Bilingual Lexicon Induction using Small Quantities of Sentence-Aligned Phonemic Transcriptions

Oliver Adams¹, Graham Neubig², Trevor Cohn¹, Steven Bird¹

¹The University of Melbourne ²Nara Institute of Science and Technology

Background

- The world's languages are dying out.
- There is a movement to speed up data collection using more ad hoc approaches.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Background

- A modest quantity is bilingual.
- Bilingual lexicons are an important part of language documentation and they are valuable in downstream NLP.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question

vl6vls@nnlCtvaspasi:6t

We do not know what is happening

Given a tiny quantity of data of this sort, how well can we learn bilingual lexical entries by training translation models and extracting high confidence entries?

Challenges

- 1. Limited data
- 2. No word segmentation
- 3. Erroneous phoneme recognition

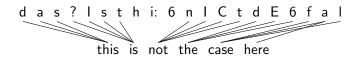
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Models

- 1. Traditional word alignment with GIZA++
- 2. Model 3P: an adapted IBM Model 3
- 3. Unsupervised word segmentation (UWS) followed by word alignment
- 4. Joint segmentation and alignment using a Bayesian inversion transduction grammar (ITG) model

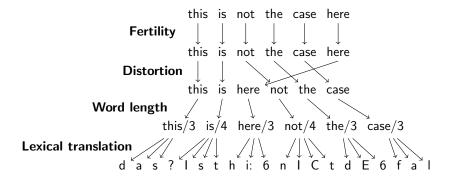
1. GIZA++

- Traditional word alignment baseline using the IBM models.
- Learns Lexical translation probabilities that relate source tokens to the target tokens.
- But our source side tokens are phonemes and can't be meaningfully translated into English words.



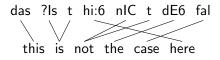
2. Model 3P

- Introduced by Stahlberg et. al (IEEE SLT 2012) as implemented in PISA.¹
- Extends IBM Model 3 to include a word length parameter.
- Generation of phonemes is conditioned on an English word and a phoneme position in a target word.



¹https://code.google.com/p/pisa/

- 1. Break phoneme sequence into chunks with pgibbs.²
- 2. Perform alignment with GIZA++



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

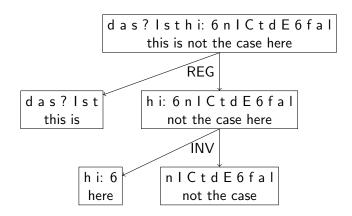
²https://github.com/neubig/pgibbs

4. Bayes ITG

- Uses Gibbs sampling to derive inversion transduction grammar trees (as implemented in pialign³).
- Each tree describes how the German relates to English.
- Hierarchical nature permits phrases of varying granularities.

³https://github.com/neubig/pialign

Joint segmentation and alignment with a Bayesian ITG model



◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Data

- 1. Start with German-English data from Europarl.
- 2. Remove punctuation.
- Convert German to a sequence of phonemes using a text-to-speech system (MARY⁴).
- 4. Remove stress markers and syllable boundaries that ASR systems can't reasonably capture.
- 5. Limit training sentences to be fewer than 100 phonemes.

6. Break into 1k, 2k, 5k and 10k sentence training sets.

⁴http://mary.dfki.de/

Lexicon induction approach

- 1. Train the translation models.
- 2. Filter out entries in the phrase tables that include only one phoneme.

- 3. Sort entries by their joint probability.
- 4. Filter for the top 5 entries of an English word given a phonemic entry, and vice versa.
- 5. Consider the top 500 entries for evaluation.

Annotation

Entries from the bilingual lexicons were merged, shuffled and given to a German for annotation. They were marking them as *correct*, *incorrect*, or *ambiguous*:

- *Correct* entries are found in a German–English dictionary.
- Incorrect entries are deemed "clearly incorrect" by the annotator. Examples:
 - *tsu:?aln⇔the* ("zu ein")
 - ▶ b@dINUN⇔be ("Bedingung")
- Ambiguous entries are neither strictly correct nor incorrect. Examples:

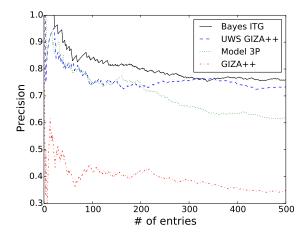
- *nvi:6*⇔*we* ("wir")
- ▶ nICt⇔does not ("nicht")

Evaluation

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Precision at k entries

Over 10k sentences, with only strictly correct entries as valid.

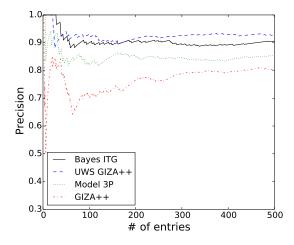


(日) (同) (日) (日)

э

Precision at k entries

Over 10k sentences, considering ambiguous entries as valid.

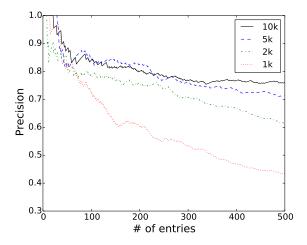


<ロト <回ト < 注ト < 注ト

э

Precision at k entries

Bayes ITG, with only strictly correct entries helping precision.



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Monolingual lexical entries

► Many entries consisted of correctly segmented phonemes misaligned to English (*Bedingung* as in b@dINUN⇔be).

But monolingual entries are useful in their own right.

Monolingual lexical entry performance

The accuracy of the segmentation of phonemic lexical entries judged incorrect and ambiguous.

Method	Sents	Incorrect %	Correct seg. %
Bayes ITG	1k	26.2	52.7
Bayes ITG	2k	16.6	60.2
Bayes ITG	5k	13.4	62.7
Bayes ITG	10k	9.6	62.5
UWS GIZA++	10k	7.2	38.9
GIZA++	10k	19.4	15.5
Model 3P	10k	14.6	46.6

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Word segmentation performance

Note that UWS GIZA++ is still informed by the English. Without the English most of the entries aren't words.

Token	Occurrences
?	13,096
0	8,587
n	8,138
t	6,422
@n	6,300
d	5,929
s	3,226
6	3,136
f	3,099
di:	2,913

Qualitative observations of the entries

Observations: segmentation quality

- Bayes ITG approach tends to grab words and multi-word expressions cleanly, even if misaligned.
- Model 3P and UWS GIZA++ tend to have more off-by-one errors and alignments such as this:

fi: l@ndaNk

thank you

Observations: segmentation granularity

- M3P tended to bias towards shorter units
- Bayes ITG was more likely to use longer phrases:

tvo6d@n⇔been

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Observations: UWS GIZA++ nuances

UWS GIZA++ errors were more distinct:

- ► t?⇔is
- ▶ n?⇔to
- ► n?⇔of

Likely a result of the pipelined nature.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusions

- Lexical entries can be learnt with decent precision even with very small quantities of data.
- These are applicable when small quantities of reliable phonemic transcriptions are available.
- Future work should consider real data with errors from acoustic models, as that is a significant bottleneck we did not address.