models approach of [29, 30]. In our
own alignment model, we borrow the idea to compute a first-
pass alignment based primarily on lemmas, which seems to
be more effective than using full forms. However, in our
case, morphological information is not used to smooth align-
ment counts, but rather to take account of the function words
in the English side.

The other well documented issue with morphologically
rich languages is that word forms are more complex, mean-
ing that they are made of several parts (morphemes for basic
lexical units, lexemes for compounds). Depending on the
language under consideration, identifying the orthographi-
cal and/or phonological counterparts of this elementary units
can be fairly easy (in the case of purely agglutinative lan-
guages) or near impossible (in the case of fusional lan-
guages), with a large number of in-between situations. Many
rule-based attempts at performing such decompositions as a
pre-processing of the source side text have nonetheless been
entertained: see [12], Arabic [13, 14], Spanish [15], Finnish
[16], Turkish [17] to cite a few. Note that the opposite ap-
proach, consisting of “splicing” English words into artifi-
cially complex forms has also been considered (eg. in [31]).
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As noted by several authors, decomposing word forms
into morphemes goes against the main intuition of phrase-
based SMT, which favors the translation of large units, and
it also reduces the effectiveness of language models, as it
decreases the size of the context. To mitigate these poten-
tially negative effects, it is possible to simultaneously con-
sider multiple decomposition schemes, which are then re-
combined using system combination techniques [32, 33, 34].
This however requires mechanisms to generate multiple mor-
phological decompositions of the same text, using for in-
stance the unsupervized segmentation models of [35, 36, 37].
As pointed out in [38], performing morphological segmenta-
tion of the source independently of the target is vastly sub-
optimal, and joint models for alignment and segmentations
are probably more appropriate in a MT context eg. [38, 39].
Our main focus being a fusional language, we have not made
any attempt to segment the source words into smaller mor-
phemes, and have instead used a feature-based representation
associating a lemma and morphological properties.

6. Conclusions
This paper has described a factored alignment model specif-
ically designed to handle alignments involving a language
with synthetic tendencies, such as Czech. We have shown
that this model can greatly reduce the number of non-aligned
words on the English side, yielding more compact transla-
tion models that contain more relevant phrases. Case is the
morphological feature that produces most alignments, which
turned out to give some improvement when translating into
Czech. On the other hand, using time and mode did not bring
the expected gain, although it did help to better translate verb
inflection in Czech and constructions in English.

The reported improvement over the baseline systems is
not confirmed by a straight BLEU improvement. However
we showed that one-to-many alignments from Czech to En-
glish help to better take into account the specificities of each
language. While the English output has more words than
in the baseline system, such as negative adverbs, auxiliaries,
pronouns (disregarding the fact that it has fewer preposi-
tions), the Czech output is more concise, showing eg. fewer
incorrect verbal constructions and more reliance on inflec-
tion, which leads to better agreement.

In future work, we intend to confirm these tendencies by
(a) using an improved model of morphological alignments,
with an improved modeling of the dependency between tags
and lemmas, and (b) testing our model with other translation
tasks involving a synthetic target language.
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Abstract
Recently, a growing need of Confidence Estimation (CE) for
Statistical Machine Translation (SMT) systems in Computer
Aided Translation (CAT), was observed. However, most of
the CE toolkits are optimized for a single target language
(mainly English) and, as far as we know, none of them are
dedicated to this specific task and freely available.

This paper presents an open-source toolkit for predicting
the quality of words of a SMT output, whose novel contribu-
tions are (i) support for various target languages, (ii) handle
a number of features of different types (system-based, lex-
ical, syntactic and semantic). In addition, the toolkit also
integrates a wide variety of Natural Language Processing or
Machine Learning tools to pre-process data, extract features
and estimate confidence at word-level. Features for Word-
level Confidence Estimation (WCE) can be easily added /
removed using a configuration file.

We validate the toolkit by experimenting in the WCE
evaluation framework of WMT shared task with two lan-
guage pairs: French-English and English-Spanish. The
toolkit is made available to the research community with
ready-made scripts to launch full experiments on these
language pairs, while achieving state-of-the-art and repro-
ducible performances.

1. Introduction
Statistical Machine Translation (SMT) has proven its effi-
ciency during the last decade. For Computer Aided Trans-
lation (CAT) of documents, the following process is now
broadly used: the SMT system produces raw translations
then trained professional translators post-edit (correct) trans-
lation errors (PE). We believe that this SMT+PE pipeline
can be improved using automatic confidence estimation (CE)
where the system gives some clues about the quality of the
SMT output. For instance, post-editors require to have infor-
mation about the possible quality of the translation (Should
they just post-edit the translation or rewrite the whole output?
What are the main words/phrases they need to focus on?).

Building a method that could point out both correct and
incorrect parts in SMT output is a key component to solve
the above problems. When we limit the concept “parts”

to “words”, the automatic confidence estimation process is
called Word-level Confidence Estimation (WCE).

Past years have seen the emergence of shared tasks to es-
timate the translation quality (like WMT CE shared task1).
In 2015, the organizers called for methods to predict the
quality of SMT output at run-time on three levels: sentence-
level (Task 1), word-level (Task 2) and (new) document-level
(Task 3). This paper more precisely deals with the second
task (WCE) but we believe it might be of interest to re-
searchers who work in quality assessment for SMT.

Contributions Our experience in participating in task 2
(WCE) leads us to the following observation: while feature
processing is very important to achieve good performance,
it requires to call a set of heterogeneous Natural Language
Processing tools (for lexical, syntactic, semantic analyses).
Thus, we propose to unify the feature processing, together
with the call of machine learning algorithms, to facilitate the
design of confidence estimation systems. The open-source
toolkit proposed (written in Python and made available on
GitHub) integrates some standard as well as in-house fea-
tures that have proven useful for WCE (based on our experi-
ence in WMT 2013 and 2014).

Outline The paper is organized as follow: Section 2
presents WCE task and related works on this topic. Section
3 is an overview of the features we extract while Section 4
describes the toolkit itself. Performances obtained using our
WCE toolkit are given in Section 5 while Section 6 illus-
trates how one can easily apply feature selection for WCE
using the provided code. Finally, Section 7 concludes this
work and gives some perspectives.

2. WCE formalisation and related work
2.1. WCE formalisation
Machine translation (MT) consists in finding the most prob-
able target language sequence ê = (e1, e2, ..., eN ) given a
source language sentence f = (f1, f2, ..., fM ). We can
represent Word-level Confidence Estimation (WCE) infor-
mation as a sequence q (same length N of ê) where q =

1Since 2012 (http://www.statmt.org/wmt12/
quality-estimation-task.html)

196

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



(q1, q2, ..., qN ) and qi ∈ {good, bad}2. Basically, the WCE
component solves the equation3:

q̂ = argmax
q

{p(q|f, e)} (1)

This is a sequence labelling task that can be solved with
several Machine Learning techniques such as Conditional
Random Fields (CRF) [1]. However, to train sequence la-
belling models, we need a large amount of training data for
which a triplet (f, e, q) is available. In our case, we use bi-
nary labels associated to each word: Good or Bad to indicate
whether a word is “correct” or “incorrect”, respectively.

2.2. Related work
According to [2], features for Word-level Confidence Esti-
mation (WCE) can be classified in two types regarding their
origin: the “external features” and the “internal features”. On
the one hand, internal features are extracted from the SMT
system itself like alignment table, N -best list, word graph,
etc. On the other hand, external features mainly come from
linguistic knowledge sources like syntactic parser, WordNet
or BabelNet API, etc. In our approach, we use both types of
features. They are mostly detailed in Section 3.

The first works about confidence estimation [3, 4], fo-
cused at the word level, was inspired by work done in au-
tomatic speech recognition [5]. The combination of a large
amount of features, through a Naive Bayes model and a Neu-
ral Network, showed that Word Posterior Probability (WPP)
was the most relevant internal feature. Later on, [6] inte-
grated POS tagging and other external features. In the same
way, [7] proposed 70 linguistic features for quality estima-
tion at sentence level. Some of these features can be applied
at word level. Their work also revealed the need of efficient
machine learning algorithms to integrate multiple features
and achieve better performance.

Recent workshops proposed some shared evaluation
tasks of WCE systems, in which several attempts of partic-
ipants to mix internal and external features were successful.
The estimation of the confidence score uses mainly classi-
fiers like Conditional Random Fields [8, 9], Support Vector
Machines [10] or Perceptron [11].

Further, some investigations were conducted to deter-
mine which feature seems to be the most relevant. [10] pro-
posed to filter features using a forward-backward algorithm
to discard linearly correlated features. Using Boosting as
learning algorithm, [2] was able to take advantage of the most
significant features.

Our work, inspired by all those previous papers, proposes
to mix internal and external features and uses CRF as deci-
sion algorithm to estimate a WCE score. The technical nov-
elty is their integration in a single toolkit, with ready-made
scripts, to quickly run reproducible experiments on differ-

2qi could be also more than 2 labels, or even scores but this paper only
deals with error detection (binary set of labels).

3In the equation, p is a probability but it could be any scoring function.
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Figure 1: Example of Confusion Network

ent language pairs. It also provides a built-in feature selec-
tion approach. Contrarily to the toolkit proposed in [12], our
framework allows a quick and easy reproduction of the re-
sults presented in this paper and addition of new features is
straightforward.

3. Available Features
Our toolkit extracts several internal and external features to
train a classifier, as indicated in Table 1. These features
were chosen because of their relevance in previous Word-
level Confidence Estimation tasks [13, 14, 15]. Some of
them are already described in detail in some previous papers
[5, 3, 4, 6, 10, 2, 16]. Consequently, the novel features, which
we added into our current toolkit, are in “bold” in Table 1.
Also, the features in “italic” are conventional features but
extracted using a new approach.

The feature list could be extended (by us or by other con-
tributors) in the future, since the toolkit is made available to
the research community. For instance, we plan to integrate
the use of monolingual or bilingual word embeddings fol-
lowing the works of [17].

It is important to note that our toolkit extracts the features
regarding tokens in the machine translation (MT) hypothesis
sentence. In other words, one feature is extracted for each
token in the MT output. So, in the Table 1, target refers
to the feature coming from the MT hypothesis and source
refers to a feature extracted from the source word aligned to
the considered target word. More details on some of these
features are given in the next subsections.

3.1. Internal Features

These features are given by the Machine Translation system,
which outputs additional data like N -best list.

In addition to features corresponding to source / target
words or POS (feat. 5 to 10), Word Posterior Probabil-
ity (WPP), WPP Max, WPP Min and Nodes features are
extracted from a confusion network, which comes from the
output of the machine translation N -best list. WPP Exact is
the WPP value for each word concerned at the exact same po-
sition in the graph. WPP Any extract the same information
at any position in the graph. WPP Min gives the smallest
WPP value concerned by the transition and WPP Max its
maximum.

In the example shown in Figure 1, the target word “func-
tion” gets a WPP Exact at 0.2, WPP Min at 0.1 and WPP
max at 0.4.
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1 Proper Name 9 Target Word 17 WPP Any∗ 25 Constituent Label
2 Unknown Stem 10 Target Stem 18 WPP Min∗ 26 Distance To Root
3 # of Word Occurrences 11 Word context Alignements 19 WPP Max∗ 27 Polysemy Count – Target
4 # of Stem Occurrences 12 POS context Alignements 20 Nodes 28 Occur in Bing Translator
5 Source POS 13 Stem context Alignements 21 Numerical 29 Occur in Google Translate
6 Source Word 14 Longest Target N -gram Length 22 Punctuation
7 Source Stem 15 Longest Source N -gram Length 23 Stop Word
8 Target POS 16 WPP Exact∗ 24 Target Backoff Behaviour

Table 1: Features extracted by the toolkit: highlights in “bold” are the new features we propose, the other features are those
classically extracted ; we put in “italic” those for which we propose a new extraction method compared to previous work (see
Section 4.2.3). Features indicated with “ ∗ ” are internal ones.

3.2. External Features
Below is the list of the external features we use in our toolkit:

• Proper Name: indicates if a word is a proper name
(same binary features are extracted to know if a token
is Numerical, Punctuation or Stop Word).

• Unknown Stem: informs whether the stem of the con-
sidered word is known or not.

• Number of Word/Stem Occurrences: count the oc-
currences of a word/stem in the sentence.

• Alignment context features: these features (#11-13
in Table 1) are based on collocations and proposed by
[18]. Collocations could be an indicator for judging if
a target word is generated by a particular source word.
We also apply the reverse, the collocations regarding
the source side:

– Source alignment context features: the combina-
tions of the target word, the source word (with
which it is aligned), and one source word before
and one source word after (left and right contexts
respectively).

– Target alignment context features: the combina-
tions of the source word, the target word (with
which it is aligned), and one target word before
and one target word after.

With the example presented in Table 2, the target word
“of” is aligned with “de”. The source context extracted
corresponds to the two words around “de”, which are
“nature” and “l’ ”. The source alignment context fea-
tures are “of/nature”, “of/de” and “of/l’ ” In the same
way, he target alignment context features of “de” are:
“de/nature”, “de/of” and “de/the”.

We applied the same context extraction for Part-of-
Speech and Stems.

Target the nature of the independence granted ...
Source la nature de l’ indépendance octroyée ...

Table 2: Example of parallel sentence where words are
aligned one-to-one.

• Longest Target (or Source) N -gram Length: we
seek to get the length (n + 1) of the longest left se-
quence (wi−n) concerned by the current word (wi) and
known by the language model (LM) concerned (source
and target sides). For example, if the longest left se-
quence wi−2, wi−1, wi appears in the target LM, the
longest target n-gram value for wi will be 3. This value
ranges from 0 to the max order of the LM concerned.

• The word’s constituent label (Constituent Label) and
its depth in the constituent tree (Distance to Root) are
extracted using a syntactic parser, the Figure 2 illus-
trates the distance between a word and its root in the
tree. In the case of “working”, the Constituent Label
is VBG and the Distance to Root value is 6.

Depth

0

1

2

3

4

5

6

Figure 2: Example of constituent tree.

• Target Polysemy Count: we extract the polysemy
count, which is the number of meanings of a word in a
given language.

• Occurences in Google Translate and Occurences in
Bing Translator: in the translation hypothesis, we
(optionnally) test the presence of the target word in on-
line translations given respectively by Google Trans-
late and Bing Translator.
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Figure 3: Pipeline of our Word-level Confidence Estimation tool

4. Toolkit
In this section, we detail our toolkit, which is a complete out-
of-the-box Word-level Confidence Estimation (WCE) sys-
tem. It is a customizable, flexible, and portable platform.

4.1. Pipeline Overview
Our toolkit is described in Figure 3. It contains three essen-
tial components: preprocessing, feature extraction and train-
ing / labeling. It integrates several existing Natural Language
Processing (NLP) tools and API. It is developed in Python 3
to use efficiently existing libraries/toolkits as well as being
object-oriented designed.

The source code is available on a GitHub repository4 and
provided with ready-made scripts to run reproducible exper-
iments on a French–English WCE task (for which the data is
also made available).

4.2. System Design
The first steps are the preprocessing and the feature extrac-
tion during which the toolkit processes and adds information
to the initial corpora available. Then, the most important step
consists of training a classifier using the features extracted
(training phase) or in the labelling of the test corpus (decod-
ing phase).

We also added a threshold optimization and a feature se-
lection phase which are later described (see Sections 5.5 and
6 respectively for threshold optimization and feature selec-
tion).

All these phases can be parameterized using a single con-
figuration file.

4.2.1. Configuration file

A configuration file gathers the main WCE parameters. It
is stored in YAML5 format. The main configuration parame-
ters concern the source and target languages involved and the
path to the input corpus and its translation.

4.2.2. Preprocessing Phase

Preprocessing consists of obtaining POS tags, word align-
ments and all needed analyses from the available parallel

4https://github.com/besacier/WCE-LIG
5http://www.yaml.org/

corpus (the target being a MT output made up of raw text
– 1-best and N -best of MT). First, input data is lowercased
and/or tokenized if necessary. Then, TreeTagger toolkit [19]
is applied to get the Part-Of-Speech (POS) tags and stem of
each word in both source and target languages. The different
POS extracted are normalized. Finally, word alignments are
obtained using GIZA++ [20].

4.2.3. Features Extraction

As said before, the internal features come from the output
of the Statistical Machine Translation (SMT) system. In this
part we mainly focus on the extraction of the external fea-
tures, given by toolkits which are not part of the SMT sys-
tem.

The TreeTagger toolkit [19] is involved in the extrac-
tion of the following features: “Proper Names”, “Unknown
Stems” and “Source/Target Stem”. GIZA++ [20] helps us
to extract the context alignment features for POS, Word and
Stems. To compute the features “Longest Target N -gram
Length” and “Longest Source N -gram Length” we use the
SRILM toolkit [21]. The word’s constituent label (“Con-
stituent Label”) and its depth in the constituent tree (“Dis-
tance to Root”) are also extracted using Bonsai (for French)
[22, 23] or Berkeley parser (for other languages) [24]. To
represent hierarchical structures and extract the two features,
the Natural Language ToolKit (NLTK) [25] in Python is
used. The BabelNet [26] API is used to extract the feature
“Target polysemy count”.

Finally, the features “Occurences in Google Translate”
and “Occurences in Bing Translator” are extracted by using
the Google Translate and Bing Translator API, respectively.

4.2.4. Training / Decoding Phase

Once the final feature extraction stage has been completed,
we use Conditionnal Random Fields (CRF) as machine learn-
ing technique through the Wapiti toolkit [27].

The classifier uses all the chosen features and it is trained
on a preliminary labelled corpus (see next section for exam-
ple of corpora directly usable with our toolkit). During de-
coding phase, the classifier determines, from a test corpus,
whether a word should be labelled as “correct” or “incorrect”
(respectively Good or Bad).
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5. WCE Experiments
This section presents the experiments done for 2 different
language pairs: French–English (fr–en) with the corpus pro-
vided by [28] and English–Spanish (en–sp) corresponding to
the WMT shared task on word confidence estimation (2014
edition6).

5.1. The French–English post-edited corpus
The fr–en corpus contains 10881 translations. It was taken
from several French–English news corpora from former
WMT evaluation campaigns (from 2006 to 2010) [28].

To obtain the translations, [28] used a French–English
phrase-based translation system based on the Moses toolkit
[29]. This medium-sized system was trained on Europarl and
News parallel corpora for a former WMT evaluation shared-
task (system more precisely described in [30] - 1.6M paral-
lel sentences and 48M monolingual sentences in target lan-
guage).

The hypotheses translated were post-edited according to
the methodology described in [28]. 10000 random sentences
were extracted to create the training data and the remaining
sentences were used for the evaluation corpus.

In order to evaluate our Word-level Confidence Estima-
tion (WCE) system, we obtained a sequence q of quality la-
bels (recall that q = (q1, q2, ..., qN ) and qi ∈ {good, bad})
using TER-Plus toolkit [31]. Each word or phrase in the hy-
pothesis ehyp is aligned to a word or phrase in the reference
(eref ) with different types of edit: “I” (insertions), “S” (sub-
stitutions), “T” (stem matches), “Y” (synonym matches), “P”
(phrasal substitutions) and “E” (exact match). Then, we re-
categorize the obtained 6-label set into binary set: the “E”,
“T” and “Y” belong to the good (“G”), whereas the “S”, “P”
and “I” belong to the bad (“B”) category.

An example of output of TER-Plus evaluation tool is
shown in Table 3.

Original Ref.: this is enough to shake asset prices
Original Hyp.: what is enough to cower prices of assets
Ref.: this is enough to ***** shake asset prices
Hyp.: what is enough to cower prices of assets
Hyp. After Shift: what is enough to cower of assets prices
Alignment: S E E E I S T E
Labels: B G G G B B G G

Table 3: Example of the TER-Plus toolkit’s output processed

5.2. Adaptation to a new language pair
To evaluate our toolkit on another language pair (English–
Spanish), we used the official data from WMT 2014 shared
task on WCE.

One of the strength of our toolkit is the easiness to adapt
it to another language pair within the (so-far) supported lan-
guages which are French, English, and Spanish. Thus, a few
configuration parameters were changed to move from the
French–English (fr–en) to English–Spanish (en–es), which

6http://www.statmt.org/wmt14/
quality-estimation-task.html

are mainly the source language, the target language, and
paths associated to input files.

Consequently, our WCE toolkit process en–es task in the
same way as for fr–en task, but some features may not be ex-
tracted due to language-pair specificities: unavailable tools,
no N -best, etc. For instance, for the en–es task, since the
N -best list is not available, we cannot extract the five follow-
ing internal features: “WPP Exact”, “WPP Any”, “Nodes”,
“WPP Min” and “WPP Max”.

5.3. Results
The WCE evaluation measures are the Precision (P ), the Re-
call (R) and the F-Measure (F ) of each label (as reminder,
the decision label can be either good or bad). We use wapiti
[27] to train the CRF model and label the words.

5.4. Comparison with the State-of-the-Art

Systems M-F F(bad)
FBK-UPV-UEDIN-1 [32] 62.00 48.73
LIMSI [33] 60.55 47.32

→ Our toolkit 60.76 47.17
LIG-1 [9] 63.55 44.47
LIG-2 [9] 63.77 44.11
FBK-UPV-UEDIN-2 [32] 62.17 42.63

Table 4: Results of the best systems at the Word-level Quality
Estimation task (en–es) at WMT14 [15], only the Mean F-
Measure (M-F) and the F-Measure (F) on the bad labels are
available to compare the performances of our toolkit.

Using the default decision threshold of our classifier, the
Table 4 presents the results obtained in the WMT14 Qual-
ity Estimation shared task with the language pair English–
Spanish (en–es).

The results show that our toolkit obtained similar perfor-
mances compared to the State-of-the-Art. We could not com-
pare with the CE toolkit mentionned in [12] since they did
not provided full results within the framework of the WMT14
evaluation. Future work could involve a comparison between
our toolkit and the toolkit presented in [12].

5.5. Decision threshold optimization
Table 5 shows the classification performances of our toolkit
for the two different language pairs: the French–English (fr–
en) and the English–Spanish (en–es). The latter corresponds
to the Quality Estimation shared task of WMT14 [15].

Our toolkit proposes to optimize the decision threshold
but, in this context, what we report can be only considered as
an oracle threshold setting since no real development corpus
was available for both language pairs. These results are only
reported to demonstrate the ability of the toolkit to tune the
decision threshold. With this optimization, the scores are im-
proved for the bad label (+2.89 points) regarding the results
obtained with the default threshold in the fr–en task. In the
en–es task, the oracle threshold sightly improves the results,
according to the Mean F-Measure (+0.11 points).
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Task Threshold Label P R F M-F

fr–en
Default Good 84.45 90.22 87.24 64.96Bad 50.10 37.16 42.67

Optimized Good 85.60 85.65 85.62 65.59Bad 45.61 45.50 45.56

Default Good 71.24 77.73 74.35 60.76en–es Bad 51.82 43.28 47.17
(WMT14) Optimized Good 71.42 76.82 74.03 60.87Bad 51.49 44.45 47.71

Table 5: The toolkit’s WCE performances with fr–en and
en–es (WMT14) tasks. Note that for each language pair, the
first block of results corresponds to the performance obtained
with default decision threshold and the second block corre-
sponds to the performance with an oracle threshold (to opti-
mize Mean F-measure of Good and Bad labels).

6. Features selection
This section illustrates how the toolkit can be used for feature
selection and analysis of performance with different feature
sets. The next experiments reported were done for the fr–en
task with the default decision threshold.

6.1. Experimenting with different feature sets
The following feature sets were evaluated in this section:

• the baseline features (Base.) given in Table 1 (not
“bold”, not “italic”, no feat. 28-29),

• same as above + modified features estimated with a
new method (in “italic” in Table 1) are added (mod.) ;

• same as above + the new features (new) mentionned in
Table 1 (the ones in “bold”) ;

• same as above + features 28-29 of Table 1 involving
online MT systems (MT).

Features Labels P R F M-F

Base.
Good 81.97 92.22 86.80

58.64
Bad 44.17 23.28 30.48

+ mod.
Good 83.21 90.99 86.92

62.00
Bad 47.24 30.53 37.09

+ new
Good 83.55 90.11 86.70

62.65
Bad 46.75 32.86 38.60

+ MT
Good 84.45 90.22 87.24 64.96
Bad 50.10 37.16 42.67

Table 6: Improvements obtained regarding the features
added. For both labels (Good and Bad) we use the Precision
(P), Recall (R) and F-Measure (F). The Mean F-Measure of
Good and Bad labels is presented in the last column.

We can observe for all the steps a general improvement of
the Mean F-Measure in Table 6. The baseline is 58.64, while
the use of modified features enables to get over 62. The new
features show their usefulness with a Mean F-Measure score
at 62.65 points. Finally, adding occurences coming from
on-line Machine Translation systems enables us to get 64.96
points. Even if using online MT systems for WCE can ap-
pear as controversial, this seems to bring useful information
to our classifier.

6.2. Feature selection using Sequential Forward Selec-
tion (SFS) algorithm

Going further, we propose to process a finer feature selection
using the Sequential Forward Selection (SFS) algorithm for
which scripts are made available in our toolkit distribution.

While feature selection can be made through several ap-
proaches [34], we chose to use the SFS method. It is a bottom
up algorithm which starts from a feature set noted Yk (which
can be empty or not) and selects as first feature (x) the one
that maximizes the Mean F-Measure, MF (Yk + x), from a
set of features (Jk). The algorithm below summarizes the
whole process:

while size of Jk > 0 do
maxval = 0

for x ∈ Jk do
if maxval < MF (Yk + x) then

maxval←MF (Yk + x)
bestfeat← x

end if
end for

add bestfeat to Yk

remove bestfeat from Jk

end while

In Table 7 we present the result of the SFS algorithm,
which ranks our new features starting from an empty feature
set. The dash line marks the limit of the best feature set ac-
cording to the Mean F-Measure (with 65.14 points).

It appears that most of new features we added (in “bold”)
bring relevant information associated to classical ones (no
highlight and in “italic”). Only the feature “Target Stem”
seems to be irrelevant for the fr–en task. One reason for that
might be that for the English language, stem and words fea-
tures may be highly correlated.

Rank Feature Rank Feature
1 Stem context Alignements 16 Stop Words
2 WPP Exact 17 Nodes
3 Word context Alignements 18 # of Stem Occurrences
4 WPP Max 19 Numeric
5 WPP Any 20 Unknown Stem
6 WPP Min 21 Target Word
7 POS context Alignements 22 Source POS
8 Occur in Google Translate 23 Polysemy Count – Target
9 Longest Target N -gram Length 24 Source Word

10 Occur in Bing Translate 25 Constituent Label
11 Source Stem 26 Punctuation
12 Target Backoff Behaviour 27 Target Stem
13 Longest Source N -gram Length 28 Proper Name
14 # of Word Occurrences 29 Target POS
15 Distance To Root

Table 7: Rank of each feature according to the Sequential
Forward Selection algorithm within the framework of the fr–
en task. The Dash line marks the best Mean F-Measure score
obtained with 65.14 points.

This feature selection functionnality is provided with the
toolkit, which means that whatever set of features the user
wants to test, he/she can apply the SFS algorithm very easily.
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7. Conclusion and Perspectives
This paper presented our Word Confidence Estimation
(WCE) approach made available through an open-source
toolkit. It combines some classical features as well as some
new in-house features. All these features are passed through
a Conditional Random Fields (CRF) classifier to estimate the
correctness of a word.

The WCE experiments conducted achieve State-of-the-
Art and reproducible performances measured on two differ-
ent data sets corresponding to two language pairs (French–
English and English–Spanish). Thanks to its flexibility, our
toolkit is nearly language independent, as long as the user can
provide grammars and models for the specified languages.

Our WCE toolkit has been packaged and released for oth-
ers to be able to reproduce rapidly the experiments reported
in this article. This package is made available on a GitHub
repository7 under the licence GPL V3.

In addition to this toolkit, comes a special module, which
enables feature selection automatically using SFS algorithm
(sequential forward selection). A more performant algorithm
will be added in the near future like the Sequential Floating
Forward Selection algorithm, which has backtracking capa-
bilities.

Further work will focus on (i) adding features (based on
word embeddings for instance) and (ii) evaluating the toolkit
efficiency in a real Computer Assisted Translation (CAT)
framework. We also plan to extend our toolkit to the design
of WCE for speech recognition and speech translation tasks.
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Abstract
Prosodic emphasis is a vital element of speech-based com-
municating, and machine translation of emphasis has been
an active research target. For example, there is some previ-
ous work on translation of word-level emphasis through the
cross-lingual transfer of F0, power, or duration. However, no
previous work has covered a type of information that might
have a large potential benefit in emphasizing speech, pauses
between words. In this paper, we first investigate the impor-
tance of pauses in emphasizing speech by analyzing the num-
ber of pauses inserted surrounding emphasized words. Then,
we develop a pause prediction model that can be integrated
into an existing emphasis translation system. Experiments
showed that the proposed emphasis translation system inte-
grating the pause prediction model made it easier for human
listeners to identify emphasis in the target language, with an
overall gain of 2% in human subjects’ emphasis prediction
F -measure.

1. Introduction
Emphasis is an important factor of human communication
that conveys the focus of speech. For example, in our daily
life, it is common for words to be misheard in many situa-
tions, particularly in noisy environments. When such a sit-
uation happens, people often put more emphasis (focus) on
particular words that are misheard to help listeners under-
stand which information in the sentence is the most impor-
tant. Emphasis is as important, or even more important in
cross-lingual communication because of the need for under-
standing the main ideas of people speaking in different lan-
guages despite the barriers posed by cross-lingual communi-
cation.

Speech-to-speech (S2S) translation [1] is a technique that
is able to translate speech across languages as illustrated in
Fig. 1. In order to convey emphasis across languages, several
previous works [2, 3] have proposed methods to translate em-
phasis in a limited domain, 10 digits. Anumanchipalli et al.
[4] translates emphasis in a larger domain, but only consider
F0 features. Do et al. [5] take a different approach of trans-
lating emphasis by considering emphasis as a real-numbered

Speech recognition
& Emphasis estimation

Machine translation
& Emphasis translation

Emphasized text-to-speech

It   is    hot  today
0   0.1  0.8  0.1

         今日 は 暑い です
 0.1       0      0.9      0.2

  今日 は <p>   暑い です

Pause prediction

Previous work

Proposed method

Figure 1: Proposed method for predicting pauses and using
them in the translation of emphasis. Pauses are represented
in text as “<p>”.

value and utilizing all speech features including F0, duration,
and power. However, all these methods are still missing a va-
riety of information that might have a large potential benefit
in emphasizing speech: pauses.

Pauses are one of the prosodic cues that segment speech
into meaningful units [6]. In emphasized speech, along with
power, duration, and F0, we conjecture that pauses also are
used to indicate that upcoming words are important and give
a sign to listeners that they should pay attention to those
words. However, the previous works on emphasis modeling
and emphasis translation have not analyzed the importance
of pauses in emphasized speech, and not incorporated them
into the translation of emphasis in S2S translation systems.

In this paper, we first perform an analysis to investigate
the importance of pauses in emphasizing speech by look-
ing at the number of pauses inserted surrounding emphasized
words in English and Japanese, and examine the relationship
of pause usage between those two languages. Then, based on
this knowledge, we investigate the contribution of incorpo-
rating an automatic pause prediction system into an existing
method for translating emphasis in S2S translation, as illus-
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trated in Fig. 1.

2. Emphasis in speech-to-speech translation
This section describes a S2S translation framework that is
able to convey emphasis across languages [5]. The “previous
work” section in Fig. 1 (inside the green box) is broken down
in more detail in Fig. 2.

It    is  hot   today 

ASR

 0      0.1    0.8    0.1

Emphasis est.

MT

今日 は 暑い です

Emphasis trans.

0.1  0.2  0.9  0.2
TTS

It      is     hot   today

C
o

n
v

e
n

ti
o

n
a
l 

S
2

S

Figure 2: A S2S translation system capable of translating
emphasis, consisting of a conventional S2S system, emphasis
estimation, and an emphasis translation system.

2.1. Conventional speech-to-speech translation systems

Conventional S2S translation systems have been studied ex-
tensively in previous works, such as [1, 7]. As illustrated in
Fig. 2, they consist of 3 main components: speech recog-
nition recognizes speech into text, machine translation trans-
lates the text into the target language, and text-to-speech syn-
thesizes speech given the translated text. Recently, many ap-
proaches have been proposed to improve the performance of
S2S systems, for instance, [8] proposed an interesting idea
that detects errors in ASR and MT output, then asks users to
clarify the speech before translation.

Although the performance of conventional S2S systems
is improving in conveying the meaning of speech, they are
still lack of paralinguistic information, particularly emphasis.

2.2. Emphasis estimation

In order to translate emphasis, the first step is to extract in-
formation that representing emphasis. [5] has applied linear-
regression hidden semi-Markov models, which are a sim-
ple form of multi-regression HSMMs [9] to derive a real-
numbered value called word-level emphasis degree that rep-
resents how emphasized a word is. Defining the approach
mathematically, given a word sequence consisting of N
words and its speech features o, a sequence of N word-level

emphasis values Λ = [λ1, · · · , λN ] is derived by maximiz-
ing a likelihood function

P (o|λ,M) =
∑

all q
P (q|λ,M)P (o|q,λ,M) , (1)

where q is a HMM state sequence that corresponds to the
given word sequence, and M is the model parameters. This
approach has the advantage that all features that are used to
emphasize words such as power, F0, and duration are taken
into account, while other works on emphasis translation only
utilized individual features separately [4, 10].

2.3. Emphasis translation

As described in [5], the word-level emphasis sequence is
translated across languages by utilizing conditional random
fields (CRFs) [11]. The problem is defined as follows: given
a source language word sequence w(f), a vector of word-
level emphasis Λ(f), a corresponding target word sequence
w(e) (which is the output of the MT system), and part-of-
speech tag information {t(e), t(f)}, we want to predict the
target language word-level emphasis vector, as illustrated in
Fig. 3. The probability of the target word-level emphasis se-

It        is         hot     today
PRP   VBZ    JJ        NN

0        0.1       0.8     0.1

 今日　は　 暑い　です

NN     RP   JJ        VBZ

Source
language

Target
language

今日　は　暑い　です

0.1      0.2   0.9        0.2

CRFs

Figure 3: CRF-based emphasis translation.

quence Λ(e) is calculated by

P (Λ(e)|x) =

N∏

n=1

exp

{
K∑

k=1

θkfk(λ
(e)
n−1, λ

(e)
n ,x(k)

n )

}

∑

λ̃
(e)

N∏

n=1

exp

{
K∑

k=1

θkfk(λ̃
(e)
n−1, λ̃

(e)
n ,x(k)

n )

} ,

(2)
where x is the input features, f is feature functions, K is
the number of feature functions, and θ is the model parame-
ters. The advantage of CRF-based translation model is that it
flexible, and easy to add more features or remove irrelevant
features that are not helpful for translation.
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3. Pause prediction
Pause prediction is not a new research field, with a large
body of research trying to tackle this problem [12, 13, 14].
The main distinction between these previous methods and
our work is that while previous methods attempted to predict
pauses from text (linguistic) information only, in our work
we are given information about whether the word in ques-
tion is emphasized, which gives us a stronger signal about
whether pauses should be inserted or not. In this section,
we describe two approaches that are able to utilize both lin-
guistic and emphasis information to predict pauses based on
CRFs.

The pause prediction problem can be described as fol-
lows: Given a word sequence and its word-level emphasis
sequence, we want to predict in which of the below 4 posi-
tions a pause is inserted.

Before : a pause is inserted before the word.

After : a pause is inserted after the word.

Both sides : pauses are inserted before and after the word.

None : there is no pause inserted.

Generally speaking, this is a classification problem with 4
classes.

3.1. Pause extraction

The first step is to extract pauses from the training data by
3 steps, first, we train a speech recognition model on the
same data, this step will give us a speaker dependent acoustic
model for each speaker. Then, we perform forced alignment
on the training data to derive audio-text alignments. Finally,
from the alignment, we extract all pause segments that have
duration at least 50ms as pauses.

3.2. CRF-based pause prediction

The CRF-based prediction model is very similar to emphasis
translation described in Section 2.3. The input features in-
clude words, part-of-speech tags, emphasis degree, and con-
text information of the preceding and succeeding units. Ta-
ble 1 shows an example of input features. In the example,
the word hot is the emphasized word, and we can see that a
pause is inserted after the word is and before the word hot.
In a standard sentence, this placement of a pause may seem
unnatural. However, because the word hot is emphasized in-
tentionally, the pause can be inserted to give a sign that the
word hot is important.

4. Experiments
4.1. Experimental setup

The experiments were conducted using a bilingual English-
Japanese emphasized speech corpus [15], which has empha-
sized content words that were carefully selected to maintain

Table 1: An example of input features for the sentence “it is
<p> hot” with word-level emphasis sequence “0 0.1 0.8”.
Note that pauses are represented by commas, and we also
use the context information of the preceding and succeeding
units.

Position Word Part-of-speech Emphasis
None it PRP 0
After is VBZ 0.1

Before hot JJ 0.8

the naturalness of emphasized utterances. The corpus con-
sists of 966 pairs of utterances with 1258 emphasized and
3886 normal words. The speech data is collected from 3
bilingual speakers, 6 monolingual Japanese, and 1 mono-
lingual English speaker. The training data is divided into
916 training and 50 testing samples. And the setup for em-
phasis translation follows our previous work [5], extracting
speech features using 25-dimension mel-cepstral coefficients
including spectral parameters, log-scaled F0, and aperiodic
features. Each speech parameter vector includes static fea-
tures and their delta and delta-deltas. The frame shift was set
to 5 ms. Each HSMM model is modeled by 7 HMM states
including initial and final states. We adopt STRAIGHT [14]
for speech analysis.

4.2. Pause insertion analysis

In the first experiment, we investigate the importance of
pause insertion in emphasizing words by analyzing number
of pauses inserted before, after, and on both sides of empha-
sized words. The result is shown in Table 2.

First, we look at the column data indicating the number of
pauses insertions in each position. We can easily see that the
number of pauses inserted after emphasized words is dom-
inant among all subjects and languages, and it is not com-
mon that pauses are inserted on both sides of emphasized
words. This indicates that in order to emphasize words, the
speaker often insert a pause after the emphasized word, and
this usage is independent of whether the language is English
or Japanese.

Second, comparing the number of pause insertions be-
tween English and Japanese at lines 1-2, 3-6, and 4-5, we
can see that the difference is small in the “Before” position;
but much a larger in the “after” and “both sides” positions, in
which Japanese has more pause insertion than English.

Moreover, an analysis on pause insertions surround-
ing normal words for native speakers is also conducted as
showed in Table 3. We can see that there is a small number
of pauses inserted surrounding normal words, this is likely
normal words are less likely to induce pauses, and also be-
cause the utterances are relatively short, ranging from 4 to 16
words.

According to above observations, we conclude that
1) pauses are an important factor in both languages that
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helps to express emphasis, and 2) it is better to consider
pause insertion in an emphasis translation system between
English-Japanese, especially when translating from English
to Japanese because pauses are even more often used in
Japanese than English.

Table 2: Number of pauses inserted corresponding to
different positions surrounding emphasized words. “All
[English|Japanese]” denotes the case where we use all data
including native and non-native speakers.

Before After Both sides
1. All English 117 230 33
2. All Japanese 125 499 241
3. English by natives 155 248 48
4. English by non-natives 42 194 3
5. Japanese by non-natives 178 337 113
6. Japanese by natives 104 564 292

Table 3: Number of pauses inserted corresponding to differ-
ent positions surrounding normal words.

Before After Both sides
1. English by natives 47 44 1
2. Japanese by natives 167 182 6

4.3. Pause insertion prediction

In the next experiment, we evaluate the performance of pause
prediction models based on CRFs. 4 classes were used, they
are “none”, “before”, “after”, and “both sides”. The corpus
is divided into 2 sets of 916 training and 50 testing utterances
from one native Japanese speaker. We used a single speaker
because the pause prediction system will be integrated into
an existing emphasis S2S translation system that is speaker-
dependent.

We evaluate the performance of the CRF-based pause
prediction model using different combination of input fea-
tures, which includes words, part-of-speech tags, word-level
emphasis degree, and information of preceding and succeed-
ing units. The measurement metric is F -measure, which
is the harmonic mean of precision and recall. The result is
shown in Table 4.

Table 4: Pause prediction performance using different com-
bination of input features. “ctx” denotes context information
of a preceding and succeeding units.

Emph. Emph.
ctx.

Word Word
ctx.

Tag Tag
ctx.

F -
measure

✓ ✓ ✓ ✓ ✓ ✓ 88.76
✓ ✓ ✓ ✓ 85.38

✓ ✓ 84.81
✓ ✓ ✓ 85.71

First, by comparing the 1st line with the 2nd and 3rd line.
We can see that emphasis information is important for pause
prediction, improving 3% F -measure. Second, the last line
that shows the input feature without context information has
lower accuracy compared to the 1st line, which has context
information, indicating that the context information is also
very important because it gives more information for pause
prediction.

4.4. Emphasis translation with pause insertion

In the final experiment, we evaluate the S2S translation sys-
tem integrating with the CRF-based pause prediction model.
Four systems were:

No-emphasis : A speech translation system without empha-
sis translation as described in [5].

Baseline : An emphasis translation system without pause
prediction as described in [5].

+Pause : The baseline system with the CRF-based pause
prediction model.

Natural : Natural speech by native Japanese speaker.

First, we synthesize audios from each system. Then, we
asked 6 native Japanese listeners to listen to the synthesized
audio and identify the emphasized word. Finally, we score
each system with F -measure. In addition, we perform an ob-
jective evaluation where the emphasized word is detected by
an emphasis threshold of 0.51 yielding 91.6% F -measure.
Note that it is not possible that the subjective result is bet-
ter than the objective result, because there is a chance that
text-to-speech systems make mistakes in synthesizing em-
phasized audios. The result is shown in Fig. 4.

As reported in [5], the baseline system outperforms No-
emphasis system in conveying emphasis across languages.
However, it is still 4% lower accuracy than the objective eval-
uation. By integrating the pause prediction model, we gain
2% F -measure, which is closer to the objective result. The
result indicates that pauses are an important type of informa-
tion that helps listeners perceive the focus of speech better,
and also prove our conjecture that pause might be used to
indicate that upcoming words are important.

5. Conclusion
In this paper, we investigated the importance of pauses in em-
phasizing speech, as well as integrating a pause prediction
model – that utilized both linguistic and emphasis features
– into an existing emphasis translation system. Results of
an analysis and emphasis translation experiments from En-
glish to Japanese show that 1) pauses are important type of
information in that helps listeners better perceive the focus
of speech, 2) along with linguistic features, we found that
emphasis features also plays an important role in predicting

1This value is an optimized value that has been tested in [5].
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Figure 4: Subjective evaluation of emphasis translation with
pause insertion.

pauses in emphasized speech, and 3) the emphasis translation
system achieves a 2% F -measure improvement with a pause
prediction model. Future works will examine more pause
prediction models, and also analyze pause usage in more lan-
guages.
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Abstract 
Earlier papers have reported on Converser for Healthcare, a 

highly-interactive English↔Spanish speech translation system 

for communication between patients and caregivers, and upon 

an extensive pilot project testing the system at a San Francisco 

medical center, part of a very large healthcare organization. 

This historical paper provides for the first time details of the 

resulting evaluation and fully describes the associated system 

revisions to date.   

1. Introduction 

Spoken language translation systems are now in operation at 

Google and Microsoft/Skype, and multiple applications for 

spoken language translation (SLT) or automatic interpreting are 

also available – SpeechTrans, Jibbigo, iTranslate, and others. 

However, widespread use remains in the future for serious use 

cases like healthcare, business, emergency relief, and law 

enforcement, despite demonstrably high demand.   

In spite of dramatic advances during the last decade, both 

speech recognition and translation technologies are still error-

prone. While the error rates may be tolerable when the 

technologies are used separately, the errors combine and even 

compound when they are used together. The resulting 

translation output is often below the threshold of usability when 

accuracy is essential. As a result, present use is still largely 

restricted to use cases – social networking, travel – in which no 

representation concerning accuracy is demanded or given.  

The speech translation system discussed here, Converser 

for Healthcare, applies interactive verification and correction 

techniques to this essential problem of overall reliability.  

Earlier papers ([1], [2], [4], [5], [6], [7], [8], [9]) have 

reported on this highly-interactive system for English↔Spanish 
communication between patients and caregivers, and upon an 

extensive pilot project in 2011 testing Version 3.0 of the 

system at a San Francisco medical center, part of a very large 

healthcare organization ([9]). This paper provides for the first 

time details of the resulting evaluation and fully describes the 

associated system revisions to date, yielding the current 

Version 4.0. The paper is partly of historical interest, since the 

pilot took place four years ago – a long time in computer years. 

However, most of the issues raised by the evaluation remain 

current, and will be discussed below. 

For orientation, Section 2 of this paper will review 

Converser’s basic interactive facilities, as common to both 

Versions 3.0 and 4.0. Section 3 gives the results of the pilot 

project, as seen in the independent evaluation commissioned by 

the healthcare organization. Section 4 then details the revisions 

which were made for Version 4.0 in response to this feedback 

and other lessons learned. Section 5 offers an extended example 

of the revised system in use. We conclude in a final section. 

2. The Converser System 

We now briefly describe Converser’s approach to interactive 
automatic interpretation, restricting description to core 

elements common to Version 3.0 (as used in the pilot project 

discussed in Section 3) and to the revised Version 4.0 (to be 

described in Sections 4 and 5 below). We’ll concentrate on the 
system’s verification/correction and customization features. 

First, users can monitor and correct the speech recognition 

system to ensure that the text which will be passed to the 

machine translation component is completely correct. Speech, 

typing, or handwriting can be used to repair speech recognition 

errors.  

Next, during the machine translation (MT) stage, users can 

monitor, and if necessary correct, one especially important 

aspect of the translation – lexical disambiguation. 

The system’s approach to lexical disambiguation is 
twofold: first, we supply a back-translation, or re-translation 

of the translation. Using this paraphrase of the initial input, 

even a monolingual user can make an initial judgment 

concerning the quality of the preliminary machine translation 

output. Other systems, e.g. IBM’s MASTOR ([4]), have also 

employed re-translation. Converser, however, exploits 

proprietary technologies to ensure that the lexical senses used 

during back-translation accurately reflect those used in forward 

translation.  

In addition, if uncertainty remains about the correctness of a 

given word sense, the system supplies a proprietary set of 

Meaning Cues™ – synonyms, definitions, etc. – which have 

been drawn from various resources, collated in a database 

(called SELECT™), and aligned with the respective lexica of 
the relevant MT systems. With these cues as guides, the user 

can monitor the current, proposed meaning and when necessary 

select a different, preferred meaning from among those 

available. Automatic updates of translation and back-

translation then follow. 

The initial purpose of these techniques is to increase 

reliability during real-time speech translation sessions. Equally 

important, however, they can also enable even monolingual 

users to supply feedback for off-line machine learning to 

improve the system. Until now, only users with some 

knowledge of the output language have been able to supply 

such feedback, e.g. in Google Translate. 
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Converser adopts rather than creates its speech and 

translation components, adding value through the interactive 

interface elements to be explained. Nuance, Inc. supplies 

speech recognition; rule-based English↔Spanish machine 
translation is supplied by Word Magic of Costa Rica; and text-

to-speech is again provided by Nuance. 

The Converser system includes Translation Shortcuts™ – 

pre-packaged translations, providing a kind of translation 

memory. When they're used, re-verification of a given utterance 

is unnecessary, since Shortcuts are pre-translated by 

professionals (or, in future versions of the system, verified 

using the system's feedback and correction tools). Access to 

stored Shortcuts is very quick, with little or no need for text 

entry. Shortcut Search can retrieve a set of relevant phrases 

given only keywords or the first few characters or words of a 

string. (If no Shortcut is found to match the input text, the 

system seamlessly gives access to broad-coverage, interactive 

speech translation.) A Translation Shortcuts Browser is 

provided (on the left in Figure 1), so that users can find needed 

phrases by traversing a tree of Shortcut categories, and then 

execute them by tapping or clicking. Shortcuts are fully 

discussed in [8].  

Identical facilities are available for Spanish as for English 

speakers: when the Spanish flag is clicked, all interface 

elements – buttons and menus, onscreen messages, Translation 

Shortcuts, handwriting recognition, etc. – change to Spanish. 

3. Pilot Project and Evaluation  

We now turn to a pilot project which tested Converser for 

Healthcare, Version 3.0, in three departments (Pharmacy, 

Inpatient Nursing, and Eye Care) of a large hospital complex 

belonging to a major US healthcare organization.  

The hardware and software used in the project have been 

described and assessed in [6]. Accordingly, our focus here will 

be on the user experience. We rely on the healthcare 

organization’s internal report, based on a commissioned survey 

by an independent third party, an experienced medical 

interpreter from an accredited local agency. While the report 

itself is proprietary, we'll reproduce its findings in essence.  

First, however, several preliminary points are in order 

concerning stumbling blocks for the pilot project. As we will 

see below, all of these impediments have by now been removed 

as a result of the striking infrastructure advances over the four 

years since the pilot concluded. 

Converser Version 3.0 was designed to cooperate with the 

then-current Dragon NaturallySpeaking, to be installed 

separately, and thus required speaker-dependent speech 

recognition: each speaker had to register his or her voice. This 

process took two or three minutes, including a 30-second 

speech sample; and, while this interruption was no great burden 

for English-speaking staff members, it usually made speech 

recognition from the Spanish patients’ side impractical.  

Microsoft’s handwriting recognition was integrated into the 
system for both languages; but correction of errors was tricky 

at the time, so that this addition, too, incurred a training cost.  

One more speed bump resulted from a software feature 

intended for customization: patients and staff could be 

registered in Converser, so that their names could appear in 

transcripts, and so that various personalization features could 

be added later. However, registration of the login user was 

required rather than optional; and this process necessitated still 

more training time.  

Taken together, these obstacles necessitated 45-minute 

training sessions for participating staff members. 

Further, because the experiments predated the era of 

modern tablets, portability was inferior to that available now, 

while physical set up was much less convenient ([9]). On the 

first-generation tablets used, for instance, it was necessary to 

manually configure the physical buttons which turned the 

microphone on and off. 

With these initial obstacles in mind, we can now review the 

results of the organization’s evaluation.  

Project goals. The organization’s goals for the project 

were stated in terms of the problem to be solved, as follows: 

(Throughout, we closely paraphrase the original language of the 

report.) 

 Members’ [i.e. patients’] language needs remain 

unmet in many situations throughout the … 

organization. Since the needs vary from situation to 

situation, no single solution can be expected. 

 Different interpretative solutions need to be tested and 

analyzed to determine their best fit on multiple 

variables such as setting, situation, type of patient, etc. 

 Accuracy of translation and member acceptance of 

technology-based interpretive services vs. in-person 

interpretation need to be assessed. 

The independent interviewer observed 61 real-time 

translation interactions – some involving spoken input, some 

with typed or handwritten input – and solicited reactions from 

most of the staff and patients involved. (A few patients 

declined to answer the questions.)  Interviews included both 

open-ended requests for reactions and prepared questions.  

Patients’ reactions. Positive comments from patients 

included the following: 

 “cool” 

 “useful” – 5 mentions 

 “looks good” “well done” 

 “would help” 

 “good tool” – 2-3 mentions  

 “I would recommend it” 

 Even if translation was not 100%, it was always 

understood 

 “Perfect and clear” – 2 mentions 

 Saving time – don’t have to wait for an interpreter 

 “I like it” 

 “I like the idea of it” 

 Good for emergencies – 2 mentions 
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Less positive or negative comments included these: 

 

 GUI too complicated (need larger buttons, crowded 

screen, …) – 6 mentions. 

 Literacy issues: some immigrants can’t read or write –      

6 mentions 

 Font size too small – 3 mentions 

 “Too technical for me” “I don’t like computers”: family 
say elderly can’t use – 8 mentions 

 Quality of Sound/Volume issues – 6 mentions 

 Handwriting didn’t work – 6 mentions (Note: usage was 

limited) 

 Worries about quality of translation – 2 mentions 

 Keyboard issues (hard to use, pen is faster …)                   
– 5 mentions 

 Problems with English voice – 2 mentions 

 System slow or froze – 6 mentions 

 Hard to use tablet in hospital – 1-2 mentions 

Some general patient comments: 

 

 Training (for users) would be needed – 4 mentions 

 Product would be “ideal” with voice recognition –             

4 mentions 

 A lot of mixed comments – They like the system but 

worry others (elderly, less literate) will struggle with it. 

(These comments came largely from partial or full English 

speaking members.) 

 Would rather have an in person interpreter – 4-5 mentions 

 

 Staff reactions. Positive staff comments: 

 

 Good for short interactions 

 Writing was easier than talking 

 Typing was easier than talking 

 You can verify translations better vs. Language Line – 2-3 

mentions 

 I would use it if no other options  

 Portability is good 

Less positive or negative staff comments: 

 

 Occasionally missed a sentence 

 Computer literacy of members is a real issue. –                   

3 mentions (Also, elderly can’t double-click fast enough.) 

 User Interface – buttons crowded 

 Translations were a bit odd 

 Slow  

 Hard for patients to write on the tablet in bed –                 

2 mentions 

 Takes valuable time for the system to process 

General staff comments: 

 

 Training of patient’s voice for DragonNaturallySpeaking 
would be needed.  

  But time is limited already (i.e. no time in visit to train 

patients) – 4 mentions 

 Training for staff and providers needed  –  3 mentions 

 This product is really more needed for 

Cantonese/Mandarin here in San Francisco. 

 The system needs a formal introduction (so that the 

system can describe itself: for English providers to use 

with Spanish members). 

Summary.  Overview of patient and staff evaluations: 

 

 High praise for the “idea.” Higher than the actual 
experience of it  

 Translation quality definitely “good enough” as rated by 
Members/Patients 

 Limited English speakers (who can get along) would still 

use to verify the conversation and ensure completeness. 

 Issues of literacy and computer literacy impact 

applicability 

 Even though the system had issues (low to fair GUI, slow 

processing, lack of recognition of voice etc.), members 

partial or full English speakers thought it was “cool.” 

 Most people, and especially those who lacked English 

skills, preferred an in- person interpreter, although one 

person noted it saves time waiting for an interpreter, and a 

provider commented it saved the wait for Language Line. 

 Good for emergencies 

 Hard for members to use tablet in the hospital 

 A number of patients declined to use in hospital but we 

lack data as to why. 
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Patient responses to six significant questions are 

tabulated in Table 1. The rightmost column shows the 

percentage of respondents who replied to each question with 

Completely or Mostly. 

Most significantly, when asked whether the system met 

their needs, of the 79% of interviewed patients who 

answered the question, 94% responded either Completely or 

Mostly. 

Table 1: Patient responses to six questions  

Patient Evaluation % 

Answered 

Question 

Completely or 

Mostly 

Did this meet your 

needs? 

79% 94% 

Was it accurate? 79% 90% 

Was it easy to use? 72% 57% 

Prefer handwriting 

question  

67% 68% 

Prefer using keyboard 67% 17% 

Prefer to use 

handwriting and 

keyboard 

67% 12% 

4. System Revision 

Having conveyed the organization’s own assessment of the 

Converser for Healthcare 3.0 pilot project, we go on to 

describe the revisions prompted by it. 

First and foremost, there was a glaring need to facilitate 

speech input from the Spanish side. This goal implied 

implementation of speaker-independent speech recognition; 

and this has been carried out by exploiting advances in Dragon 

NaturallySpeaking. Auxiliary third-party software has also 

been required to enable adaptation of Dragon software for use 

on desktop and tablet computers. 

The need was also obvious for reduction in setup and 

training time. The following improvements reduce total warm-

up to a few minutes for both staff and patients. 

 

 The requirement for registration of the login user has been 

relaxed: registration is now optional, so that users can 

begin using the system immediately at startup time. 

 An on-screen microphone button has now been substituted 

for the physical buttons previously used, so button 

configuration is no longer needed. 

 Microsoft handwriting recognition has improved to the 

point that its correction facilities can be learned 

independently. Likewise, the company’s on-screen 

keyboard now supports larger keys, so that on-screen 

typing has become more practical. 

 Delivery of Converser via the Web will be enabled, so that 

only installation of the client software, providing access to 

a virtual desktop, will be required. 

Another clear need has been to speed the interactions. 

While numerous staff members (and, separately, their 

managers) praised the ability to verify translations, others also 

stressed that verification consumed limited time. To balance 

these competing wishes, we have implemented a new set of 

icons allowing quick switching between Pre-Check and Post-

Check modes. In the latter mode, useful when speed is more 

important than accuracy, speech recognition and translation are 

not checked in advance of transmission; but post-verification is 

still enabled, since back-translations are still generated and now 

appear in the bilingual transcripts (see Section 5). A Rewind 

Button has been supplied as well, so that erroneous or 

unsatisfactory translations can be quickly repaired and 

retransmitted. These new controls operate separately for 

English and Spanish speakers, so that, for instance, a doctor 

can pre-check when appropriate while allowing the patient to 

respond without distractions. 

A number of interviewees called for various improvements 

in the user interface. In response, we have supplied large fonts 

for all on-screen elements (the exact size can be selected); 

added prominent icons for easier switching between English 

and Spanish speakers; enabled adjustment of the text-to-speech 

volume and speed, for easier comprehension; and added a quick 

way for staff to introduce Converser to patients, making use of 

our Translation Shortcuts. (We've also added more new 

Shortcut categories – including food, physical therapy, and 

mental health – since these browsable and searchable fixed 

phrases proved popular with staff members.) 

5. Extended example  

This section provides an example of the revised system in use.  

New elements introduced in the previous section are 

highlighted in italics. 

Depending on the platform, the system can offer up to four 

input modes: speech, typing, handwriting, and touchscreen. To 

illustrate the use of interactive correction for speech 

recognition as well as machine translation, we assume that the 

user has clicked on the round red Mic Button to activate the 

microphone (Figure 1).   

Still in Figure 1, notice the Traffic Light Icon and two 

Earring Icons. These are used to switch between Pre-check 

and Post-Check Modes for translation and speech recognition, 

respectively. Both icons are currently green, indicating “Full 
speed ahead!” That is, verification has been temporarily 
switched off: the user has indicated that it is unnecessary to 

pre-check either ASR or MT before transmitting the next 

utterance, preferring speed to accuracy. 

Just prior to the figure’s snapshot, the user said, “San Jose 
is a pleasant city.” Since verification had been switched off for 
both ASR and MT, these functioned without interruption. The 

speech recognition result appeared briefly (and in this case 

correctly) in the Input Window. Immediately thereafter the 

Spanish translation result (also correct in this case) appeared in 

the right-hand section of the Transcript Window, and was 

immediately pronounced via text-to-speech. Meanwhile, the 
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original English input was recorded in the left-hand section of 

the transcript.  

Also on the English side of the transcript and just below the 

original English input is a specially prepared back-translation:1 

the original input was translated into Spanish, and then 

retranslated back into English. Proprietary techniques ensure 

that the back-translation means the same as the Spanish. Thus, 

even though pre-verification was bypassed for this utterance in 

the interest of speed, post-verification via the transcript was 

still enabled. (The Transcript Window, containing inputs 

from both English and Spanish sides and the associated back-

translations, can be saved for record-keeping. Inclusion of 

back-translation is new to Version 4.0. Participant identities 

can optionally be masked for confidentiality.) 

Using this back-translation, the user might conclude that 

the translation just transmitted was inadequate. In that case, or 

if the user simply wants to rephrase this or some previous 

utterance, she can click the Rewind Button (round, with 

chevrons). A menu of previous inputs then appears (not 

shown). Once a previous input is selected, it will be brought 

back into the Input Window, where it can be modified using 

any available input mode – voice, typing, or handwriting. In our 

example sentence, for instance, pleasant could be changed to 

boring; clicking the Translate Button would then trigger 

translation of the modified input, accompanied by a new back-

translation. 

In Figure 2, the user has selected the yellow Earring Icon, 

specifying that the speech recognition should “proceed with 
caution.” As a result, spoken input remains in the Input 

Window until the user explicitly orders translation. Thus 

there’s an opportunity to make any necessary or desired 

corrections of the ASR results. In this case, the user has said 

“This morning, I received an email from my colleague Igor 
Boguslavsky.” The name, however, has been misrecognized as 
“Igor bogus Lovsky.” Typed or handwritten correction can fix 

the mistake, and the Translate Button can then be clicked to 

proceed. 

Just prior to Figure 3, the Traffic Light Icon was also 

switched to yellow, indicating that translation (as opposed to 

speech recognition) should also “proceed with caution”: it 
should be pre-checked before transmission and pronunciation. 

This time the user said “This is a cool program.” Since the 
Earring Icon is still yellow, ASR results were pre-checked and 

approved. Then the Translation Verification Panel appeared, 

as shown in the figure. At the bottom, we see the preliminary 

Spanish translation, “Éste es un programa frío.” Despite the 
best efforts of the translation program to determine the 

intended meaning in context, “cool” has been mistranslated – 

as shown by the back-translation, “This is a cold program.”  
Another indication of the error appears in the Meaning 

Cues Window (third from the top), which indicates the 

meaning of each input word or expression as currently 

understood by the MT engine. Converser 4.0 employs 

synonyms as Meaning Cues. (In the future, pictures, 

definitions, and examples may also be used.) In the present 

case, we see that the word “cool” as been wrongly translated as 
“cold, fresh, chilly, …”. 

                                                         
1
 Proprietary, and branded as Reliable Retranslation™.  

To rectify the problem, the user double clicks on the 

offending word or expression. The Change Meaning Window 

then appears (Figure 4), with a list of all available meanings for 

the relevant expression. Here the third meaning for “cool” is 
“great, fun, tremendous, …”. When this meaning has been 
selected, the entire input is retranslated. This time the Spanish 

translation will be “Es un programa estupendo” and the 
translation back into English is “Is an awesome program.” The 
user may accept this rendering, despite the minor grammatical 

error, or may decide to try again. 

The new Traffic Light and Earring Icons help to balance 

a conversation’s reliability with its speed. Reliability is 
indispensible for serious applications like healthcare, but some 

time is required to interactively enhance it. The icons let users 

proceed carefully when accuracy is paramount or a 

misunderstanding must be resolved, but more quickly when 

throughput is judged more important. This flexibility, we 

anticipate, will be useful in future applications featuring 

automatic detection of start-of-speech: in Green Light Mode, 

ASR and translation will proceed automatically without start or 

end signals and thus without demanding the user’s attention, 
but can be interrupted for interactive verification or correction 

as appropriate. Currently, in the same mode, for inputs of 

typical length (ten words or less), the time from end of input 

speech to start of translation pronunciation is normally less 

than five seconds on a 2.30 GHz Windows 7 desktop  with 

4.00 GB RAM, and faster in a pending cloud-based version.  

6. Conclusions 

Following on earlier descriptions of Converser for Healthcare, 

Version 3.0, and a substantial pilot project which tested it at a 

leading San Francisco hospital, this historical paper has 

conveyed hitherto unpublished details of the resulting 

evaluation, as presented in the healthcare organization’s 
internal reports, based in part upon interviews carried out by 

an independent third-party. We have also given an account of 

the system revisions in Version 4.0 which resulted from this 

feedback and from lessons learned independently. 

We expect to release Version 4.0 in early 2016, and look 

forward to reporting the results. 
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Figure 1: Earring and Traffic Light Icons are green: “Full speed ahead!” 

 

 

 

 

 
 

Figure 2: Earring Icon is yellow: “Proceed with caution!” 
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Figure 3: Verification Panel, with a lexical disambiguation error in This is a cool program.  

 

 

 
 

Figure 4: The Change Meaning Window, with four meanings of cool 
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Abstract

Segmentation of the incoming speech stream and translat-
ing segments incrementally is a commonly used technique
that improves latency in spoken language translation. Previ-
ous work (Oda et al. 2014) [1] has explored creating train-
ing data for segmentation by finding segments that maxi-
mize translation quality with a user-defined bound on seg-
ment length. In this work, we provide a new algorithm, us-
ing Pareto-optimality, for finding good segment boundaries
that can balance the trade-off between latency versus transla-
tion quality. We compare against the state-of-the-art greedy
algorithm from (Oda et al. 2014) [1]. Our experimental re-
sults show that we can improve latency by up to 12% with-
out harming the BLEU score for the same average segment
length. Another benefit is that for any segment size, Pareto-
optimal segments maximize latency and translation quality.

1. Introduction
Minimizing latency is a challenge for any spoken language
translation system that does simultaneous translation. Ide-
ally the system should produce the translation of an utterance
soon after it has been produced. However, translation often
involves reordering and this means that a monotone transla-
tion which immediately translates as soon as possible can be
quite poor in translation quality. Waiting until the end of the
input can typically improve the quality of translation but has
very bad latency, while translating short segments improves
latency but typically makes the quality of translation much
worse. A common technique in the literature is to segment
the incoming speech stream into chunks that can capture re-
ordering between source and target languages and translate
these chunks in order to improve latency.

The technique of segmenting the input is often referred
to as the “salami technique” in the field of conference in-
terpreting (by humans) [2] referring to the slicing up of the
input into small, predictably sized units for translation. In
spoken language translation, the “salami technique” has been
mostly focused on fixed length segments or segments based
on monolingual features in the input such as pauses and
other similar cues [3, 4, 5, 6] to break the input into seg-
ments for incremental translation. In order to train a seg-

mentation classifier, one can go beyond simple cues such
as pauses and annotate training data with good segmentation
boundaries [7, 8]. These techniques require either heuristic
or human annotation of segment boundaries for some data
in the source language. The segmentation classifier can be
tightly integrated into a stream decoding process for incre-
mental translation [9]. The impact of the choice of segment
length has been studied in some previous work on segmenta-
tion [10] and stream decoding [11]. However, none of these
approaches explicitly consider the impact of selecting be-
tween different segments (perhaps of the same size) on the
translation quality in the target language. In the context of
this paper, we want to choose segments that are optimal in
some way with respect to latency and/or translation quality
and we wish to train a segmentation strategy that provides
such an optimality guarantee (on the training data).

Oda et al. (2014) [1] have explored finding segments that
maximize translation quality with a user-defined bound on
segment length. The training data set required for this is
much more complex because, in order to optimize for seg-
ments with good translation quality, we need a training set
translated with all possible segment choices and sizes and
the eventual translation quality for each possible segmenta-
tion choice. Once such a training data set is built, one can
apply the algorithms in [1] to find segmentation decisions
that are optimal with respect to some evaluation measure of
translation quality such as BLEU [12] score.

In this work, we extend previous work [1] on finding op-
timal segments and provide a more appealing algorithm, us-
ing Pareto-optimality, for finding good segment boundaries
that can balance the trade-off between latency and translation
quality. Latency is measured in terms of segments translated
per second and translation quality is measured using a trans-
lation evaluation measure such as BLEU score. Using data
that was produced by simultaneous translation by human in-
terpreters, the study in Mieno et al. [13] considers how hu-
mans view the tradeoff between latency and translation qual-
ity. What they found was that humans were very sensitive to
translation quality, and this implies that we need algorithms
that can make a careful choice between different segmen-
tation decisions of the same latency to produce translations
with the best translation quality possible (for that latency).
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In this paper we provide efficient algorithms to find segmen-
tation decisions that explicitly rank these decisions based on
the trade-off between latency and translation quality.

We provide experimental results to evaluate our approach
on the English-German TED talk translation task which uses
data from the IWSLT shared task data from 2013, 2012 and
2010. The results show that we can provide qualitatively bet-
ter segments (compared to previous work) that improve la-
tency without substantially hurting translation quality.

2. Segments that Maximize Translation
Quality

Greedy segmentation (Oda et al. 2014) [1] is the state-of-the-
art method for creating segmentation training data. In this ap-
proach, the best possible segmentation points are found over
an unsegmented corpus which maximize the translation ac-
curacy of the segmented sentences in a greedy way.

The algorithm in [1]1 has a parameter for the number of
expected segments, K, which is given by Equation 1. Using
this equation, the segmentation model is trained on a paral-
lel corpus F = ⟨F,E⟩ which has N source/target sentence
pairs. |f | provides the length of sentence f in words and µ is
the average segment length.

K := max(0,

⌊∑
f∈F |f |
µ

⌋
−N) (1)

Finding each of these K segmentation points in the algorithm
involves searching through all the N sentences in the corpus
and examining each segment boundary in the whole corpus.
For K = 1, one sentence in the corpus is segmented into
two chunks. This way, they will produce all possible hypoth-
esized segmentations of the entire corpus, one of which is
going to be the optimal one.

Given an MT system, D, which is already tuned on a
given development set, D(f, s) is the translation output of
the MT system D for a given source sentence f obtained by
concatenating the translations of the individual segments de-
fined by the set of segmentation decisions s. This set s is
created by adding a segmentation point at each place where
a segmentation classifier fires. In [1] the segmentation clas-
sifier is determined by checking a single feature firing. This
single feature is a bigram part of speech (POS) tag. Each
segmentation of the corpus is a collection of such features
called Φ. Thus, s, the set of segmentation points is propor-
tional to the number of sentences inF and the features Φ that
determine the segments: s ∝ {F ,Φ}.

The accuracy score of each possible segmentation choice
for a given number of segments s is computed for the whole

1It might seem so, but we are not duplicating a lot of content from their
paper, and what is included is necessary to understand our proposed algo-
rithm. We provide an example that is used to explain our algorithm as well
and which will help the reader understand the difference with our proposed
algorithm. We also change their notation to match our own.

corpus as follows:

B(s) =
N∑

j=1

β(D(fj , s), ej) (2)

where D(fj , s) produces target translations for each source
sentence fj based on the segments in s. Each output sentence
is scored by β which can be any automatic evaluation mea-
sure for translation quality. We use per-sentence smoothed
BLEU score (BLEU+1) [12, 14] in this paper. B(s) is the
sum of the translation quality scores for each segmented sen-
tence. The argmax of B(s) finds the optimal segmentation
for the entire corpus, searching over all possible s segment
boundary points. This argmax of B(s) is repeatedly com-
puted for every segmentation set of size k = 1 . . .K, and the
set of size K is returned.

Because such an approach is computationally complex,
Oda et al. (2014) [1] introduce the idea of feature grouping.
Using feature grouping, once a feature has been greedily cho-
sen, all the points exhibiting that feature are segmented at the
same time and added to the set of selected features. More-
over, they take advantage of dynamic programming (DP) im-
plementation of the greedy approach to reflect optimal fea-
ture grouping. DP is used to build larger sets of segmentation
points from smaller sets. This method is called Greedy-DP
or the GDP Segmentation approach in their paper.

Finally, they introduce a regularizer coefficient α to their
accuracy scoring function which is aimed to control the num-
ber of selected features out of the set Φ; as a higher α will
choose a smaller set of features in Φ which occur frequently
to produce the necessary number of segments while a lower
α tends to prefer a larger set of features in Φ, each of which
occur less frequently.

Bα(s) = B(s)− α|Φ| (3)

In an English-German translation task, consider the
three-sentence sample example of Figure 1 and the features
used for choosing the segmentation points to be the bigram
part of speech (POS) tags (like [1]). In this example, each
point has been labeled with a general POS tag out of the
set P={N[noun], V[verb], D[determiner], J[adjective], P[preposition],
S[possessive pronoun], A[adverb], R[particle], .[dot]}.

(1) I
N

am
V

a
D

contemporary
J

artist
N

with
P

a
D

bit
N

of
P

an
D

unexpected
J

background
N

.

.

(2) I
N

was
V

in
P

my
S

twenties
N

before
P

I
N

ever
A

went
V

to
P

an
D

art
N

museum
N

.

.

(3) I
N

grew
V

up
R

in
P

the
D

middle
N

of
P

nowhere
N

on
P

a
D

dirt
N

road
N

in
P

rural
J

Arkansas
N

.

.

Figure 1: Example training set for segmentation choices containing the
source sentences and part of speech tags (target German sentences are not
shown in this figure but appear later).

Table 1 shows the feature frequencies of the sample cor-
pus. For µ = 1 (setting each word as one segment) for the
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Φsent 2 #segments Segmented Sentence & Translation GDP Accuracy PO Accuracy Time Segs/Sec

1 ∅ 1 [I was in my twenties before I ever went to an art museum .] 0.224 0.224 16.097 0.062Ich war in meinen zwanzig vor Ich in ein kunstmuseum ging .

2 P-S 2 [I was in][my twenties before I ever went to an art museum .] 0.382 0.191 15.206 0.131Ich war in meine zwanziger vor Ich in ein kunstmuseum ging .

3 S-N 2 [I was in my][twenties before I ever went to an art museum .] 0.235 0.117 15.487 0.129Ich war in meinem zwanziger vor Ich in ein kunstmuseum ging .

4 A-V 2 [I was in my twenties before I ever][went to an art museum .] 0.134 0.067 9.983 0.200Ich war in meinen zwanzig Ich je vor ging zu einer kunst museum .

5 N-A 2 [I was in my twenties before I][ever went to an art museum .] 0.224 0.112 3.462 0.577Ich war in meinen zwanzig Ich vor in ein kunstmuseum ging .

6 N-N 2 [I was in my twenties before I ever went to an art][museum .] 0.138 0.069 3.426 0.583Ich war in meinen zwanzig vor Ich jemals zu einer kunst museum .

7 P-N 2 [I was in my twenties before][I ever went to an art museum .] 0.224 0.112 2.697 0.741Ich war in meinen zwanzig vor Ich in ein kunstmuseum ging .

8 P-S,S-N 3 [I was in][my][twenties before I ever went to an art museum .] 0.382 0.127 2.586 1.160Ich war in meine zwanziger vor Ich in ein kunstmuseum ging .

9 P-S,A-V 3 [I was in][my twenties before I ever][went to an art museum .] 0.272 0.090 3.137 0.956Ich war in meine zwanziger vor Ich je ging zu einer kunst museum .

10 P-S,N-A 3 [I was in][my twenties before I][ever went to an art museum .] 0.382 0.127 5.350 0.560Ich war in meine zwanziger vor Ich in ein kunstmuseum ging .

11 S-N,A-V 3 [I was in my][twenties before I ever][went to an art museum .] 0.141 0.047 2.762 1.086Ich war in meinem zwanziger vor Ich je ging zu einer kunst museum .

12 S-N,N-A 3 [I was in my][twenties before I][ever went to an art museum .] 0.235 0.078 2.586 1.160Ich war in meinem zwanziger vor Ich in ein kunstmuseum ging .

13 N-A,A-V 3 [I was in my twenties before I][ever][went to an art museum .] 0.134 0.044 2.632 1.139Ich war in meinen zwanzig Ich vor je ging zu einer kunst museum .

Table 2: For the second sentence in Figure 1, we show the bigram part of speech features that pick the segment boundaries, the number of segments in this
sentence, the accuracy for both the Greedy-DP (GDP) algorithm of [1] and our Pareto-Optimal (PO) algorithm (see Section 3), the translation times and latency
measurements (with parameter µ = 8). GDP accuracy is different from PO accuracy because accuracy is measured differently in the two approaches.

Feat Freq Feat Freq Feat Freq
N-P 6 J-N 3 V-R 1
P-D 5 N-N 2 P-S 1
D-N 4 P-N 2 P-J 1
N-. 3 D-J 2 S-N 1
N-V 3 R-P 1 A-V 1
V-D 3 N-A 1

FSS Size 40

Table 1: Frequencies of the bigram part of speech tags in the example from
Figure 1.

example in Figure 1, the GDP segmentation algorithm will
set K = 40 = max(0,

⌊
[
∑

f∈F |f |=43]

[µ=1]

⌋
− [N = 3]). Like-

wise, if we set µ = 8, we will have K = 2, and our possible
segmentation sets will be in {{N-N}, {P-N}, {D-J}, {[R-P],[N-A]},
{[V-R],[P-S]}, ...} for our running example. Therefore, the seg-
mentation set will contain all the different ways to segment
the segmentation training data to obtain the average segment
length of 8. If we want to consider different possible seg-
mentations of the second sentence in our sample corpus with
µ = 8, the possible segmentations will be one of the sets
inside spossible.

spossible={{}, {N-N}, {P-N}, {{N-A}, {P-S}}, {{N-A}, {S-N}},
{{A-V}, {P-S}}, {{A-V}, {S-N}}, {{A-V}, {N-A}}, {{P-S}, {S-N}}}.

Table 2 shows the possible segmentations of the second
sentence of the example in Figure 1 for K = 2. We show
Φ only for the second sentence, so when Φsent 2 is ∅ the two
segments were chosen in other sentences not shown in this
table. The GDP algorithm will choose the segmentation that

maximizes accuracy, so for K = 2, the GDP algorithm will
pick either sentence 8 or 10 from Table 2 (the algorithm has
to break ties arbitrarily in the sorted order for segmentations
with equal accuracy).

The GDP algorithm thus picks the segmentation deci-
sions that result in the best accuracy on the training set. How-
ever, the GDP algorithm considers only accuracy to find the
optimal segmentations, so it tends to prefer larger segments
that can result in worsening the latency. Furthermore, the
trade-off between accuracy and latency is not modelled in
the search for good segmentations. This trade-off is crucial
in the design of simultaneous translation systems. Another
issue can be observed in Table 2, in choosing to spread the
segmentation points to more sentences or concentrating them
in fewer sentences, the GDP algorithm tends to choose the
latter in spite of the regularizer on the size of Φ. Equation 3
does not consider the number of segments which are placed
in each individual sentence. We try to address both of these
issues in our Pareto-optimal segmentation approach.

3. Pareto-Optimal Segmentation Approach
In this section, we will show how Pareto-optimality can help
producing a better segmentation with respect to both la-
tency and accuracy. To get to this point, we will first re-
view the concept of Pareto-optimality as it shows how one
could choose different equally important points in the two-
dimensional space of latency and accuracy.

Considering translation latency-accuracy points depicted
in Figure 2 as an example, a point will be Pareto-Optimal if
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Figure 2: Pareto-Optimal and Weakly Pareto-Optimal points as well as the
dominated points scored on the two metrics of interest in this paper: latency
and translation accuracy scores (e.g. BLEU).

and only if there is no other point which is both faster and
more accurate than this point (or even equal in one aspect).
In other words, a point p1 is Pareto-optimal if and only if for
each point p2 in the region we have

Λ{p2} < Λ{p1} & B{p2} < B{p1} (4)

where Λ and B are representing functions measuring latency
and accuracy. Therefore, point p1 dominates any such point
p2, shown as p1 ▷ p2. If the dominated point p2 has an equal
latency or accuracy measure to the dominating point p1, we
call p2 a Weakly Pareto-Optimal point.

Based on these concepts and paying attention to the
Pareto-Optimality Line in Figure 2, we see that there may
be more than one optimal point on which one could tune the
MT system to enhance the performance of stream decoding.
Each of these points is one Pareto Frontier Point. The Pareto
frontiers provide a range of equally optimal points rather than
one most accurate point and we use this fact in our search for
optimal segments.

In our approach, we use the same notation of K and µ
introduced in the Greedy approach of Section 2 to explore
the space of possible segmentations in the training corpus.
However, in our algorithm, the parameter µ (the average seg-
ment length) can be seen as a way to explore the trade-off be-
tween latency and accuracy. Longer segments (with a higher
µ value) tend to be associated with higher translation qual-
ity. But the cost of this higher accuracy is that our translation
system will have a worse latency. Shorter segments (with a
smaller µ value) tend to be associated with better latency (on
average there will be more segments translated per second).
In this case the translation fluency scores tend to become
worse. We compare our approach to the Greedy approach
by (Oda et al., 2014) [1] which takes the value of K as an
input. We consider different values of K in our algorithm to
balance the latency-accuracy trade-off.

We search for the best set s, containing K segments (total
number of expected chunks) over the stream of an expected
known size. The cardinality of this segmentation set may

vary from 0 (no segmentation at all), to W =
∑N

i=1{|fi|−1}
(take each word as a segment). A ‘full segmentation set’
(FSS) will contain all possible W segments. Sall represents
a superset containing all possible segmentation sets over F
(source sentences in parallel corpora).
S∗ ∈ Sall is defined as a set of best segmentation strate-

gies which maximizes an evaluation function over latency
and accuracy (Equation 7). We propose two scoring func-
tions for latency and accuracy (Equations 5 and 6 respec-
tively) which are used in Equation 7.

We modify the accuracy function of Equation 3 to ad-
dress the problem of spreading the segmentation positions
(Equation 5).

Bα(s) =
N∑

j=1

β(D(fj , sj), ej)
|sj |

− α|Φ| (5)

where K = |s|= ∑N
j=1 |sj | holds and |sj | is the number of

segments (i.e. the number of segmentation points plus one)
for each sentence fj .

The latency scoring function is defined as the average
number of segments translated in the unit of time, which can
be simply computed by dividing the the total number of seg-
ments by the total translation time as follows:

Λα(s) =
|s|

∑N
j=1 γ(D(fj , s))

− α|Φ| (6)

where γ function measures the time taken for computing
D(fj , s). Note that, here we use the same regularization
strategy used in Equation 3 (see Section 2).

S∗ = arg pareto frontier
s∈Sall

{Bα(s),Λα(s)} (7)

Note that in Equation 7, the output of “arg pareto fron-
tier” is the Pareto-optimality line in the accuracy-latency
plot. Therefore, S∗ might contain more than one best set
of segmentations.
S∗ can be found using a naı̈ve algorithm as described

in Algorithm 1. However, this algorithm is computationally
expensive and its time complexity is exponentially increased
by increasing the size of K.

Algorithm 1 Pareto-Optimal Segmentation
1: S∗0 ← ∅
2: for k = 1 to K do
3:

S∗k ← arg pareto frontier
p∈FSS∧p ̸∈S∗

k−1

{
Bα(S∗k−1 ∪ {p}),
Λα(S∗k−1 ∪ {p})

}

4: end for
5: return S∗K

Algorithm 2 depicts our Computationally Efficient
Pareto-Optimal Segmentation Method to find S∗. The main
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Algorithm 2 Computationally Efficient Pareto-Optimal Segmentation
1: Φ0 ← ∅
2: for k = 1 to K do
3: for j = 0 to k − 1 do
4: Φ′← {ϕ : (ϕ ̸∈ Φj) ∧ (count(ϕ;F) = k − j)}
5: Φk,j ← Φj ∪

{
arg pareto frontier

φ∈Φ
′{Bα(s(F ,Φj ∪ {ϕ})),Λα(s(F ,Φj ∪ {ϕ}))}

}

6: end for
7: if k < K then ▷ To reduce the computational complexity
8: Φk,j ← argmaxφ∈{Φk,j :0≤j≤k} Bα(s(F , ϕ))
9: end if

10: Φk ← arg pareto frontierΦ∈{Φk,j :0≤j≤k}{Bα(s(F ,Φ)),Λα(s(F ,Φ))}
11: end for
12: return s(F ,ΦK)

loop (lines 2-11) each time finds the next best segmentation
feature (ϕ) and adds it to the set of best segmentation points
which are already found (creating a set of k points). Each
feature is a bigram part of speech tag. The inner loop (line
3) implements the dynamic programming (DP) condition as
in [1]. For instance, for Φ3 this inner loop would combine
the features in the set Φ0,Φ1 and Φ2 (for j = 0, 1, 2) with
the features that occur with a count of 3, 2 and 1 respectively.
So take Φ3,1 which is the set that is updated in line 5, the
points satisfying the Pareto frontier criteria are selected out
of Φ′ and combined with the segmentation points of the chun-
ked sub-segments. Φ3,1 contains the union of all features in
Φ1 computed previously in the DP table with new features
of count 2 collected in line 4. Eventually Φ3,1 is used to
search over Pareto frontier candidates to produce Φ3 in line
10. Line 7 limits the computational complexity of producing
Pareto frontiers out of a set containing previously computed
Pareto frontiers. This line sets the most accurate point out of
currently discovered Pareto frontiers, to be the only Φ of the
next step (to build Φj+1). In Line 10, all possible segmenta-
tion points are analyzed (for k < K there is just one point)
and the Pareto frontiers out of them are stored as Φk. Finally,
in line 12, the result of segmentation with the discovered seg-
mentation points of ΦK is produced and returned.

Performing the same segmentation task from Section 2,
over our running example using this Pareto-optimal segmen-
tation approach, will initially result in the same segmented
sentences but our algorithm has a different intuition about
choosing the best translations. Table 2 reports PO segmenter
accuracy, total translation time and latency measurement val-
ues besides the reported accuracy of GDP segmenter over
different segmented versions of second sample example (in
Figure 1) as well as the actual feature set (Φ) for each specific
segmentation and translation.

To explain the algorithm we have used the running ex-
ample in Figure 1 and traced the output of our Algorithm 2
for K = 2 and provided the plot of accuracy-latency val-
ues during one execution of this algorithm in Figure 3. We
get the highest accuracy with the worst latency in the be-
ginning. Then the algorithm starts to find the first best seg-
mentation point (K = 1; j = 0) and it finds four possible
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Figure 3: Evaluation results of different segmentation strategies in one loop
of the algorithm 2

segmentation candidates (depicted as filled circles in Figure
3). It chooses the best accuracy as Φ1 and moves to the next
round to find the second (last) segmentation point. It first
considers features happening twice (K = 2; j = 0), then it
again chooses the best accuracy as Φ2,0. Next, it examines
the strategy of adding a single repeated feature to Φ1 which
ends up to the points depicted as diamonds. When it finds the
second strategy which dominates the first strategy, it chooses
the Pareto-optimal points out of the new strategy and reports
it as Φ2. Although in this example, the final segmentation set
(Φ2) contains just one point, this is not always the case.

4. Experiments

4.1. Experimental Setup

We evaluate our approach on the English-German TED
speech translation data [15]. We used Moses [16] which
is a conventional phrase-based SMT system using the stan-
dard set of features in the discriminative log-linear model for
SMT to produce the translations for each possible segmenta-
tion decision in our segmentation training data. We used the
Stanford POS-Tagger [17] to tokenize and produce the POS
tags over the train and test data. We used IWSLT 2013 Train
data plus half of the Europarl data [18] to train our MT sys-
tem on English-German and IWSLT Test 2012 to tune it using
MERT [19]. Our German language model was trained using
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the monolingual data from WMT 2013 Shared Task 2. The
segmentation training data was taken from IWSLT Shared
Task Dev 2010 and 2012 and Test 2010 and it has been tested
on IWSLT Shared Task Test 2013. Table 3 shows the statis-
tics of data used in our experiments.

Sentences Types Tokens
MT Train 1033491 105267 27948041
MT Tune 1730 3937 31568
Seg Train 3669 6773 74883
Seg Test 1025 3181 22026

Table 3: Size of datasets used in our experiments.

For the evaluation metrics used to evaluate segment trans-
lation quality and latency, we use BLEU+1 [12, 14] and the
number of translated segments per time unit (S/T), respec-
tively. We set the α regularizer coefficient to 0.5, for both
GDP and Pareto-Optimal (PO) segmenters. This value for
α avoids selecting features with extremely high or low fre-
quency.

We train the MT system and use it in all experiments. Us-
ing the trained MT system, we translate all possible segments
and store them in a lattice (like [1]). In this way, we can ac-
cess to a translation instantly while computing the evaluation
metrics (Equation 7).

We compute the time of translations over each segment
in order to evaluate the latency of translations. However, this
computed translation time is the result of many factors and
different seek and search algorithms and may depend on low-
level issues such as cache misses on the hardware where the
MT system is running. Our results were consistent across
many runs so we do not consider such issues to be dominant
in our experimental results.

4.2. Accuracy vs. Latency-Accuracy Evaluation

In this experiment, we would like to assess the effect of
adding latency to accuracy metric in the segmentation task.
In our experiments, we use two baselines: the state-of-the-
art speech segmenters (Rangarajan et al. 2013) [5] and GDP
(Oda et al. 2014) [1]. We implemented a heuristic segmenter
based on (Rangarajan et al. 2013) [5] which segments on
surface clues such as punctuation marks. These segments re-
flect the idea of segmentation on silence frames of around
100ms in the ASR output used in [4]. This type of heuristic
segmenter is a special case of a PO segmenter which inserts
segment boundaries only for POS bigrams that end with a
punctuation POS tag.

We ran our PO segmenter and the GDP segmenter with
different values of parameter µ (average segment length) be-
tween 2 and 15 as well as the heuristic segmenter over the
same data explained in Section 4.1. Due to the large number
of generated points and outputs, we summarize the results in
Figure 4 and Figure 5.

2http://statmt.org/wmt13/translation-task.html

Our experiments show that different possible values of µ
will divide the accuracy-latency area into districts and each
experiment is expected to exhibit a number of samples of
each district for each µ. We show each district with a circle
in the figures as the representative of the group of obtained
points relating to one specific µ. This circle is put in the cen-
troid of the points in the group. To show the size ratio of
districts to each other, the more points found in one district,
the bigger the circle is depiceted. But not all the points in
the group are Pareto-optimal, so we add another circle inside
the outer one showing the ratio of Pareto-optimal points to
the whole group of points. If all of the points for one µ were
Pareto-optimal, both circles would have the same radius and
the inner circle would not have been visible. In addition,
we show the results of the baseline heuristic and GDP seg-
menter using ♢s and Xs, respectively. Moreover, we plot the
real Pareto-optimality line with the actual points on it to give
the reader the chance to compare the actual results of the ex-
periments to the baseline results.

Our choice of the axis is different from previous work
in this area. Commonly, segmentation results are reported
with accuracy on the y-axis, but we use the x-axis instead in
order to easily get a better visual understanding of pushing
the Pareto-optimality line towards the trade-off area we care
about (the “knee” of our plots).

Figure 4 shows the latency (average number of segments
translated per second) and translation quality (BLEU) on the
training data. Figure 5 shows the latency and accuracy on the
unseen test set. These figures show that Pareto-optimality
is a useful methodology to explore the various options for
segmentation boundary selection. Optimizing for Pareto-
optimality leads to segmentations that provide latency and
accuracy improvements simultaneously and provide choices
for the trade-off between latency and accuracy.

While Figure 5 shows the overall trend for various seg-
ment sizes on the test data, we chose some specific segment
lengths and show a head to head comparison between the two
segmenters in Table 4. This comparison shows that our PO
segmenter can provide faster latency compared to the GDP
segmenter while retaining translation accuracy.

µ = 3 µ = 8
Latency Accuracy Latency Accuracy

GDP 0.424 0.18 0.305 0.21
PO 0.474 0.18 0.315 0.21

Table 4: Result comparison for µ = 3 and µ = 8.

Our approach of optimizing over the latency in addition
to the translation quality always results in better latencies
compared to the baseline while keeping the same translation
quality or even improving it in some cases.
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Figure 4: Comparison on the segmentation training data.

5. Related Work
In speech translation, the segmentation task can be per-
formed on speech or the transcribed text. Early work on
speech translation uses prosodic pauses detected in speech as
segmentation boundaries [3, 4]. Segmentation methods ap-
plied on the transcribed text can be divided to two categories:
heuristic methods which use linguistic cues, like conjunc-
tions, commas, etc. [5]; and statistical methods which train a
classifier to predict the segmentation boundaries. Some early
methods use prosodic and lexical cues as features to predict
soft boundaries [20]; while most recent methods rely on word
alignment information to identifies contiguous blocks of text
that do not contain alignments to words outside them [7, 8].
In addition to these segmentation approaches which are ap-
plied before calling the translation decoder, there is another
strategy which perform the segmentation during decoding
which is usually called stream or incremental decoding. Dif-
ferent incremental decoding approaches have been proposed
for phrase-based [11, 21] and hierarchical phrase- based
translation [8, 22]. He et al. [23] focus on language pairs with
divergent word order by designing syntactic transformations
and rewriting batch translations into more monotonic trans-
lations. Some research has been conducted on human simul-
taneous interpretation to determine the effect of the latency
and accuracy metrics on the human evaluation of the output
of simultaneous translation. The results indicate that latency
is not as important as accuracy [13]. This implies that we
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Figure 5: Comparison on the segmentation test data.

need algorithms that can make a careful choice between dif-
ferent segmentation decisions of the same latency to produce
translations with the best translation quality possible (for that
latency) which we have done in this paper.

6. Conclusion

This paper explores multi-metric optimization in simultane-
ous translation that learns segmentations that optimize both
latency and translation quality. We provide an efficient algo-
rithm for Pareto-Optimal segmentation and conducted a se-
ries of experiments that compared our approach to Oda et al.
[1] which used translation quality as the only criteria to se-
lect segmentation choices. We showed that Pareto-optimality
provides a better trade-off between latency and translation
quality. For any segment size, Pareto-optimal segments max-
imize latency and translation quality.

In future work, we plan to iteratively use a weighted seg-
mentation model that is trained using the Pareto frontier in
order to iteratively find new weights for the segmentation
model that will extend the “knee” of the Pareto frontier. Such
an approach was explored in [24] for multi-metric tuning of
SMT models, but has not been explored for training a seg-
mentation model.
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Abstract 

 
In this paper, we describe a Moses-based statistical machine 

translation (SMT) system, called FEBSMT, that incorporates 

periodic user feedback as a mechanism that allows the SMT 

system to adapt to prevailing translation preferences for 

commonly queried phrases, and assimilate new vocabulary 

elements in recognition of the dynamically changing nature of 

languages. A parallel corpus containing a total of ~22K 
sentences in the tourism domain was used in developing the 

system. Updating the SMT’s language model and phrase 
tables via user feedback was modeled after the Post-Edit 

Propagation (PEPr) system [6]. Incremental training iterations 

were performed on the developed system via user feedback, 

which were collected in a duration of three months. The 
developed system was evaluated using the BLEU, NIST, 

METEOR, and TER metrics. We noted that the Filipino-to-

English translations consistently scored higher than the 

English-to-Filipino translations. Over the course of 100 

training iterations using randomly selected sentences taken 

from a closed set of sentences provided with user feedback, it 

was observed that the translation accuracy sharply improves 

within the first few iterations, which then gradually tapers 

after a peak translation performance has been reached.  

1. Introduction 

In the context of facilitating communications among citizens 

of ASEAN member countries especially as it prepares for 

economic integration in 2015, the ASEAN Machine 
Translation (ASEAN-MT) Project was launched [5]. The 

initial design of the ASEAN-MT system uses English as a 
pivot language to perform translation between pairs of major 

languages of the ASEAN member countries.  

 

Furthermore, these machine translation systems can also 

contribute to the United Nations Millennium Goal of 
Developing a Global Partnership for Development [8]; since, 

one of its target condition is to “make available benefits of 
new technologies, especially information and 

communications” through the use of the Internet. However, 
not all pieces of information are available in English and not 
all are translated correctly. Hence, multiple improved 

machine translation systems are effective in developing 
bridges for information dissemination.  

2. Related Work 

2.1 Tools 

2.1.1 Moses 

Moses is an open-source toolkit for statistical machine translation 

that allows one to automatically train translation models for any 
language pairs [3]. It does training for any language pair with the 

use of a parallel corpus. The parallel corpus is separated into 
training, development and testing sets. The training set is where the 

bilingual phrases are extracted and their weights are learned. The 
development set is used to adjust the values of the parameters of the 
decoder, while the testing set is used for assessing the translation 

quality. For this project, Moses setting chosen for training the 
Filipino-English bidirectional SMT system are as follows: language 

model (LM) order of 3, cleaning range of 1-80, and the decoder’s 
distortion limit of 6 [4]. The setting for FEBSMT was based from 

the previous Philippine Component of the ASEAN project in order 
to track the improvement in the machine translation technology.       

2.1.2 PEPr 

Post-edit Propagation (PEPr) is a phrase-based statistical machine 

translation system and uses an automatic post-editing (APE) setting 
with learning capabilities [6]. The APE system automatically post-

edits the machine translation output into a proper text with human 
quality. Moreover, this approach aims to handle various errors, 

ranging from determiner selection to grammatical agreement. The 

APE system is built using the data comprised of the baseline 

translations and their post-edited counterparts. 
  
In performing the Post-edit Propagation, the system has to undergo a  
cycle  of  two  processes as shown in Figure 2.1.  

 

 
  
  

Figure 2.1 The Feedback Process of PEPr. Figure extracted 

from [6] 

225

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



The first process involves the training of the baseline system, 

labeled M in Figure 2.1. The output from the baseline system 
is passed into the APE system. The baseline system is treated 

as a black box since no modification will be performed. The 
second process involves the APE system and a human post-

editor. The baseline translations are subjected to human post-
edits and these pairs of texts are used for the training of the 

APE system. Further version of APE systems were trained 
using the translations of the previous APE with their 

corresponding post-edits.  
 

The APE system relies on the phrase table and language 
model of the previous APE version and combines them to the 

current. For the language model combination, linear mixture 
model is applied; while for the phrase table combination, 

linear interpolation is also applied. This process is used to 
broaden the vocabulary in the language model and balance 

the probability of the phrase table based on the post-edits.  

 

When translating, the input text will first pass through the 

baseline system, and then pass through the latest APE system 

to be automatically post-edited. For this research, the concept 
of PEPr’s APE system was applied due to its flexibility in 
taking  user feedback or user post-edits as input to build the 
next APE system to improve machine translation quality.         

3. System Design of FEBSMT 

The aim of FEBSMT is to use post-editing approach to 

improve the translation accuracy of the machine translation. 

It is a web service application wherein users can translate  

Filipino  and English bi-directionally. The development of 

FEBSMT is composed of three phases, namely, the training 

phase, the development phase, and the testing phase.   The   

discussions   of   these   phases   are   found   in   the 
succeeding sections. 

3.1 Training Phase 

The training phase consists of two parts. The first part of the 

training phase is data gathering and the second part is the 

data cleaning. 

3.1.1 Data 

The   data   was   gathered   from   the   Center   for   

Language Technologies (CeLT) of De La Salle University 

(DLSU). It is a Filipino-to-English parallel corpus 

containing 22,031 sentences of a parallel corpus in the 

tourism domain. The parallel corpus is randomly split into 

70% for the training of the baseline system (Block M in 

Figure 2.1). For evaluation,  10%  of the  data  were  

selected  for  testing  the machine translation accuracy and 

20% were used for the development set. 

3.1.2 Data Cleaning 

Cleaning of data ensures that the data does not contain 

spelling errors, special characters, and tags. The data was 

also tokenized and re-cased into their lowercase. 

3.2 Development Phase 

For this phase, the development set from the data was used 
for the simulation of the feedback mechanism. This set of 

data was used to build multiple APE versions for 100 iterations. 

This is to observe the changes in the translation quality per APE 

version. For instance, the sentence “This is from room 208.” is 
translated into “Ito mula sa room 208.”. Although the translation is 
semantically correct, however it is grammatically incorrect. The 

proper translation should be “Mula ito sa room 208.”. This is to be 
used as the feedback for the APE.  

3.3 Testing Phase 

A dataset containing 10% of the parallel corpus was used as the 

testing data for verifying the accuracy of the machine translation 

using the four evaluation metrics: BLEU [5], NIST [2], METEOR 

[1], and TER [7]. The testing data was made constant in order to 

provide a consistent evaluation of FEBSMT. For this project, APE 

was  implemented and initially ran for five times on the same 

corpus. Every instance of the five iterations and the baseline 

system was subjected to the testing. The results showed a 

convergence of all the metric scores. 

4. Results and Discussion 

This section enumerates and explains the procedures of the 

succeeding experiments using both Filipino-to-English and English-
to-Filipino sets of different human feedback and testing data. It also 
discusses the purpose of each experiment, along with its results. The 
results were analyzed and evaluated with the different evaluation 
metrics. Furthermore, the results will be the basis for the evaluation 

of the entire FEBSMT system. 
 
For the experiments, the baseline development data and human 

feedback data were used in conducting the experiments with each set 
differing in size, content, and context. Two sets of testing data were 
used for testing the incremental training approach: the 10% baseline 
testing data and the 100 sentences randomly selected from the entire 

tourism corpus. This was done to maintain a consistent comparative 
reference to each other and to the baseline system. 
 
For the automated evaluation metrics, four metrics were used, 

namely: BLEU, NIST, METEOR, and TER. BLEU and NIST are 
both precision-based metrics, which score the number of the target 
translation matches to the reference. METEOR, an F-score metric, 

measures precision and recall, the number of matches between the 
target, the reference and their explicit word ordering. TER counts the 
number of post-edits required to change the target translation to the 
reference. For the evaluation metric score of BLEU, NIST, and 
METEOR, a higher value means more matched words between the 
translation output and reference translation. If the score for TER is 

lower, the similarity between the translations is greater. 
 

4.1 APE Training with Human Feedback 

The purpose of this experiment is to determine if incrementally 

training the system using human feedback will improve the machine 
translation quality.  
 
For this experiment, 20% of the tourism corpus was used as the 

development set. The development set was translated in the baseline 
system and was subjected to manual post-editing to be used as the 
feedback for the 100 incremental training iterations. In each 
incremental training phase of the APE, a total of 1000 sentences 

were randomly selected from the baseline translation of the 
development set paired with their corresponding post-edited 
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counterpart. For evaluating the system, 10% of the same 
corpus was used as testing data. 

 
The differences between the translation quality of Filipino-to-
English and English-to-Filipino in terms of their evaluation 

scores can be observed in Figures 4.1 to 4.4. The range of 
scores throughout the 100 incremental training iterations for 
Filipino-to-English translation is between 0.36 to 0.38, while 
0.32 and 0.33 for English-to-Filipino 
translation.  Fluctuations and abrupt increase of scores 

occurred for both experiments. The peak in the translation 
scores occurred in the 6th iteration for the Filipino-to-English 
translation, and in the 15th iteration for the English-to-

Filipino translation, obtaining a BLEU score of 0.3795 and 
0.3346, respectively.  

The scores of the 6th and 15th APE iterations, which obtained 
the highest scores, however, still have values lower than the 
baseline score. This means that while there is an 
inconsistency in the scores of the two experiments, the 

baseline system still displayed a translation that is closer to a 
human quality base from the BLEU and NIST scores but the 

TER evaluation metric was higher by 0.4071 and the 
METEOR score was very low. These observations suggest 
that the baseline system’s translations have many extraneous 
words and incorrect word reordering. 

A word can have many different translations coming from 
different contexts, and this tendency was observed to be the 
possible cause of the decrease in scores. In comparison, there 
is a more apparent decline in the scores of Filipino-to-English, 
unlike in the English-to-Filipino where the scores were 
significantly fluctuating. 

4.2 Error Analysis 

For thorough comparison, the results from baseline, 6th, 15th, 
and 100th incremental training were selected. Baseline is 

necessary to serve as the benchmark of comparison. The 6th 
and 15th incremental training was chosen for having the 
highest resulting BLEU score for English-to-Filipino and 
Filipino-to-English, respectively. This is to observe whether 

the value of the BLEU score has any effect on the actual 
translations. Lastly, the 100th incremental training was chosen 
as a representative of future incremental training of the APE 
system. 
 

 
Figure 4.1: Bi-directional Filipino-to-English BLEU Evaluation 

Score using Human Feedback 

 

Figure 4.2: Bi-directional Filipino-to-English NIST Evaluation 
Score using Human Feedback 

 
Figure 4.3: Bi-directional Filipino-to-English TER Evaluation Score 

using Human Feedback 
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Figure 4.4: Bi-directional Filipino-to-English METEOR 

Evaluation Score using Human Feedback  

Table 4.1: Frequency Count of Errors Based on Phrase 
Length using the professional translator’s Target Translation 

5.  Complet

e 

Under 

Translati

-on 

Over 

Translati

-on 

Equal 

Translatio

-n 

Eng-to-

Fil 

Baselin

e 

11 26 40 23 

Eng-to-

Fil 

101st 

APE 

20 26 30 24 

Fil-to-

Eng 

Baselin

e 

41 26 20 13 

Fil-to-

Eng 

101st 

APE 

28 24 27 21 

 

Table 4.2: Frequency Count of the Types of Error for the 
Target Translation 

6.  
Mistrans-

lation 

Parts of 

Speech 

Word 

Order 

Untransla-

ted 

Eng-to-

Fil 

Baseline 

27 19 13 11 

Eng-to-

Fil 

101st 

APE 

30 24 14 11 

Fil-to-

Eng 

Baseline 

17 14 13 15 

Fil-to-

Eng 

101st 

APE 

29 15 22 9 

 
In performing error analysis and evaluation of FEBSMT, a 
professional translator provided 100 sentences as feedback for 

comparison purposes. The professional translator also provided a set 
of categories for classifying the errors, namely complete, under 

translation, over translation, and equal. For an error to fall under 
this set of categories, the word count of the translation output is 
compared against the word count of the professional translator’s 
feedback.  
 
A translation is complete if the word count for both sentences is 

equivalent, with the context of the sentences being the same. If the 
contexts of the compared sentences are different, the translation will 

be classified under the equal category. Under translation means that 
the word count of the target translation is less than the feedback, 
while over translation means it has exceeded. When a translation is 
classified as under, over or equal, the type of errors that caused the 
failure in translation is checked. 
The four main types of translation errors that were considered are 
mistranslation, parts of speech, word order, and 

untranslated,.explained as follows:  

 Mistranslation – This is the failure to translate a part of the 
source sentence to its correct translation, or when the target 
sentence is unintelligible.   Parts of Speech – This error occurs when there is a wrong 
usage of pronouns, tenses or verb agreements.  Word Order – This error occurs when a word is misplaced in a 

sentence.   Untranslated – This error occurs when words from the source 
sentence are retained in the target translation. 

As shown in Table 4.1, the results for both the baseline and the 101st 
incremental training of English-to-Filipino are close to each other. 
Although, the 101st incremental training managed to obtain more 

complete sentences, it lessened the over translated sentences, and 
increased the number of equally translated sentences by 1. However, 
the number of mistranslation, parts of speech, and word order 
slightly increased based on the results shown in Table 4.2. This can 
denote that while the errors increased for some sentences, there were 
also some sentences, which were completely fixed by the 101st 
incremental training. On the contrary, the result for the Filipino-to-
English translation showed an obvious deterioration as the number 

of complete sentences decreased greatly while the number of 
mistranslation and word order errors increased. Also evident in 
Table 4.4, the most frequent occurring errors are mistranslation and 
parts of speech errors.  
 

6.1 Quantity-Based Human Feedback 

Another experiment was conducted in order to observe the effect of 
merging several feedback data of APE and treating them as a single 
feedback data. There were a total of 15 APE incremental training 
systems combined together consisting of the 1st to the 15th APE in a 
single APE incremental training. This is for better comparison 
against the 15th APE, which is the highest scoring APE for the 

English-to-Filipino. A single APE contains 1,000 sentences as their 

training data; hence, there are a total of 15,000 feedback sentences 
trained for English-to-Filipino in this experiment. On the contrary, 
there were 6 incremental trainings of APE combined together for 
Filipino to English, which consists of 6,000 sentences in total. 
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Table 4.3: English-to-Filipino Comparison of 15th and 
Merged APE 

7.  BLEU NIST TER METEOR 

15
th

 APE 0.3333 6.5343 0.4293 0.3218 

Merged 
(1

st
 to 15

th
 

APE) 
0.2726 6.0478 0.4750 0.3036 

 
 
Table 4.4: Filipino-to-English Comparison of 6th and Merged 

APE 

8.  BLEU NIST TER METEOR 

6
th

 APE 0.3795 7.4114 0.3995 0.3795 

Merged 
(1

st
 to 6

th
 

APE) 
0.3610 7.2671 0.4100 0.3765 

 

 
As a result, training the feedback data in smaller sets is still 
better than training them in larger sized data. The scores in 
Table 4.3 and Table 4.4 show that the 6th and 15th APE got 
higher precision scores for the four metrics compared to their 

merged counterpart. This denotes that doing incremental 
training allowed more word matches, clustered words, and 
lesser corrections needed to be done to match the reference 

sentences. With lesser amount of data, the system is able to 
learn better as the weighted sum of the probability values in 
the language model is taken. However, given that the 
feedback data is trained as a whole, the system will only take 
in the current probability value causing a poor translation 
quality. Applying interpolation and combination methods 

limits the probability increase or decrease of n-grams in the 

language model and preserves previous phrase pairs, which 
limits the amount of changes done to the translation.  

8.1.1 Unique Quantity-Based Human Feedback 

Table 4.5: English-to-Filipino Comparison of 8th and Merged 
APE 

 BLEU NIST TER METEOR 

8
th

 APE 0.3300 6.4999 0.4305 0.3195 

Merged 
(1

st
 to 8

th
 

APE) 
0.3352 6.5512 0.4271 

0.3227 

 

Table 4.6: Filipino-to-English Comparison of 8th and Merged 
APE 

 BLEU NIST TER METEOR 

8
th

 APE 0.3743 7.3323 0.4049 0.3753 

Merged 
(1

st
 to 8

th
 

APE) 
0.3892 7.5288 0.3903 0.3887 

 
The previous 100 APE incremental training phases were 
trained between baseline development data that was first 

translated in the baseline and corresponding human post-
edited feedback. However, the baseline development data 
contains duplicates that could result to repetitions in the 

training data of the APE phases. Since having more repetitions 
increases the probability values for both the language model and the 

phrase table, it is necessary to observe how unique sets of feedback 
will improve the translation when trained in the APE setting.  
 

Of the total of 4,406 sentences in the gathered human feedback for 
both English and Filipino, there were a total of 4,111 unique English 
sentences and 4,174 unique Filipino sentences. In order to also 
investigate the effect of changing the size of human feedback for 
each incremental training iteration, the size of the training data for 

each iteration was changed from 1000 to 500 sentences. Eight sets of 
APE incremental training data were built. The goal of the 
experiment is to compare between the 8 APE incremental training 

phases and the merged APE, composed of the same 8 phases of the 
APE. In all other aspects, this experiment was similar to that of the 
Quantity-Based Human Feedback (Section 4.3). The merged APE in 
the previous experiment contained duplicates, which was a possible 
factor for the lower translation quality because duplicate entries 

increase the probabilities of wrong translation pairs. With these ~4K 
unique sentences, the merged APE can be analyzed without the 

factor of incorrect duplicate translation pairs.   
In Table 4.5 and Table 4.6, for both English-to-Filipino and Filipino-
to-English translations, the merged APE incremental training phase 
has better evaluation metric scores compared to the 8 separate APE 
incremental training phases. The main reason for the increase in 
score is its uniqueness. Since there were no duplicates, the APE 

phase was able to learn all sentences equally wherein it calculated a 

more accurate computation of the probabilities.  The number of 
training data for an APE phase does not directly mean the decrease 
in translation quality.  
 

Table 4.7: English-to-Filipino Unique Incremental APE Phases 

9.  BLEU NIST TER METEOR 

1
st

 APE 0.3316 6.5162 0.4317 0.3194 

2
nd

 APE 0.3282 6.4722 0.4347 0.3188 

3
rd

 APE 0.3239 6.4550 0.4350 0.3176 

4
th

 APE 0.3323 6.5203 0.4308 0.3215 

5
th

 APE 0.3313 6.152 0.4304 0.3212 

6
th

 APE 0.3323 6.5214 0.4301 0.3216 

7
th

 APE 0.3345 6.5402 0.4287 0.3220 

8
th

 APE  0.3352 6.5512 0.4271 0.3227 
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Table 4.8: Filipino-to-English Unique Incremental APE 
Phases 

10.  BLEU NIST TER METEOR 

1
st

 APE 0.3714 7.3506 0.4028 0.3798 

2
nd

 APE 0.3729 7.3610 0.4036 0.3785 

3
rd

 APE 0.3783 7.4151 0.3991 0.3821 

4
th

 APE 0.3816 7.4386 0.3971 0.3833 

5
th

 APE 0.3796 7.4249 0.3976 0.3827 

6
th

 APE 0.3804 7.4254 0.3968 0.3832 

7
th

 APE 0.3834 7.4539 0.3950 0.3850 

8
th

 APE  0.3892 7.5288 0.3903 0.3887 

 
In addition, for a single unique APE incremental training 
phase, more unique sentences would entail better machine 
translation quality.  

 

The automated evaluation scores are listed in Table 4.7 and 
Table 4.8. The general trends for BLEU and NIST for both 
English-to-Filipino and Filipino-to-English translations are 
shown in Figure 4.5 and Figure 4.6.  
 

 

 
Figure 4.5: Comparison of BLEU Evaluation Score of Unique 

Incremental APE Phases 

 

 

 

Figure 4.6: Comparison of NIST Evaluation Score of Unique 
Incremental APE Phases 

 
The performance trends of the APE systems trained with unique 
feedback data, as shown in Figure 4.5 and Figure 4.6, are steadily 
increasing and are more stable. Although it appears that training 

with unique feedback data is better, the performance difference may 

be due to the way the test sentences were selected, which is purely 
random and did not consider the biases towards more frequently 
translated sentences or phrases captured using crowdsourced 
feedback, and on which the APE systems were incrementally trained. 

11. CONCLUSION AND FUTURE WORK 

In the implementation of FEBSMT, a feedback system was added to 

a statistical machine translation system to make updates more 

dynamic and responsive to quality human feedback. The four 

evaluation metrics namely, BLEU, NIST, METEOR, and TER were 
used. The system was implemented bi-directionally and both were 

iteratively run until convergence rates of translation scores are 

observed. The machine translation quality of the APEs at the onset 

is higher than their respective baseline evaluation scores. However, 

the evaluation scores soon reached its peak before decreasing 

gradually. This suggests that the feedback significantly affected the 

probability scores of the Language Model and the phrase tables, and 
thus affected the translations of the baseline system that are correct 

to begin with. It would, however, be interesting to empirically 

investigate the corresponding trends if the training and feedback data 

be made much larger by letting the system run in the long term.  

Furthermore, we  o b s e rv e d  t h a t  t h e  Filipino- to-English 

translation has a higher machine translation quality overall, 
compared to the English-to-Filipino translation.  

 

For the post-editing, the source of feedback may use the concept 

of crowdsourcing, wherein FEBSMT will be made available online 
for humans to use and provide feedback. There will be more users 

and the translation system will be tested thoroughly. Deploying the 
translation system will bring more sources of feedback and a better 
opportunity for the system to improve its translation. There can also 

be an added feature for verifying the sources of feedback and 
filtering out of the noisy feedback to avoid negative effects on the 

translation system.  
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Abstract

In syntax-based machine translation, it is known that the
accuracy of parsing greatly affects the translation accuracy.
Self-training, which uses parser output as training data, is one
method to improve the parser accuracy. However, because
parsing errors cause noisy data to be mixed with the training
data, automatically generated parse trees do not always con-
tribute to improving accuracy. In this paper, we propose a
method for selecting self-training data by performing syntax-
based machine translation using a variety of parse trees, us-
ing automatic evaluation metrics to select which translation
is better, and using that translation’s parse tree for parser self-
training. This method allows us to automatically choose the
trees that contribute to improving translation accuracy, im-
proving the effectiveness of self-training. In experiments,
we found that our self-trained parsers significantly improve
a state-of-the-art syntax-based machine translation system in
two language pairs.

1. Introduction
In statistical machine translation (SMT), representative
methods include Phrase-Based Machine Translation (PBMT)
[1], in which each phrase is translated by the translation
model and reordered to the appropriate target language order,
and syntax-based machine translation [2], which uses parts of
syntactic parse trees for translation. While PBMT generally
achieves high accuracy on language pairs with close word
order such as English-French, syntax-based machine trans-
lation techniques have shown to allow for better translation
accuracy on language pairs with different word order such as
English-Japanese.

Among the various methods for syntax-based transla-
tion, Tree-to-String (T2S) translation [3], which uses parse
trees in the source language, has been reported to achieve
high translation accuracy while maintaining translation speed
[4]. However, T2S translation uses parser results in the
source language, so translation accuracy greatly depends on
parser accuracy. One method to ameliorate this problem is
Forest-to-String (F2S) translation [5], which considers multi-

ple parse trees during the decoding process. Even F2S trans-
lation, however, is heavily affected by the accuracy of the
parser used to generate the parse forest [4].

Parser self-training is one method to improve parser ac-
curacy [6]. Self-training first parses unannotated sentences
using an existing model, then uses these automatically gen-
erated parse trees to retrain the parser. This allows the parser
to automatically adapt to the data used for self-training, in-
creasing coverage of vocabulary or syntactic structures, and
thus increasing parser accuracy. However, one downside of
standard self-training methods is that automatically gener-
ated parse trees are often incorrect, which reduces their ef-
fectiveness as training data.

While there has not been much work on self-training in
the context of syntax-based machine translation itself, Katz-
Brown et al. [7] have proposed a method for self-training in
the context of syntactic pre-ordering. In this method, which
they call targeted self-training, they first generate multiple
parse trees using a syntactic parser, then use these trees to
perform pre-ordering, score the output by comparing to cor-
rect pre-ordered data, and select the parse tree that has the
highest score. By using information about the correct pre-
ordering to select which parse tree to use, this method has
the ability to remove parse trees that result in incorrect pre-
orderings, reducing noise in the training data. However, on
the down side, making the manually aligned data required to
apply this variety of targeted self-training is costly, limiting
its applicability to situations where this data can be created.

In this paper, we propose a method for targeted self-
training of parsers for syntax-based translation. The pro-
posed method is applicable not only to pre-ordering but also
syntax-based MT, and has the additional advantage that it
does not require the preparation of costly hand-aligned train-
ing data because it chooses data using standard MT auto-
matic evaluation metrics. This allows for the use of existing
bilingual corpora as training data for targeted self-training,
making it possible to improve parsers and F2S translation
accuracy in a wider variety of fields. By carrying out experi-
ments on targeted self-training considering machine transla-
tion accuracy, we confirmed that the proposed method signif-
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icantly improves the translation accuracy of a state-of-the-art
F2S system in two language pairs.

2. Tree-to-String translation
In SMT, given the source sentence f , we consider the prob-
lem of finding translation ê that maximizes the posterior
probability Pr(e|f)

ê := argmax
e

Pr(e|f). (1)

Among the varieties of SMT, T2S translation uses source
language parse tree Tf to disambiguate the source structure
and express the hierarchical relationships between the source
and target languages as rules, allowing for more accurate
translation. T2S translation can be formulated as follows

ê := argmax
e

Pr(e|f) (2)

= argmax
e

∑

Tf

Pr(e|f , Tf )Pr(Tf |f) (3)

≃ argmax
e

∑

Tf

Pr(e|Tf )Pr(Tf |f) (4)

≃ argmax
e

Pr(e|T̂f ), (5)

where T̂f is the highest probability parse tree candidate rep-
resented by the following formula:

T̂f = argmax
Tf

Pr(Tf |f). (6)

As shown in Figure 1, translation rules used by T2S
translation1 are represented by the set of a source subtree and
a target language string of words, including the replaceable
variables x. In the example shown in Figure 1, x0 and x1

are the replaceable variables. During translation, the decoder
finds the highest probability translation considering the prob-
ability of translation rules, language models, or other fea-
tures. The decoder can also be used to output the n transla-
tions with the highest probability, n-best translations.

In T2S translation, by taking the source language parse
tree into account, translation of long-distance word ordering
can be more accurate than PBMT. However, because T2S
uses the parse tree for translation, the translation accuracy
greatly depends on the parser accuracy. As mentioned in the
introduction, F2S translations reduce the adverse effect of
parser errors by using a parse forest, which is a hyper-graph
efficiently expressing a large number of parse trees. By using
a parse forest for translation, the decoder can select which
parse tree to use from several parse tree candidates, leading
to improved translation accuracy [9]. F2S translation can be
formulated as follows:

⟨ê, T̂f ⟩ = argmax
⟨e,Tf ⟩

Pr(e|Tf )Pr(Tf |f). (7)

1Specifically, T2S translation using tree transducers [8].

VP

VP

VP

AUX V

ta

V

mi

PP

P

wo

x1:N

PP

P

ha

x0:P

→ x0 saw a x1

Figure 1: An example of a Japanese-to-English tree-to-string
translation rule

However, even using F2S translation, the accuracy is
heavily affected by the accuracy of the parser used to gener-
ate the parse forest [4]. In the following sections, we describe
some methods to improve parser accuracy.

3. Parser self-training
3.1. Introduction of self-training

Parser self-training retrains the parser using the parse trees
automatically generated by an existing model, allowing the
parser to adapt to the data used for self-training and improve
accuracy. In other words, for each sentence used for self-
training, we find the highest probability parse tree T̂f based
on Equation (6), then use this parse tree to retrain the parser.

When Charniak first proposed parser self-training, he re-
ported that a parser using Probabilistic Context-Free Gram-
mar (PCFG) models trained using the WSJ corpus [10]
achieved no gain through self-training [11]. On the other
hand, the PCFG with Latent Annotations (PCFG-LA) model,
which achieves improved parsing accuracy by using latent
annotations, has been reported to be improved significantly
by self-training [12]. This is because the PCFG-LA has rel-
atively high accuracy, so the automatically generated parse
trees used for self-training are more accurate, and because the
PCFG-LA model has more parameters than standard PCFGs,
making it more likely to benefit from the increased amount of
data. Based on these studies, we consider parser self-training
using the PCFG-LA model.

3.2. Self-training of the parser in machine translation

As mentioned in the introduction, there is one previous
study on improving translation accuracy by doing parser self-
training. Katz-Brown et al. propose a method for targeted
self-training, where trees are selected based on an extrinsic
evaluation measure, and report that it is possible improve
translation accuracy itself [7]. Specifically, they automati-
cally generate several candidate parse trees, then select the
candidate for which the pre-ordering result is most similar to
hand-aligned correct data. This tree is then used to retrain
the parser.

Formally, we define the pre-ordering function reord(Tf ),
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which generates a pre-ordered source language sentence f ′

based on a parse tree Tf , and a score function score(f ′∗,f ′)
[13], which compares f ′to the reference preordered sentence
f ′∗. Parse tree T̄f , which is used in self-training, is selected
from the candidate parse trees Tf by the following formula

T̄f = argmax
Tf∈Tf

score(f ′∗, reord(Tf )) (8)

In this paper, based on these previous studies, we propose
a method for parser targeted self-training for syntax-based
translation. In the following sections, we explain the detail
of this method and verify its effectiveness.

4. Parser self-training for syntax-based MT
An important point that determines the effectiveness of self-
training is how to select the data used to retrain the parser. In
the following sections, we propose several methods to select
parse trees and sentences that are effective to improve the
accuracy of F2S translation.

4.1. Selecting parse trees

As described in Section 3.2, the targeted self-training pro-
posed by Katz-Brown et al. [7], selects the most accurate
parse tree from n-best candidates by comparing hand-aligned
correct preordering data and automatically generated parse
trees. However, constructing hand-aligned data is costly, and
thus it is impractical to create large data sets for this method.
To solve this problem, we propose two methods for targeted
self-training using only a parallel corpus. One is to use the
parse tree used in the 1-best translation selected by the de-
coder, and the other is to use the parse tree used in the oracle
translation, which is the most similar translation to the ref-
erence translation from the n-best list selected by automatic
evaluation metrics.

4.1.1. Decoder 1-best

As described in Section 2, in F2S translation, the decoder se-
lects the parse tree used to generate the translation with the
highest probability from the parse forest. A previous study
has noted that the F2S decoder has the ability to select more
accurate parse trees, as it uses other feature functions such
as rule probabilities and language model probabilities, which
cannot be considered by the baseline parser [9]. Thus, the
parse tree used in the one-best translation could be more ef-
fective for self-training than the parser 1-best tree. In this
case, the parse tree used in self-training is T̂f in Formula (7).

4.1.2. Automatic evaluation 1-best

During translation, the decoder outputs the translation that
has the highest translation probability from a multitude of
translation candidates. However, there are also cases in
which other candidate translations, for example ones in the
n-best list, are more similar to the reference translation,

which indicates that they may be more accurate than the de-
coder 1-best translation.

We define the oracle translation ē, which is the closest to
reference translation e∗ among the n-best translation candi-
dates E. In this method, we perform self-training using the
parse tree that is used in the oracle translation ē. By using
the score function score(·), which represents the similarity
between the hypothesis and reference translation, ē is for-
mulated as follows:

ē = argmax
e∈E

score(e∗, e). (9)

4.2. Selecting sentences

In Section 4.1, we described methods to select, from an n-
best list for a single sentence, parse trees that may be useful
in self-training. However, in many cases, the correct parse
tree may not be included in the n-best translation candidates,
and there is a possibility of these sentences adding noise to
the training data. Therefore, we further propose two methods
for selecting which sentences should be used in self-training
from the entirety of the training data, potentially removing
sentences for which no good n-best candidate exists. One
is to use sentences for which the translated sentence’s auto-
matic evaluation score exceeds a threshold, and the other is
to use sentences that have a large score increase between the
decoder 1-best and oracle translation.

4.2.1. Automatic evaluation threshold

There are some sentences in the corpus that are not translated
accurately by the MT system, and the score of automatic
evaluation metrics decreases. The cause of low evaluation
scores could be for the the following reasons:

• An incorrect parse tree has been used in the translation.

• The translation model does not sufficiently cover the
source sentence’s vocabulary or phrases.

• The reference translation, which is used to calculate
the automatic evaluation score, is a free or incorrect
translation, and the system cannot output a similar
translation.

In such cases, the score of automatic evaluation metrics
will be low even for the oracle translation. Because the
F2S decoder cannot select the correct trees or the evalua-
tion scores are not reliable, these data are more likely to have
noisy oracle trees for training, and thus it is potentially bene-
ficial to exclude these trees from the training data. For these
reasons, we propose a sentence selection method that uses
only sentences that achieve scores over a threshold, which
can be expected to have more accurate parse trees. The set
of sentences for self-training is defined as follows, where t
is the threshold, e∗(i) is the reference translation of the sen-
tence i, ē(i) is the oracle translation of the sentence i, Ē is
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the set of all oracle translations, and score(e) is the automatic
evaluation score function

{i | score(e∗(i), ē(i)) ≥ t, ē(i) ∈ Ē}. (10)

4.2.2. Automatic evaluation gain

Next, we focused on the difference between the automatic
evaluation score of the decoder 1-best and oracle translation.
In the case that the parse forest output by the parser has incor-
rect probabilities for the parse trees, in many cases, the de-
coder will select the incorrect parse tree and output the wrong
translation. On the other hand, the oracle translation is more
likely to have used a correct parse tree from the parse forest.
Therefore, by using the parse trees used in oracle translations
as training data in these cases, it may be possible to improve
the parser’s probability estimates. This will result in the sys-
tem using the self-trained parser tending to output the correct
translation as a 1-best, improving translation accuracy.

To select the sentences, we define the function
gain(ē(i), ê(i)), which represents the gain between the score
of 1-best translation ê(i) and oracle translation ē(i), then se-
lects the sentences with highest gain as in Formula (10). The
function gain(ē(i), ê(i)) is formulated as follows:

gain(ē(i), ê(i)) = score(ē(i))− score(ê(i)). (11)

In addition, in this method, in order to ensure that the
sentence length distribution of the training data is similar to
that of the entire corpus, we use the following formula pro-
posed by Gascó et al. [14], to ensure that the length distribu-
tion of the selected sentences is similar to that of the overall
corpus distribution.2 In this formula, |e| is the length of tar-
get language sentence e, |f | is the length of source language
sentence f , Nc(|e| + |f |) is the number of sentences in the
corpus with length |e| + |f |, and Nc is the number of sen-
tences in the entire corpus

p(|e|+ |f |) = Nc(|e|+ |f |)
Nc

. (12)

The number of sentences selected for the self-training set
is formulated as follows, where Nt(|e| + |f |) is the number
of sentences in the self-training set with length |e|+ |f |, and
Nt is the number of sentences in the entire self-training set

Nt(|e|+ |f |) = p(|e|+ |f |)Nt. (13)

5. Experiments
5.1. Experimental setup

In the experiments, we focused on Japanese-English and
Japanese-Chinese translation. Because the amount of hand-
labeled Japanese parse tree data is less than that available
for English, the Japanese parser is prone to parse errors. As
the translation data, we use ASPEC,3 which is a parallel cor-

2The BLEU gain approach was not effective if we did not use this tech-
nique, as it tends to select only short sentences where small changes in word-
ing cause large changes in evaluation scores.

3http://lotus.kuee.kyoto-u.ac.jp/ASPEC

Table 1: The number of sentences in ASPEC

Train Dev DevTest Test
Ja-En 2,000,000 1,790 1,784 1,812
Ja-Zh 672,315 2,090 2,148 2,107

pus of scientific papers abstracts. The number of sentences
in ASPEC is shown in Table 1.4 As a state-of-the-art base-
line for verifying the effect of self-training, we use the sys-
tem developed by Neubig [15],5 which was the most accu-
rate system on the Workshop on Asian Translation (WAT)
2014 [16]. We use Travatar [17] as a Forest-to-String de-
coder. As a parser, we use the PCFG-LA parser Egret,6 and
train a baseline model on a phrase-structure version of the
Japanese Dependency Corpus (JDC) [18], which has about
7000 sentences. Forests were pruned to remove hyper-edges
which do not appear in the 100 n-best trees. Egret sometimes
fails to output a parse tree, and in this case, we remove the
failed sentences. We evaluate the accuracy by using two au-
tomatic evaluation metrics, BLEU [19] and RIBES [20], and
to evaluate the accuracy for each sentence in sentence or or-
acle selection, we use BLEU+1 [21]. For self-training data,
we add the data selected from the ASPEC training data to
the JDC trees. The training data for the translation systems
is parsed using the standard JDC model, and the self-trained
models are used only to parse the development and test cor-
pora at test time.7 We verify statistical significance using the
bootstrap resampling method [22]. In the next section, we
compare the following parser self-training methods:

Parser 1-best
As in Formula (6), we use the 1-best parse trees for
self-training. We select the sentences randomly from
the corpus.8

MT 1-best
As described in Section 4.1.1, we input the parse for-
est to the decoder, and use the parse trees used in the
1-best translation. We select the sentences randomly
from the corpus as in Parser 1-best.

Oracle
As described in Section 4.1.2, we input the parse forest
to the decoder, output unique 500-best hypotheses and
use the parse tree corresponding to the translation that
has the highest BLEU+1 score in this n-best list. We

4ASPEC actually has 3.0 million Ja-En training sentences, but because
the data was automatically aligned, we use only the highest-confidence 2.0
million sentences to maintain the quality of the training data.

5http://github.com/neubig/wat2014
6http://code.google.com/p/egret-parser
7It may be possible to further improve translation accuracy by re-parsing

the training data, but this comes at a significant computational cost, so in this
work we only experiment with re-parsing the development and test corpora.

8While a large corpus is available, training the parser using the entire
corpus is computationally expensive, so we randomly subsample a training
corpus.

235

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



Table 2: Experiment results of Japanese-English translation

Ja-En Ja-Zh
Sentence selection Tree selection Sent BLEU RIBES Sent BLEU RIBES

(a) — — — 23.83 72.27 — 29.60 81.32
(b) Random Parser 1-best 96k 23.66 71.77 129k 29.75 ‡ 81.55
(c) Random MT 1-best 97k 23.81 72.04 130k 29.76 ‡ 81.53
(d) Random BLEU+1 1-best 97k 23.93 72.09 130k ‡ 29.89 ‡ 81.66
(e) BLEU+1 ≥ 0.7 BLEU+1 1-best 206k ‡ 24.27 72.38 240k ‡ 29.86 ‡ 81.60
(f) BLEU+1 ≥ 0.8 BLEU+1 1-best 120k ‡ 24.26 72.38 150k ‡ 29.91 81.47
(g) BLEU+1 ≥ 0.9 BLEU+1 1-best 58k ‡ 24.26 72.49 82k † 29.86 ‡ 81.60
(h) BLEU+1 Gain BLEU+1 1-best 100k † 24.22 72.32 100k † 29.85 ‡ 81.59
(i) BLEU+1 ≥ 0.8 (Ja-En) BLEU+1 1-best — — — 120k † 29.87 † 81.58
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Figure 2: BLEU+1 score distribution of translations in Table
2 (d).

select the sentences randomly from the corpus as in
Parser 1-best.

Oracle (BLEU+1≥t)
As described in Section 4.2.1, among the oracle trans-
lations and parse trees, we only use the sentences for
which the BLEU+1 score exceeds the threshold t.

BLEU+1 Gain
As described in Section 4.2.2, among the oracle trans-
lations and parse trees, we use only the sentences
which have a large difference of BLEU+1 score be-
tween 1-best and oracle translations. In this method,
we maintain the sentence length distribution by using
Formula (12) and (13).

It should be noted that when selecting the sentences
randomly, we select 1/20 of all training data in Japanese-
English, 1/10 in Japanese-Chinese translation. In BLEU+1
Gain, we select the top 100k sentences, which is a similar
number of sentences as used in the other methods.

5.2. Experiment results

Table 2 shows the experimental results for Japanese-English
and Japanese-Chinese translation. The dagger symbol in the

table indicates that the translation accuracy of the proposed
method is significantly higher than the baseline († : p <
0.05, ‡ : p < 0.01). In Table 2 (b), (c), (d), the sentences for
self-training are the same except where Egret fails to parse.9

In Table 2, “Sent” indicates the number of sentences added
through self-training and does not include the existing JDC
data. In our analysis, we mainly focus on the BLEU score re-
sults, because we used BLEU+1 as a criterion when picking
sentences for self training. Based on these results, we answer
the following research questions:

• Is targeted self training through parse tree selection
(Section 4.1) effective in improving translation re-
sults?

• Can sentence selection (Section 4.2) further reduce
noise and improve accuracy?

• Is self-training language dependent, or portable across
target languages?

Effect of Tree Selection: First, we can see that the
method of using parser 1-best trees as self-training data did
not achieve a BLEU score improvement in Ja-En and Ja-Zh
translation (Table 2 (b)). Additionally, while in the MT 1-
best method, the accuracy is improved compared to Parser 1-
best in the Ja-En experiment, there is no improvement com-
pared to the baseline system. In the Ja-Zh experiment, MT
1-best is almost the same as parser 1-best (Table 2 (c)). We
manually analyzed the parse trees that have been used for
self-training in these methods, and while there are some cor-
rect trees there are also many incorrect trees, which likely
disturbed the training.

Next looking at the BLEU+1 1-best scores (Table 2 (d)),
we can see that by selecting parse trees that were used in
the oracle translations, BLEU scores slightly improved in
both Ja-En and Ja-Zh experiments, with the Ja-Zh system
significantly outperforming the baseline. Figure 2 shows the
BLEU+1 score distribution of oracle translations used in self-
training in this case. The label on the horizontal axis repre-

9In the methods except (b), we use Ckylark [23] trained by JDC as an
alternative parser when Egret fails to parse.

236

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



Table 3: Self-trained Japanese parser accuracy

Sentence selection Tree selection Recall Precision F-Measure
(a) — — 84.88 84.77 84.83
(b) Random Parser 1-best 86.52 86.41 † 86.46
(c) BLEU+1 ≥ 0.8 BLEU+1 1-best 88.13 88.01 ‡ 88.07

Table 4: An example of an improvement in Japanese-English translation

Source Ｃ投与群ではＲの活動を２４０分にわたって明らかに増強した。
Reference in the C - administered group , thermal reaction clearly increased the activity of R for 240 minutes .
Baseline for 240 minutes clearly enhanced the activity of C administration group R .
BLEU+1≥0.8 for 240 minutes clearly enhanced the activity of R in the C - administration group .
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(a) Parse trees of the baseline system
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(b) Parse tree of the self-trained system

Figure 3: An example of an improvement in parsing result

sents the number of sentences which have BLEU+1 scores
greater than x and less than x+ 0.1, where x is the label. As
can be seen from the figure, there are many sentences where
even the oracle has a low score, motivating the sentence se-
lection methods presented in Section 4.2.

Effect of Sentence Selection: Next, we examine the ef-
fect of selecting sentences using the BLEU+1 score thresh-
old. From the results, we find it effective, with translation
accuracy improving especially in Ja-En experiments (Table 2
(e),(f),(g)). In the Ja-Zh experiments, the BLEU+1 score dis-
tribution of oracle translations tends to be higher than in the
Ja-En translations, explaining why this method is more effec-
tive in Ja-En experiments. From this result, we can say that
when doing parser self-training, it is important to remove the
low accuracy parse trees and keep only high accuracy parse
trees from the training data. This is particularly true when
there are a large number of oracle translations with low ac-
curacies.

Moreover, by using the data that have a large BLEU+1
score improvement between MT 1-best and oracle transla-
tions, we achieved an effect similar to that of the BLEU+1
threshold method (Table 2 (h)).

Target Language Portability: Finally, we examine
what happens when a parser used for translation in one lan-
guage pair, Japanese-English, is used to parse the sentences
for translation in another language pair, Japanese-Chinese
(Table 2 (i)). Interestingly, the improvement in this case is
quite similar to the parser trained directly on the Japanese-
Chinese data. Thus, the model’s dependence on target lan-
guage is not strong, and it may be possible to do more effec-
tive self-training by using several target languages as training
data.

5.3. Example of improved translation

Table 4 shows an example of an improvement caused by self-
training in Japanese-English translation. In addition, Figure
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3 shows the parse trees used in the translations in Table 4.
In this sentence “C 投与 群” (C administration group) and
“R の 活動” (activity of R) are noun phrases. The baseline
parser cannot identify noun phrases correctly, and translation
is affected by this parse error. On the other hand, the self-
trained parser can identify noun phrases correctly, resulting
in these phrases being correctly translated.

5.4. Self-trained parser accuracy

We also performed experiments to examine the parser accu-
racy itself. We manually created 100 reference parse trees
from the Ja-En ASPEC test data, and checked the accuracy
of the baseline and self-trained parsers with respect to these
trees by using Evalb.10 Table 3 shows the experimental re-
sults. The dagger symbol in the table indicates that the F-
Measure of the proposed method is significantly higher than
the baseline († : p < 0.05, ‡ : p < 0.01).

Here, we can see that the parser 1-best method achieved
significantly higher accuracy than the baseline at the 95%
level. In addition, our proposed targeted self-trained parser
could achieve a further significant gain in accuracy. These
results show that our proposed targeted self-training methods
improve not only MT results, but also parser accuracy itself.

6. Conclusion

In this study, we proposed a targeted self-training method
for syntactic parsers used in syntax-based MT, and verified
its effect on T2S translation. We performed experiments
on Japanese-English and Japanese-Chinese translation and
found that by using the self-trained parser that we were able
to achieve a significant improvement in the accuracy of a
state-of-the-art translation system. Moreover, we found that
the model self-trained by Japanese-English sentences can
also contribute to more accurate Japanese-Chinese transla-
tions.

Our future work includes verifying that this method can
be used for other languages pairs. Moreover, the experimen-
tal results suggest that the effect of self-training does not
heavily depend on the source language, and thus it may be
possible to improve the translation accuracy by applying self-
training over data from multiple languages pairs. Further-
more, we will test the effect on translation accuracy when
performing multiple iterations of parser self-training, or us-
ing the self-trained parser to re-parse the training data.
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Abstract

Web documents and news articles are typically written for
many anonymous readers. Thus, when translating such doc-
uments, the total quality of translations distributed to the en-
tire readers should be considered. Previous statistical ma-
chine translation studies have focused on selecting the best
translation from N -best candidates. However, when dealing
with many readers, it is not necessary to identify the best
translation. Our key idea is to distribute all good candidate
translations to the readers and improve the total quality of the
translations. We simulated a case with 1, 000 news document
readers and showed statistically significant gain in sentence-
level BLEU scores averaged over those readers.

1. Introduction
Web documents and news articles are typically written for
many anonymous readers. Unlike documents that target spe-
cific readers such as mails and letters, the number of readers
of web documents and news articles cannot be determined
in advance. When translating documents that target a large
number of readers, our goal is to improve the total quality
of all translated documents rather than improving the trans-
lation quality of a single document.

Previous statistical machine translation (SMT) studies
have focused on selecting one best translation from many
candidate translations and have not considered the number
of readers [1, 2]. Selecting one translation frees us from
considering the number of readers because a target language
reader usually only reads one translation of source language
material. Thus, selecting a single translation is an effective
strategy if a good translation is always selected as the best
translation.

However, current SMT techniques cannot always iden-
tify the actual best translation from candidate translations. In
many cases, even when there is a good translation among the
candidates, SMT systems frequently rank bad translations
higher than good translations. In other words, the strategy

†This work was conducted when the first author was employed at NICT.
We would like to thank anonymous reviewers for their insightful comments
that helped us to improve this paper. This paper was proofread under the
funding of NICT and JSPS KAKENHI Grant Number 15K16059.

Figure 1: Schematic Comparison of Previous and Proposed
Approach

that attempts to find a single best translation risk selecting
poor translations, even when good candidate translations are
available. Thus, it is preferable to select multiple candidate
translations when the task setting allows us to do so.

We propose an approach for distributing multiple transla-
tion candidates when translating documents for many anony-
mous readers, such as web documents and news articles. Our
key idea is to distribute all seemingly good candidate trans-
lations. A schematic diagram of the proposed approach is
presented in Figure 1. In a previous approach [1], for source
sentence si, an SMT system produces and ranks several can-
didate translations of si, i.e., t1i and t2i . Only the top ranked
translation, t1i , is used; therefore, the three readers only read
t1i . However, it is possible that the actual quality of t1i is
lower than that of t2i . In this situation, the readers do not
have access to the best translation. In the proposed approach,
we perform quality estimation (QE) for the quality and qual-
ity variance of each candidate translation. Considering both
quality and variance, we calculate rates that determine how
many of the entire readers should read each candidate trans-
lation. Then, using these rates, we distribute candidate trans-
lations to all the readers. As can be seen in Figure 1, the
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Table 1: Motivating Example using Japanese to English
Translation; “inu” means dog or dogs, and “naku” has multi-
ple meanings. BLEU[3] is a widely used translation quality
metric.

Legend Context BLEU
Source inu/N ga/SUBJ-marker naku/V . -
1st best A dog cries. 50.8
2nd best A dog barks. 100.0
3rd best Dog weeps. 38.5
Reference A dog barks. 100.0

Table 2: BLEU scores of Translations Distributed to Each
Reader (when “1st best” candidate is distributed to all four
readers)

Candidate to be Distributed BLEU
Reader1 1st 50.8
Reader2 1st 50.8
Reader3 1st 50.8
Reader4 1st 50.8
Average - 50.8

Table 3: BLUE scores of Translations Distributed to Each
Reader (when “2nd best” candidate is distributed to one
reader and “1st best” is distributed to the other three read-
ers)

Candidate to be Distributed BLEU
Reader1 1st 50.8
Reader2 2nd 100.0
Reader3 1st 50.8
Reader4 1st 50.8
Average - 63.1

proposed method distributes t1i to two readers and t2i to one
reader. In this example, if the quality of t1i is lower than that
of t2i , the average quality of the three translations distributed
to the three readers is improved.

We explain our motivation using the example in Table 1.
In this example, we want to translate the Japanese sentence
“inu ga naku” (A dog barks.) to English. Here “inu” trans-
lates as dog or dogs, and “ga” is a subject marker that
does not need to be translated. Translating the verb “naku”
is problematic because it is ambiguous in English; “naku”
means to cry, to bark, and to weep.

Suppose an SMT system translates this Japanese source
sentence to English and that the top three translations are

Table 4: BLUE scores of Translations Distributed to Each
Reader (when “3rd best” candidate is distributed to one
reader and “1st best” is distributed to the other three read-
ers.)

Candidate to be Distributed BLEU
Reader1 1st 50.8
Reader2 1st 50.8
Reader3 1st 50.8
Reader4 3rd 38.5
Average - 47.7

those shown in Table 1. Moreover, suppose there are four
readers. If we distribute the “1st best” candidate in Table 1
to all four readers, the baseline average BLEU [3] score, a
widely used metric for translation quality, is 50.8 (Table 2).
Because we rely only on the “1st best” candidate, if this can-
didate’s quality is low, the translation quality will be affected.

In contrast, considering the risk that the SMT system may
fail to identify the actual best translation, we can distribute
other candidates to a small number of readers. For example,
as shown in Table 3, if we distribute the “2nd best” trans-
lation to one reader randomly, we can achieve an average
BLEU score of 63.1, which is a great improvement compared
to distributing the “1st best” candidate to all readers.

However, avoiding the risks associated with SMT sys-
tems in this manner does not always achieve good results.
For example, as can be seen in Table 4, if we distribute the
“3rd best” translation to one reader randomly, the average
BLEU score is 47.7, which is less than the baseline average
BLEU score (50.8; Table 2).

Thus, to improve performance in averaged quality, we
need to 1) estimate (predict) quality of candidates accurately
without a reference translation, and 2) optimize and deter-
mine the risks associated with considering both successful
and unsuccessful cases.

We conducted simulation experiments to evaluate the
proposed approach. In these simulation experiments, an
SMT system distributes translations to 1, 000 readers. We
found that the proposed approach consistently and signifi-
cantly outperform the previous approach.

The contributions of this study are summarized as fol-
lows.

• We propose an approach for distributing translation
candidates to readers when documents with many
readers such as web documents and news articles are
translated.

• Our key idea is to use all translation candidates rather
than using only the top candidate by considering the
possibility that the top ranked candidate is not actually
the best translation.
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• Our experimental results show that the proposed ap-
proach consistently outperforms the baseline approach
in which only the top candidate is distributed to all
readers.

The remainder of this paper is organized as follows. Sec-
tion 2 differentiates our task from previous studies. Section 3
describes how to estimate quality considering risks. Sec-
tion 4 explains the key idea of the proposed approach: how to
use the estimated quality and its risk to distribute translations.
Section 5 describes the experimental settings. Section 6 and
Section 7 present quantitative and qualitative results, respec-
tively. A discussion is presented in Section 8, and the paper
is concluded in Section 9.

2. Related Work
Our approach is closely related to a quality estimation (QE)
task. In this approach, the QE task estimates the quality of
a given source text and its translation without a reference
translation [4, 5]. From a machine learning perspective, a
QE task is generally categorized as a regression problem [6].
A regression problem differs from typical classification prob-
lems, such as those that apply support vector machine (SVM)
techniques, in that it tries to predict real values while the lat-
ter tries to predict classes. Many regression algorithms have
been applied to QE tasks, e.g., SVM-based regression [7] and
Gaussian process (GP) regression [8, 6, 9].

In addition to predicted scores, a GP can output their vari-
ances [10]; however, SVM-based regression algorithms can
only output predicted scores and cannot output their vari-
ances. More precisely, SVMs can output confidence values;
however, such values cannot be interpreted as variances. Al-
though GPs can output variances, most QE systems that use
a GP only use the predicted scores.

QE tasks can also be categorized by the source text unit
used to estimate quality: words, sentences, or documents.
This study uses sentences because they are the most widely
used and studied [7]. However, the proposed approach is
also applicable to words or documents. To use other types of
source text units, we simply switch sentences in Figure 1 to
another unit type.

Our task is also related to another previous approach, i.e.,
system combination [11, 12]. Given single best translations
from multiple SMT systems, system combination techniques
attempt to output a more sophisticated single translation by
combining the given translations. Like the system combi-
nation approach, the proposed approach deals with multiple
translations for a given source text.

However, the proposed task clearly differs from system
combination in both objective and outputs. The objective of
the proposed task is to distribute given translations to read-
ers considering the risk in translation quality. In contrast, the
goal of the system combination approach is to refine trans-
lations. In the proposed task, a translation distributed to a
reader is one of the input translations. In contrast, the trans-

lation output by a system combination technique can be very
different from the input translations because its objective is
to refine translations.

The system combination approach and the proposed ap-
proached can be aggregated to create a new system. Given a
source text, suppose a system-combination system can out-
put multiple sophisticated translations rather than a single
best translation. Then, the proposed approach can input
the sophisticated translations and distribute them to readers.
Note that, for simplicity, we do not focus on this aggregated
system; however, being able to create an aggregated system
implies that our task is independent of the system combina-
tion tasks.

Re-ranking candidates to find the best translation candi-
date has been addressed in a previous study [13]. However,
unlike our goal, this study does not aim to distribute transla-
tion candidates.

3. Gaussian Process-based Quality Estimation
Here we explain how to estimate the quality of given transla-
tions considering risks in quality. As described in Section 2,
we use a GP to estimate quality and its risk simultaneously
because a GP can output variance in addition to quality, and
this variance encodes the quality’s risk.

We introduce the notations used to explain the GP. Our
notations are based on a previously QE study that used a GP
[6]; however, this study used a GP for multitask learning, a
purpose very different from ours.

We model the proposed task as a regression problem
where the training data is given as M pair D = {(xi, yi)}.
Here xi ∈ Rd denotes a d-dimensional feature vector con-
structed from a pair of source sentences and its translation.
xi ∈ Rd encodes linguistic features taken from the pair.
yi ∈ R is a response variable, which is the gold standard
in regression problems. It numerically encodes the transla-
tion quality, i.e., how good the translation is for the source
sentence in the i-th source sentence-translation pair. For yi
in QE, typically, a manual quality assessment such as post-
editing time or a Likert score is used. However, to the best
of our knowledge, no dataset with manually assessed quality
for N -best output of an SMT system exists. Therefore, we
have used sentence BLEU scores implemented in the Moses
2 toolkit [2].

The goal of the GP is to predict y∗ for an unseen test
sample x∗ given the training data D. The GP performs this
prediction by integrating over a functional space as follows.
Intuitively, this means that all possible regressor functions f
within the functional space are considered in the GP.

p(y∗|x∗,D) =

∫

f

p(y∗|x∗, f)p(f |D) (1)

In (1), function f is defined as follows.

f (x) ∼ GP (0, k(x,x′)) (2)
2http://www.statmt.org/moses/
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(2) has two parameters. The first is the mean function 0,
which simply implies that the function f is normalized to 0.
The key component in (2) is k, a covariance kernel function,
which intuitively encodes the closeness of x and x′.

A typical covariance kernel function is a radial basis
function (RBF), which is expressed as follows3.

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)⊤A−1(x− x′)

)
(3)

There are two hyperparameters in (3), σf and A. σf is
a scalar that determines the overall size of the variances.
A = diag(a) is a diagonal matrix that determines the weight
of each feature; the importance of the i-th feature increases
as ai increases. Typically, a is defined as a = σ2

ℓ1 where 1 is
a vector of appropriate size whose elements are all 1 and σℓ

is a hyperparameter. In this definition, the importance of all
features is equal and hyper-parameter σℓ tunes the kernel’s
sensitivity to feature values. This definition is also advanta-
geous in that σℓ can automatically be tuned only using the
training data [10]. We use this definition in our experiments.

3.1. Prediction of a single unseen datum

An advantage of the GP is that we do not need to perform nu-
merical integration to calculate (1). Given the characteristics
of Gaussian functions, y∗ in (1) can be obtained analytically
as follows where N denotes the Gaussian (Normal) proba-
bility distribution.

y∗ ∼ N
(
k⊤
∗ (K + σ2

nI)
−1y, k(x∗,x∗)− k⊤

∗ (K + σ2
nI)

−1k∗
)

(4)
In (4), y = (y1, . . . , yM ), k∗ =

(k(x∗,x1), k(x∗,x2), . . . , k(x∗,xM ))⊤, and K is
an M × M matrix whose i, j element is defined as
Ki,j = k(xi,xj).

In summary, given an unseen test sample x∗, we can ob-
tain its prediction using (4).

The GP is also advantageous in that hyperparameter op-
timization is computationally easy because of the use of the
Gaussian function. To this point, we have the following hy-
perparameters: σf , σn, and a. These hyperparameters can be
tuned automatically so that the likelihood of D can be maxi-
mized.

3.2. Prediction of multiple unseen data

Section 3.1 discussed the prediction of a single unseen data
x∗. When n multiple unseen data, e.g., x∗1,x∗2, . . . ,x∗n,
the GP considers not only the closeness between each un-
seen data point and the training data but also the closeness
between each unseen data point. In this case, the prediction
can be written as follows.

y∗ ∼ N (µ,Σ) (5)

3⊤ denotes the transpose of a vector or a matrix.

Here µ = (µ1, . . . , µn)
⊤ and Σ are the quality prediction

and its covariance matrix, respectively. These play a key role
and are used in the subsequent distribution process. They can
be calculated analytically as follows.

µ = K∗(K + σ2
nI)

−1y (6)
Σ = (K∗∗ + σ2

nI)−K∗(K + σ2
nI)

−1K⊤
∗ (7)

Here K∗ is an n × M matrix whose i, j-th element is
defined as (K∗)i,j = k(x∗i,xj), and K∗∗ is an n× n matrix
whose i, j-th element is defined as (K∗∗)i,j = k(x∗i,x∗j).

In summary, given multiple unseen data points
x∗1, . . . ,x∗n as input, the GP outputs quality predictions
in the form of a vector, µ = (µ1, . . . , µn)

⊤, and the (co-
)variance matrix between the predicted values, Σ. Intuitively,
the diagonal element of Σ, i.e., i, i-th element, encodes the
risk or uncertainty of the prediction of the i-th unseen input.
In addition, the nondiagonal element of Σ, i.e., the i, j-th ele-
ment where i ̸= j, encodes how uncertain the i-th prediction
is when the j-th prediction is uncertain (and vice versa).

The theoretical background of the GP has been addressed
in [10] . For implementation, we used the GPy toolkit 4, a GP
library for the Python language.

4. Risk-aware Distribution of Translation
Candidates

This section explains the key idea of the proposed approach:
how the proposed system distributes translation candidates
to readers considering the risk in translation quality. Assume
that an SMT system outputs n-best translations for a source
sentence. Here let x∗1,x∗2, . . . ,x∗n be the feature vectors
constructed from the source sentence and the n-best trans-
lations. As explained in (3.2), given x∗1, . . . ,x∗n as input,
the GP outputs the predicted quality µ = (µ1, . . . , µn)

⊤ and
the covariance matrix of the prediction Σ, which can be in-
terpreted as the risk encoding how inaccurate the predicted
quality might be.

Given µ and Σ, our goal is to calculate the rate vector
λ = (λ1, . . . , λn)

⊤ where each λi is the probability that
i-th best translation is selected and distributed to a reader.
In other words, λi determines what percentage of the en-
tire readers should read the i-th best translation. This can
be formally expressed as

∑n
i=1 λi = 1, and for each i ∈

{1, . . . , n}, λi ≥ 0.
The rate vector can be calculated by optimization using

the following formula.

maximizeλ1,...,λn

n∑

i=1

λiµi −
1

2
α

n∑

i=1

n∑

j=1

λiλj(Σ)i,j (8)

subject to
n∑

i=1

λi = 1 (9)

∀i ∈ {1, . . . , n}, λi ≥ 0 (10)
4http://sheffieldml.github.io/GPy/

243

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



In (8), the objective function, i.e., the first term, attempts
to maximize the predicted quality averaged over n candi-
dates. In contrast, the second term penalizes the first term
when the risk of the quality is large. Thus, (8) can be in-
tuitively interpreted as maximizing the averaged predicted
quality while penalizing the candidate whose risk is large.
(8) has a hyperparameter, i.e., α, that tunes the strength of
the risk penalization.

As explained, the constraints (9) and (10) guarantee that
λ is always a probability vector whose elements can be inter-
preted as probability mass.

Notably, (8) includes the case wherein the predicted best
translation is distributed to all readers. This case arises when
we set α to 0. In this case, only the first term remains in
(8). Because of the constraints (9) and (10), λ remains a
probability vector in this case. Because of the first term that
maximizes the quality, λ becomes a unit vector such that the
i-th element with the highest µi value is set to 1 and all other
elements are set to 0.

The solution of (8) can be obtained in practical time.
Theoretically, (8) can be solved using linear-constrained con-
vex optimization techniques, which obtain a global optimum.
Moreover, through preliminary experiments, we found that
we could find the solution in practical time. We were able to
achieve good performance in average translation quality with
small n, e.g., 5 and 3. In contrast, large n values degrade
performance. This is presumably because n is the number
of n-best translations output from SMT systems, and we re-
rank these outputs. Thus, n values that are too large increase
the number of low-quality candidates and makes it difficult
to determine good candidates.

After calculating λ, according to this vector, the proposed
system distributes candidate translation to the readers.

5. Experiment Setup
We performed our experiments under two settings, i.e., a sys-
tem selection setting and an n-best output setting. The n-best
output setting is identical to what we have explained so far.
Under the system selection setting, we use the n single-best
outputs from n SMT systems as input rather than the n-best
outputs of an SMT system. The system is required to dis-
tribute the n single best outputs to readers.

In both system selection and n-best output settings, we
have simulated a case wherein translations are distributed to
1, 000 readers. In both settings, five-fold cross validation was
performed. To extract features from the source text and trans-
lations, we used a standard QE system, QuEST 5.

For features, we used the basic 17 feature set defined in
the literature [5]. Here, LM denotes a language model.

- Number of tokens in the source sentence
- Number of tokens in the target sentence
- Average source token length

5http://staffwww.dcs.shef.ac.uk/people/L.Specia/
projects/quest.html

- LM probability of source sentence
- LM probability of target sentence
- Number of occurrences of the target word within the

target hypothesis
- Average number of translations per source word in the

sentence
- Average number of translations per source word in the

sentence weighted by the inverse frequency of each
word in the source corpus

- Percentage of unigrams in quartile 1 of frequency, i.e.,
lower frequency words, in a corpus of the source lan-
guage

- Percentage of unigrams in quartile 4 of frequency, i.e.,
higher frequency words, in a corpus of the source sen-
tence

- Percentage of bigrams in quartile 1 of frequency of
source words in a corpus of the source language

- Percentage of bigrams in quartile 4 of frequency of
source words in a corpus of the source language

- Percentage of trigrams in quartile 1 of frequency of
source words in a corpus of the source language

- Percentage of trigrams in quartile 4 of frequency of
source words in a corpus of the source language

- Percentage of unigrams in the source sentence seen in
a corpus

- Number of punctuation marks in the source sentence
- Number of punctuation marks in the target sentence

6. Quantitative Evaluation
6.1. Evaluation under system selection setting

For the system selection setting, we used the dataset from the
system selection competition provided by WMT-13 quality
estimation shared tasks 6. This dataset uses an English-to-
Spanish translation setting. Here we have five single best
Spanish translations from five systems for an English source
sentence. The proposed systems distribute these five Spanish
translations to the readers.

In this dataset, through manual evaluation, it is known
that the “online-B” system achieves the best translation qual-
ity. Thus, as a baseline, we considered a case wherein trans-
lation by the “online-B” system is given to all readers. In this
dataset, 39.51% of translation by the “online-B” system were
the actual best.

6.2. Compared methods

We also experimented with other methods for comparison.
QE-max is a case where the best candidate with regard to
QE score is given to all readers. Support vector regression-
radial-basis function (SVR-RBF) is identical to QE-max, ex-
cept that the quality prediction is calculated using SVR, a
regression method based on a SVM, with an RBF kernel.

6http://statmt.org/wmt13/quality-estimation-task.
html
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Table 5: Evaluation under System Selection Setting (values
are sentence-level BLEU scores

Proposed 35.52
QE-max 35.43
SVR-RBF 34.98
Baseline 34.88

6.3. Hyperparameter tuning

Essentially we chose hyperparameters from nine
points ranging in the log-space from 10−3 to 103:
10−12/4, 10−9/4, 10−6/4, 10−3/4, 100, 103/4, 106/4, 109/4,
and 1012/4.

For the GP, we used automatic tuning of hyperparameters
with the training data [10], which is implemented in the GPy
toolkit. Thus, the only hyperparameter that we tuned was α
(Section 4), which tunes the strength of the risk penalization.

SVM-based regression with an RBF kernel has hyperpa-
rameters, i.e., C and γ. We chose C from these parameters.
We fixed γ to 1 in this experiment.

6.4. Evaluation metric

Unlike previous studies, our objective is to improve the to-
tal quality of translations distributed to readers rather than
improve the quality of the single best translation. Since pre-
vious studies did not focus on the number of readers, to the
best of our knowledge, no previous evaluation metric specific
to this situation has been proposed. This is problematic be-
cause previous evaluation metrics were not designed to take
multiple translations as input although they are designed to
handle multiple references.

For the evaluation, we simply interpreted the average of
the quality scores passed to each reader as the metric for our
evaluation. Even though no metric has been previously pro-
posed for many readers, evaluation metrics for a single best
translation have been studied extensively. We can evaluate
the quality of the translation passed to one reader using an
evaluation metric for a single best translation. By consider-
ing previously proposed metrics for a single best translation
as metrics for a reader, it is natural to define the total qual-
ity of all readers as the quality score averaged over all read-
ers. Moreover, these metrics for a single best translation have
been tested extensively [3]. Therefore, we can leverage pre-
vious knowledge about these measures when analyzing our
results.

For the actual evaluation metric for a reader, we have
used sentence-level BLEU [3], because it is widely used for
automatic evaluation when reference translations are avail-
able. For the implementation of sentence-BLEU, we used the
“sentence-bleu” command bundled with the Moses toolkit.

6.5. Results

Table 5 shows our results. As can be seen, Proposed

Table 6: Evaluation under n-best Setting

Proposed 26.24
QE-max 26.06
Baseline 26.06

achieved the best results. We have also confirmed that Pro-
posed significantly outperforms Baseline.

We also performed a Wilcoxon significance test for these
results. As a result, Proposed was statistically significant
against the Baseline (p < 0.01) and QE-max (p < 0.01).

6.6. Evaluation under n-best setting

Here we evaluate the proposed approach in the n-best setting
where n-best outputs from one SMT system are distributed
to readers. For the SMT system, we used the English-to-
Spanish translation setting so that we could use the same fea-
ture set as the system selection setting.

In this evaluation, we used the News Commentary corpus
7 so that the choice of corpus matches our task’s target, i.e.,
web documents and news. The News Commentary corpus
is a parallel corpus that comprises “news text and commen-
taries from the Project Syndicate.” This corpus is provided as
a part of the corpora for the series of WMT translation shared
tasks.

We used the Moses toolkit trained with the News Com-
mentary corpus as the SMT translator in our task. As usual
for SMT evaluation, Minimum Error Rate Training (MERT)
[14] was used to train the SMT translator. We used the same
language pair, i.e., English-to-Spanish, for this evaluation,
because a well-studied feature extractor for QE is provided
for this language pair.

We set n = 5 in this experiment because, through a pre-
liminary experiment, we found that it is quite rare for candi-
dates ranked below fifth to be the actual best candidate. In-
deed, in this experiment, only 34.23% of the first-ranked can-
didate was the actual best. The values for the second, third,
fourth, and fifth ranked candidates were 21.31%, 17.05%,
13.92%, and 13.49%, respectively. The definitions of Base-
line, QE-max, and Proposed are the same as those in Sec-
tion 6.2.

Table 6 shows the results. Again, the proposed method
clearly outperforms the other three methods. We also found
statistical significance between Baseline and Proposed (p <
0.01).

7. Qualitative Evaluation by Examples
This section explains how the proposed method works suc-
cessfully by demonstrating examples taken from Proposed
in Section 6.6.

7http://www.statmt.org/wmt13/translation-task.
html#download
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Table 7: Two-top Example (the first two among the 5-best outputs are significantly better than latter cases)

Legend Content Actual BLEU Predicted BLEU Rate
Source text Damascus, however , also brushed off this proposal . - - -
1st best Damasco , sin embargo , tambin desdeñó los esta propuesta . 23.46 27.74 0.45
2nd best Damasco , sin embargo , tambin descartaron de esta propuesta . 23.46 27.74 0.55
3rd best Damasco , sin embargo , tambin desdeñó los esa propuesta . 17.03 27.43 < 10−6

4th best Damasco , sin embargo , tambin desdeñó los de esta propuesta . 21.40 27.27 < 10−6

5th best Damasco , sin embargo , tambin los desdeñó los esta propuesta . 21.40 27.16 < 10−6

Reference entretanto , Damaskus critica tambin esta propuesta . - - -

As mentioned previously, Table 7 shows the first exam-
ple, which we call the “Two-top example.”

By focusing on the first two elements in the Actual
BLEU scores column, we can see that the actual BLEU
scores of these elements are equal and are the highest among
the five output translations. Since we cannot know the ac-
tual BLEU scores in advance, distributing only the “1st best”
translation to all readers is risky because the “2nd best” might
have a higher BLEU score. Thus, correctly recognizing these
equal scores is crucial for handling this example.

The Predicted BLEU column shows the predicted
BLEU scores obtained by GP-based quality estimation, i.e.,
the elements of the vector µ (Section 3). Comparing the pre-
dicted and actual BLEU scores, we find that the predicted
values are not particularly accurate. The actual BLEU scores
for all five examples are < 24; however, all of the predicted
scores are > 27. The reason for this is presumably because
the reference translation in this example is structurally dif-
ferent from the source text and its translation candidates, i.e.,
“however” in the source sentence is placed in the middle of
the sentence as an adverb, and in the reference translation, the
conjunction “entretanto” (meanwhile) is used instead and is
placed at the beginning of the sentence. This result clearly
demonstrates the difficulty of accurately estimating an exact
value for the BLEU scores. Although actual BLEU scores
depend on the reference translations, in QE, we must esti-
mate the scores without reference translations.

Although the Predicted BLEU scores in Table 7 are not
accurate as a regression problem, these scores successfully
capture the overall characteristics in the order of the candi-
dates with regard to their quality in this example. The first
two are significantly better than the rest. Thus, we can see
that the Predicted BLEU scores can be leveraged if we use
the scores intelligently.

In the fifth column, the Rate vector, which we define in
Section 4, successfully captures the basic characteristics of
the five candidates because of the use of the (co-)variance
matrix. The first two candidates consume nearly all of the
weights that are to be sum up to 1.0. The rates for the lat-
ter three candidates are < 10−6, which indicates that these
candidates are almost ignored and are essentially never dis-
tributed to readers. This reflects the fact that the two top can-

didates are by far better than the latter candidates. We also
find that the probability allocated to the first two candidates
is close to 0.5. This implies that our risk-aware distribution
system successfully recognizes that the first two candidates
are scored equally, and this decision is reflected in the rate
vector.

In summary, these experimental results show that our dis-
tribution system correctly recognizes that the first two can-
didates are significantly better than the latter cadidates and
that they are scored equally. Thus, our system distributes the
first two translations considering the case in which the sec-
ond best translation would actually be better than the first. In
this example, since the actual BLEU scores of the first two
candidates are equal, the quality is not improved compared
to the case wherein the “1st best” is distributed to all readers.
However, if the actual BLEU score of “1st best” was even
slightly less than that of “2nd best,” our approach would have
successfully outperformed the baseline.

8. Discussion
The optimization problem used to determine the rate of dis-
tribution introduced in Section 4 is a type of multi-objective
optimization. In multi-objective optimization, there are mul-
tiple objective functions to optimize, and the goal is to op-
timize the functions simultaneously. In our application, we
simultaneously maximize the predicted quality of the transla-
tions distributed to readers while minimizing risks. This use
of multi-objective optimization is based on modern-portfolio
theory, where the goal is to maximize financial profit rather
than translation quality [15]. However, our task is more than
a simple application of modern-portfolio theory in that we
cannot directly measure the objective function and its vari-
ances, whereas these are assumed to be directly observable
in modern portfolio theory. This unavailability of direct mea-
surement of the objective function and its variances is the rea-
son why we predict it from the training data using GP-based
QE (Section 3).

Unlike our task, previous use of multi-objective opti-
mization in machine translation studies appears limited to si-
multaneously optimizing multiple evaluation metrics. A pre-
vious study [16] used multi-objective optimization to opti-
mize multiple automatic evaluation metrics simultaneously,

246

Proceedings of the 12th International Workshop on Spoken Language Translation
Da Nang, Vietnam, December 3-4, 2015



i.e., BLEU and RIBES [17]. Another study used multi-
objective optimization to optimize document-level evalua-
tion metrics and sentence-level evaluation metrics [18]. In
computational linguistics, other than machine translation
tasks, multi-objective optimization was recently used in joint
disambiguation of nouns and named entities [19].

9. Conclusion
In this paper, we have proposed an approach for distribut-
ing translation candidates to readers for translated documents
with many anonymous readers, such as web documents and
news articles. Our key idea is to use all translation candi-
dates rather than the top candidate in consideration of the
risk that the top candidate actually has lower quality than
other candidates. Our experimental results show that the
proposed approach consistently outperforms the baseline ap-
proach wherein the top candidate is distributed to all readers.

In future, we would like to test the proposed approach
with other language pairs.
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Abstract

We investigate induction of a bilingual lexicon from a corpus
of phonemic transcriptions that have been sentence-aligned
with English translations. We evaluate existing models that
have been used for this purpose and report on two additional
models, which demonstrate performance improvements. The
first performs monolingual segmentation followed by align-
ment, while the second performs both tasks jointly. We show
that monolingual and bilingual lexical entries can be learnt
with high precision from corpora having just 1k–10k sen-
tences. We explain how our results support the application
of alignment algorithms to the task of documenting endan-
gered languages.

1. Introduction
Language documentation involves the construction of text
collections, lexicons and grammars in the interest of creat-
ing a record of a language for future linguistic, cultural and
anthropological analysis. Traditional approaches to language
documentation are labour-intensive, requiring much one-on-
one time between a field linguist and the mother tongue
speakers. Unfortunately, there aren’t enough linguists to doc-
ument the world’s languages using these approaches before
many of the approximately 7,000 languages die out.

There is a movement to increase the rate of data collec-
tion of endangered languages using cheap and widespread
electronics to record speech in a more ad hoc manner
[1, 2, 3, 4, 5], in an attempt to provide the field linguist with
leverage to acquire data faster. This data is primarily audio,
since most languages have no established written form and
capturing audio is comparatively fast. Additionally, much of
the data is bilingual, as an important aspect of the language
documentation process is the construction of bilingual cor-
pora and lexicons.

In this paper we consider the task of automatically learn-
ing monolingual and bilingual lexical items from unseg-
mented phonemic transcriptions of interleaved audio (seg-
ments of speech in one language along with spoken trans-
lations in another). Such transcriptions could arise from two
scenarios. The first is when future philologists phonetically
transcribe speech of a language post-mortem, without native

speakers to assist in word segmentation. In such instances
lexicon induction would aid in linguistic analysis of the lan-
guage. The second is by instead employing automatic speech
recognition technologies for the same task. In both cases lex-
icon induction could aid in bootstrapping automatic speech
recognition (ASR) systems targeting the language’s untran-
scribed audio. Note that we assume a transcription of the
English translation, since English speech can be reliably and
cheaply transcribed.

Previous work on bilingual lexicon induction using
sentence-aligned corpora has focused primarily on large cor-
pora of written text [6, 7, 8, 9]. However, bilingual lexicon
induction applied to phonemically transcribed audio intro-
duces problems, including the lack of word segmentation and
the small quantities of data. There has been limited work
on learning lexicons from phonemic transcriptions. [10, 11]
take a first look at phoneme–word translation modeling, us-
ing traditional IBM Models [12] in order to determine align-
ments and applying heuristics to extract dictionaries. [13]
propose Model 3P, which builds upon the generative story of
IBM Model 3 by adding additional word length parameters
and allowing it to significantly outperform the IBM models
[14, 15, 16].

Building on this work, we investigate two models that
haven’t been considered in this context and demonstrate that
they can outperform the models that have been considered.
The first performs unsupervised word segmentation followed
by word alignment. The second jointly performs word seg-
mentation and alignment. Importantly, we evaluate the mod-
els on a data set that is significantly smaller than has been
evaluated on previously, containing between just 1k and 10k
sentences, corresponding to 13k and 132k words. This likely
corresponds to something in the order of 1 to 10 hours of
speech [17, 18, 5]. These quantities of data are realistic in the
context of documentation of endangered languages, though
the applicability of these techniques also applies more gener-
ally to low-resource languages that have no body of written
resources.

We run experiments to assess the induced lexicons’ pre-
cisions at k entries. We do this by applying the alignment
models to a German–English corpus, using heuristics to ex-
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tract lexical entries before having them manually annotated1.
German was used since it permitted easier manual anno-

tation of lexical entries than an endangered language. Al-
though German and English are more closely related lan-
guages than language pairs encountered in linguistic field-
work, modeling of the language pair is still complex due to
varying word order between the languages and the morpho-
logical richness of German relative to English.

Results demonstrate that hundreds of bilingual lexical en-
tries can be learnt with good precision, with the additional
proposed methods outperforming Model 3P on a data set of
10k sentences. This offers promise of the technique’s appli-
cability in a language documentation context. Moreover, the
majority of incorrect entries correspond to well-segmented,
but misaligned, source words.

2. Translation Models
Our lexicon induction approach uses various phrase align-
ment techniques to segment sequences of phonemes into
words and learn phrase tables. There are several methods
for word segmentation in machine translation [19, 20, 21,
22, 16], but there has been limited application in a low re-
source context. In this paper we examine four representative
methods to apply to parallel sentences comprised of source
phoneme tokens and target words.

The first two, GIZA++ and Model 3P, have been in-
vestigated previously for the task of phoneme–word align-
ment [10, 14]. They are evaluated as a point of comparison
for the latter two methods we demonstrate are effective for
this task, which use unsupervised word segmentation (UWS)
with GIZA++ and a Bayesian inversion transduction gram-
mar (ITG) framework.

2.1. GIZA++

GIZA++ is the baseline that follows the standard statistical
machine translation (SMT) pipeline of performing alignment
with the IBM Models [12], as implemented in GIZA++ [23].
This approach to alignment was used in seminal work on
phoneme–word alignment [10, 11]. The problem with this
approach is that it attempts to capture relationships between
individual foreign phonemes and English words, which is ex-
tremely difficult.

2.2. Model 3P

PISA2 is an implementation of the Model 3P model of [13].
It builds upon the generative model of IBM Model 3 [12] by
adding additional word length parameters (see Figure 1), al-
lowing it to outperform traditional IBM models on phoneme–
word alignment tasks. After initializing model parameters
with learnt GIZA++ parameters, the PISA implementation

1These annotations will be released along with code for the lexicon in-
duction.

2https://code.google.com/p/pisa

this is not the case here

this is not the case here

Fertility

this is here not the case

Distortion

this/3 is/4 here/3 not/4 the/3 case/3

Word length

d a s ? I s t h i: 6 n I C t d E 6 f a l

Trans.

Figure 1: The generative model of Model 3P.

das ?Is t hi:6 nIC t dE6 fal

this is not the case here

Figure 2: Monolingual segmentation of phonemes followed
by alignment, as done in the UWS GIZA++ approach.

of Model 3P uses a genetic algorithm to learn the parameters
of the model.

The additional word length parameters, distinct from the
fertility parameters, allow Model 3P to learn latent word rep-
resentations that would not be able to be captured in a direct
phoneme–word mapping. This allows for better segmenta-
tion performance.

2.3. UWS GIZA++

UWS GIZA++ first performs unsupervised word segmenta-
tion using the Bayesian Pitman-Yor language model [24], as
implemented in the tool pgibbs3 [25]. Alignment is then per-
formed between these phoneme sequences and the English
words using GIZA++ (see Figure 2). This was hypothesized
to be more appropriate than GIZA++ alone since it would re-
sult in breaking the foreign phoneme sequences into coarser
tokens that translate better to English. Note that there is
not an expectation that the word segmentation perform well
with respect to what is considered a “word” in the given lan-
guage. Instead, the key idea is that the segmenter breaks
phonemes into frequently repeating units that capture more
meaning than just using individual phonemes. Consider Fig-
ure 2: the erroneous segmentation nevertheless allows for
accurate alignment after monolingual segmentation.

2.4. Bayes ITG

Bayes ITG performs joint word segmentation and alignment
using the substring alignment model of [26], as implemented
in pialign4 [27]. Alignments are obtained through Bayesian
learning of inversion transduction grammar trees [28], which

3http://github.com/neubig/pgibbs
4http://github.com/neubig/pialign
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d a s ? I s t h i: 6 n I C t d E 6 f a l
this is not the case here

h i: 6 n I C t d E 6 f a l
not the case here

d a s ? I s t
this is

n I C t d E 6 f a l
not the case

h i: 6
here

REG

INV

Figure 3: An ITG tree structure learnt by pialign. Note that
pialign forces alignments down to individual tokens, but the
leaf nodes presented here represent alignments that were gen-
erated as single phrase by the model.

completely describe the sentence and its translation as a tree
of aligned phrases and binary reordering operations. In Fig-
ure 3 the sentence is decomposed, with phrases of different
granularities being captured. The REG and INV tags illus-
trate the reordering capacities of the ITG trees, with REG be-
ing a monotone alignment ordering and INV flipping the En-
glish side with respect to the foreign phonemes. The advan-
tage of this joint learning approach over GIZA++, Model 3P
and UWS GIZA++ is that the segmentation on the phoneme
side can be informed by the English, which has been shown
to be valuable [20, 21, 22]. Furthermore, the base distribu-
tion Bayes ITG draws from uses cooccurrence probabilities
of phrases. This contrasts with Model 3P’s initialization,
which uses only the limited phoneme–word alignments of
GIZA++.

3. Experimental Setup
3.1. Data

To train the translation models we used the German–English
parallel corpus from Europarl v7 [29]. In order to imi-
tate a phoneme transcription, we converted the German side
to a sequence of phonemes (represented with the SAMPA5

phoneme alphabet) using the MARY text-to-speech system
[30]. For example, ‘dieser’ is represented as a sequence of
space-separated phonemes, ‘d i: z 6’.

The phonemic output of MARY includes some informa-
tion that cannot reasonably be detected by an ASR system. In
particular, stress markers and syllable boundaries are features
output by the system (‘´’ and ‘-’ respectively), so we filtered
them out. The granularity of tokens on the source side was
thus at the phoneme level while English words were used on
the target side.

Small quantities of data were used in order to mimic the
realities of data collection for endangered languages. We ex-
perimented with varying data sizes to evaluate how the best

5http://www.phon.ucl.ac.uk/home/sampa/german.htm

method’s performance scales. We used data sets of 1k, 2k,
5k, and 10k parallel sentences (corresponding to between
∼13k and ∼132k words), a quantity that is vastly smaller than
what is typically used in statistical machine translation ex-
periments but which approaches reasonable size for reliable
manual transcription. We limited training sentences to those
fewer than 100 phonemes in length.

3.2. Translation Model Training Parameters

GIZA++ was trained using the train-model.perl script in-
cluded in Moses with default settings, using the grow-diag-
final-and heuristic for symmetrization/phrase extraction and
the msd-bidirectional-fe reordering model.

PISA was trained with default settings.
UWS GIZA++ was trained by running pgibbs first, and

then running GIZA++ over the segmented phoneme se-
quences with default settings. The pgibbs settings were de-
fault, with the following exceptions: block sampling was
used with a block size of 50, a Pitman-Yor distribution was
used, and 1000 iterations were run. The final sample output
by pgibbs was used as input to GIZA++. GIZA++ was run in
the same way as above, using train-model.perl with heuris-
tics for phrase extraction. It’s worth noting that the hyperpa-
rameters supplied to pgibbs dictate segmentation granularity.
Were they to change, we would expect the average length of
the word units learnt to be different.

We ran pialign for 10 iterations with the base distribu-
tion being a log-linear interpolation of phrase cooccurrence
probabilities in both directions (with a discount of 5), a beam
width of 10-6 and a batch length of 40. The final sample was
used for the purposes of phrase table extraction.

3.3. Bilingual Lexicon Extraction

To create bilingual lexicons using the above approaches, en-
tries in the phrase tables were first sorted according to their
joint probabilities. We only included entries where the length
of the phonemic side was 2 or greater. This heuristic was
used since it removed many spurious entries where one for-
eign phoneme was aligned to an entire word. Additionally,
for a given English entry no more than the top 5 translations
were included. A similar filter was applied to prevent more
than 5 English translations of a given phoneme sequence.
The top 500 entries of each lexicon were then manually an-
notated.

3.4. Annotation

Entries in the lexicon were evaluated by a native German
speaker.6 They were determined to be correct, incorrect or
ambiguous. Correct entries are those that can readily be
found in existing German–English dictionaries. For exam-
ple, the entry vIs@n⇔know (‘wissen’). Incorrect entries are
those whose translations are deemed to be clearly incorrect

6We measured inter-annotator agreement by doubly annotating a sample
of 1k entries, using a non-native German speaker, resulting in κ = 0.69.
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Figure 4: Comparison of the methods’ precisions over the
10k dataset. Note that these are the results of the strict eval-
uation.

by the annotator. These include entries such as tsu:?aIn⇔the
and b@dINUN⇔be. In the latter case, note that although the
word alignment is incorrect, the phonemes represent a cor-
rectly segmented German word, ‘Bedingung’.

Ambiguous entries are those that are neither strictly cor-
rect nor incorrect. These include entries that have bound-
ary errors. For example, nvi:6⇔we (‘wir’) includes an extra
‘n’ in an otherwise correct entry. Other ambiguous entries
are those that, while not found in lexicons, are nonetheless
meaningful. These usually highlight interesting linguistic
phenomena. For example, nICt⇔does not (‘nicht’) couldn’t
be found in Leo,7 however it captures a meaningful grammat-
ical relationship between the languages. Consider the phrase
‘er rennt nicht’ and one English translation ‘he does not run’,
where this entry makes sense.

4. Quantitative Evaluation
4.1. Precision at k over bilingual entries

We compare the four models described in Section 2, each
of which takes as input sentences of unsegmented phonemes
and English translations. Figure 4 shows the precisions of the
bilingual lexicons as the number of entries increases from 1
to 500 (sorted by the joint probability given by the model),
using the methods trained on 10k sentences.8 The ‘tradi-
tional’ approach with GIZA++ is the worst performer across
the board. This is to be expected as it uses lexical translation
probabilities between poorly translated German phonemes
and English words as the basis for the extracted phrases. As
a point of comparison to these models, we trained an ‘ora-
cle’ model on correctly segmented phonemes using GIZA++,

7http://www.leo.org
8Note that we do not investigate recall as it is both difficult to establish

and less relevant in the early stages of language documentation as only a
small fraction of words will be captured in any case.
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Figure 5: Comparison of Bayes ITG precisions for different
sized data.

which removes the effect of segmentation errors but still in-
cludes the effect of alignment errors. This oracle model
yielded a lexicon with a precision of 0.932 over the top 500
entries.

The other methods are more similar in performance, with
the best performing approach being Bayes ITG. Though the
results are close, the better performance of Bayes ITG as
compared to the unsupervised word segmentation approach
can possibly be attributed to the added information the En-
glish side provides in determining useful German phrases.
This contrasts to the unsupervised word segmentation ap-
proach which segments using only monolingual German
phonemic data. Performance gains over PISA’s Model 3P
can perhaps be attributed to limitations in Model 3P’s gen-
erative model. Rather than learning explicit phrasal relation-
ships between phoneme groups and words, Model 3P condi-
tions the generation of phonemes from latent words and the
location within that word.

Similar trends in the scores were demonstrated when
evaluating precisions that accepted ambiguous entries as also
correct.

Given that Bayes ITG was the best-performing approach
on 10k sentences, we additionally evaluated it on smaller
data sizes (see Figure 5). The fewer sentences of phonemes
that are supplied the more reasonable it is to assume that they
can be acquired through reliable manual transcription in a
real language preservation scenario. Precision appears to be
a logarithmic function of the size of the training data. These
results suggest that the first few hundred entries in a lexicon
can be acquired with good precision even with very limited
data.

4.2. Word segmentation performance

In addition to evaluating the quality of the bilingual entries,
we evaluated the quality of monolingual lexical entries on
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Method Sents Incorrect % Correct seg. %
Bayes ITG 1k 26.2 52.7
Bayes ITG 2k 16.6 60.2
Bayes ITG 5k 13.4 62.7
Bayes ITG 10k 9.6 62.5

UWS GIZA++ 10k 7.2 38.9
GIZA++ 10k 19.4 15.5
Model 3P 10k 14.6 46.6

Table 1: The accuracy of the segmentation of phonemic lex-
ical entries judged incorrect. The Incorrect % columns indi-
cate the percentage of the 500 annotated entries that were la-
beled completely incorrect as bilingual entries . The Correct
seg. % column indicates the percentage of those incorrect
entries that were correctly segmented monolingual entries.

the phoneme side. This is motivated by the observation that
often correct phonemic word units were extracted but mis-
translated. Since monolingual entries are useful in their own
right for language documentation purposes (for instance, as
a useful starting point for manual correction) and language
modeling, we assessed entries that were incorrect to deter-
mine whether the phonemic component was segmented cor-
rectly at the word boundaries.

Table 1 shows the proportion of the total entries that were
annotated as incorrect and the proportion of those entries
that were correct monolingual lexical entries on the phoneme
side. Bayes ITG demonstrates effective inference of lexi-
cal items with few boundary errors, outperforming the other
methods regardless of the amount of training data used. This
corroborates past research that indicates that word segmenta-
tion can be better informed with bilingual data [20, 21, 22].

Also noteworthy is the outperformance of Model 3P rel-
ative to UWS GIZA++ when entries are correct (though hav-
ing fewer strictly incorrect entries overall). In the approach
of UWS GIZA++ it is impossible to break apart phoneme
groups that have been chunked across word boundaries by
the monolingual segmentation phase. However, the other
methods aren’t constrained by early, poorly informed chunk-
ing. This allows Model 3P relatively better word segmenta-
tion despite lower precision of bilingual lexical entries.

Note that although we are evaluating monolingual en-
tries, the entries of UWS GIZA++ are still informed by the
alignments with English, as the entries evaluated are the
highest probability bilingual lexical entries found. This miti-
gates the problem of the effort required to tweak the hyperpa-
rameters of the word segmenter to find the right granularity
of phoneme clusters. The granularity is instead informed by
the English. To appreciate this, consider the most occurring
lexical entries of the monolingual supervision without being
informed by the alignments, as shown in Table 2. Of these,
the only one that is an actual word is di: (‘die’). The rest
are common sub-word units. Note though that @n (‘-en’)
is a common suffix for infinitive verbs—a particularly useful
morpheme.

Token Occurrences
? 13,096
@ 8,587
n 8,138
t 6,422

@n 6,300
d 5,929
s 3,226
6 3,136
f 3,099

di: 2,913

Table 2: The most common lexical entries found by the un-
supervised word segmentation, without harnessing bilingual
information.

f i: l @ n d a N k

thank you

Figure 6: The phonemes of vielen dank as aligned to thank
you by PISA’s Model 3P.

5. Qualitative Evaluation
To appreciate the peculiarities and differences of these ap-
proaches, we will now consider some general observa-
tions made by examining the lexicons of the various ap-
proaches, discussing some representative lexical entries and
word alignments.

Model 3P seemed generally more susceptible to off-
by-one errors at the boundaries of entries. A high con-
fidence, but incorrect, entry that occurred in the lexicon
based on Model 3P alignments was i:l@ndaNk⇔you (‘vie-
len dank’). The English makes some sense, as vielen dank
can be translated as ‘thank you’ or ‘thank you very much’,
although the ‘thank’ component on the English side is miss-
ing. Notably, the German side is segmented incorrectly at the
phrase boundary, missing the initial phoneme ‘f’ (it should
be ‘fi:l@ndaNk’). It turns out that in sentences containing
this German phoneme sequence, the ‘f’ is often aligned to
English ‘thank’ (see Figure 6). In the lexicons created by
both Bayes ITG and UWS GIZA++ this entry was correctly
phrase-segmented as ‘fi:l@ndaNk’.

A similar such entry in the Model 3P lexicon was
daspa6la:mEn⇔parliament, where the source side is miss-
ing the final ‘t’. In the lexicon constructed using Bayes ITG,
such boundary mistakes were scarce. The equivalent entry
was daspa6la:mEnt⇔parliament (‘das Parlament’). Note
that this entry was not considered strictly correct nor cor-
rectly segmented, as it is comprised of two words, with the
German article being included. However in this case, as in
almost all others, Bayes ITG still segments correctly at the
boundaries of multiword units (as distinct from correctly seg-
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mented individual words). One of the instances of an entry
annotated as incorrect in the top 500 entries of the Bayes
ITG lexicon where the phoneme side was also incorrectly
segmented was tvo6d@n⇔been, where there is a spurious
‘t’ prefixing the phonemic representation of ‘worden’. In-
vestigating the alignments highlights the cause of this entry.
Phoneme sequences such as Unt6StYtstvO6d@n (‘unterstützt
worden’) and ?E6RaICtvO6d@n (‘erreicht worden’) include
verbs that often appear inflected with different suffixes else-
where, but end in ‘t’ when occurring before vO6d@n (‘un-
terstützen’ and ‘erreichen’ respectively, with the suffix ‘-en’).
High correlation of vO6d@n (‘worden’) and the suffix ‘t’
likely caused this entry.

The lexicon constructed using Model 3P demonstrated an
apparent bias to shorter units. In that lexicon, the above en-
try was segmented correctly as vO6d@n. On the other hand,
Bayes ITG tended to learn towards longer multiword units, as
a result of the model’s capacity to capture phrases at coarser
granularities. po:Ete:6RIN⇔Mr Poettering was present in
the Bayes ITG lexicon, but not in the others. The title is
missing on the source side. This can be attributed to varying
morphology of the title, which takes the form of both ‘Herr’
and ‘Herrn’ depending on context. However, since the En-
glish side consistently takes the form of ‘Mr Poettering’, ev-
idence is built up primarily to relate both the title and name
on the English side to only the name on the phoneme side.

For all the alignment approaches, there were
many entries that are justified given only the infor-
mation present in the corpus. The above example,
daspa6la:mEn⇔parliament, is one such example and is
arguably correct in some contexts (consider the phrase das
Parlament lehnte den Antrag ab⇔Parliament rejected the
request). This entry can be attributed to linguistic differences
that possibly no alignment algorithm can overcome, with
the article often being optional in English translations. In
general, the entries Bayes ITG presented us with tend to be
interpretable with respect to how phoneme sequences occur
in the corpus.

UWS GIZA++ yielded the high confidence, yet erro-
neous, entries t?⇔is, n?⇔to, n?⇔of, which didn’t occur in
the other lexicons. This is likely a result of the pipelined
nature of the approach, where monolingual segmentation is
first performed before alignment. The German components
to these entries represent frequently occurring phonemic se-
quences (many words end with ‘t’ or ‘n’ and many start with
a glottal stop, ‘?’, before some vowel). The English sides
represent function words that are so commonly occurring
that the coincidental cooccurrence of these phonemes and
English words allowed them to become extracted lexical en-
tries, which were not obtained using Bayes ITG or Model
3P. Entries such as this partly explain why UWS GIZA++
failed to perform as well as Model 3P in segmenting lexical
entries despite outperforming it in bilingual precision. The
other likely reason is that chunks that cross word boundaries
learnt during monolingual segmentation cannot be undone.

6. Conclusion
We compared four representative approaches, evaluating the
quality of monolingual and bilingual lexical entries. While
two of the techniques had been previously established for the
task of phoneme–word alignment, we achieved performance
improvements by applying models that had not previously
been considered for this task, demonstrating that hundreds
of bilingual lexicon entries can be learnt with as few as 1k
sentences of bilingual data. This can be done despite using
an unsegmented phonemic representation of the source side.

Such approaches may be used to indicate what can be
inferred from corpora of interleaved audio in the absence of
reliable segmentation, aid in post-mortem linguistic analysis
of a language, and to bootstrap ASR systems in order to help
improve their phoneme recognition.
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[10] S. Stüker and A. Waibel, “Towards human translations
guided language discovery for ASR systems.” in SLTU,
2008, pp. 76–79.
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