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Introduction



Simultaneous Translation (Interpretation)
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Simultaneous Translation - Extreme Strategies

v

First Translation Strategy:

[I was in my twenties before | ever went to an art museumJ

|

[Ich war in meinen zwanzig bevor ich in ein kunstmuseum ging}

v

Reference Sentence:

[Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum gingj

v

BLEU Score: High (57.6)

Segments/Second: Low

v
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Simultaneous Translation - Extreme Strategies

» Second Translation Strategy:

(1) was) (in] (my) (twenties) (before] (1] (ever) (went) (to] (an) (art) (museum)

R I N R

(Ich)war)(in)(meine] (zwanziger jahre)(bevor

» Reference Sentence:

{Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging]

» BLEU Score: Low (15.6)
» Segments/Second: High
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Segmentation - A Trade-off between Extremes

Good Segmentation Points

| was in I my twenties before Ilever went to an art museum)

Ich war in [meine zwanziger bevor ich][in ein kunstmuseum ging]

> Reference Sentence:

{Ich war in meinen zwanzigern bevor ich erstmals in ein kunstmuseum ging}

» BLEU Score: Acceptable (38.2)
» Segments/Second: Acceptable
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Segmentation Classifier
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Segmentation Classifier
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Segmentation Classifier
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Segmentation Classifier

Segmentation
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Classifier Data Annotation

b< Training Classifier Needs Annotated Data >4

* We are going to provide a method that
will create this annotated data
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Classifier Data Annotation - An Example

» Task: English-German
» Features: Bigram part-of-speech tags

» Only source side is shown here !

J N P DN PDJ N

m a contemporary artist with a bit of an unexpected background .
D

Zh—1
<‘9’

in my twenties
PS N P NA V PDNN

Z I
<‘§
1}

R PD N P N PDN N PJ N

Z\i—t
<

lN[noun], V[verb], D[determiner], J[adjective], P[preposition], S[possessive pronoun], A[adverb], R[particle], ,[dot][
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Example Data for Annotation - Feature frequencies

Feat Freq | Feat Freq | Feat Freq
N-P 6 J-N 3 V-R 1
P-D 5 N-N 2 P-S 1
D-N 4 P-N 2 P-J 1
N-. 3 D-J 2 S-N 1
N-V 3 R-P 1 A-V 1
V-D 3 N-A 1

Full Segmentation Set Size 40
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Example Data for Annotation - Feature frequencies

Feat Freq | Feat Freq | Feat Freq
N-P 6 J-N 3 V-R 1
P-D 5 N-N 2 P-S

D-N 4 P-N 2 P-J 1
N-. 3 D-J 2 S-N 1
N-V 3 R-P 1 A-V 1
V-D 3 N-A 1

Full Segmentation Set Size 40

OE
ole
Z

PDN N

road | in rural Arkansas .

I am a contemporary artist | with a bit |

NV DJ N | P N |

1 was in my twenties | before I ever went to an art museum
NV PS N | P NA V

1 grew up in the middle | of nowhere

Nv R PD N |P N

| on a dirt
/P DN N |[PJ N
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Greedy Segmentation Strategy

[Oda et al. 2014]



Greedy Segmentation Strategy

> Greedily maximize the sum of BLEU Scores of Sentences
» Decoding is done Sentence by Sentence
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Greedy Segmentation Strategy

> Greedily maximize the sum of BLEU Scores of Sentences
» Decoding is done Sentence by Sentence

» Input: the desired average segment length (u)
= total number of expected segments (K)
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Greedy Segmentation Strategy

> Greedily maximize the sum of BLEU Scores of Sentences
» Decoding is done Sentence by Sentence

» Input: the desired average segment length (u)
= total number of expected segments (K)

K= LWJ — [#Sentences]

* Sentence boundaries do not count towards K

12/29



Greedy

Segmentation Strategy - An Example for = 13

K=0= L%J — [#Sentences = 3]

Sum of BLEU Scores [of the 3 sentences] = 57.6

ZIH

<5

D1 N P DN PDJ N

a contemporary artist with a bit of an unexpected background W

=

ZI)—Q
|

as in my twenties before I ever went fo an art museum .
PS N P NA V PDNN

O'Q

2“—4

iddle of nowhere o irt road i

w up in the m on a
R PD N PN P D

in ru
PJ N

z
2

ural Arkansas J
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Greedy Segmentation Strategy - An Example for ;= 8

K=2= LWJ — [#Sentences = 3]

Sum of BLEU Scores [of the 3 sentences] = 13.8

a
DJ N P DN PDJ N

contemporary artist with a bit of an unexpected background J

was 1n my 1 ever went to an artjmuseum .

was 1n my twenties before | ever went to an arfymuseum .
VvV PS N P NA V PDN|N

1 up in the middle of nowhere on a dirt
NV R PD N PN P DN

road in rural Arkansas .
N PJ N
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Greedy Segmentation Strategy - An Example for ;= 8

K=2= LWJ — [#Sentences = 3]

Sum of BLEU Scores [of the 3 sentences] = 27.2

a
V DIJ N P DN PDJ N

contemporary artist with a bit of an unexpected background J

PSN P NA[V PDN N

<\§
\_(

inymy twenties before I everfwent to an art museum . ]

up in the middle of nowhere on a dirt road in rural Arkansas .
Vv R PD N PN P DN N P N .
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Greedy Segmentation Strategy - An Example for ;= 8

K=2= L%J — [#Sentences = 3]

Sum of BLEU Scores [of the 3 sentences| = 38.2

am a contemporary artist with a bit of an unexpected background ;W
D

—
Z
!
w)
4
as)
w
L
Z

1 grew up in the middle of nowhere on a
NV R PD N PN P D

dirt road in rural Arkansas ;}
N P N

z
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Greedy Segmentation Strategy - An Example for ;= 8

K=2= L%J — [#Sentences = 3]

Sum of BLEU Scores [of the 3 sentences| = 38.2

—
Z

am a contemporary artist with a bit of an unexpected background ;W
D P DN PDJ N

as m]my twenties before [ [ever went to an art museum ]

S N P NJAA V. P DN N

1 grew up in the middle of nowhere on a dirt road in rural Arkansas LW
NV R PD N P N P DN N PJ N

Only maximizes the BLEU Tends to oversegment
score fewer sentences
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Pareto-Optimal Segmentation
Strategy



Pareto-Optimality
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Pareto-Optimality
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Pareto-Optimality

Segments / Second
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Pareto-Optimal Segmentation

» Tries to find the best segmentation points regarding both
Accuracy and Segs/Sec
BLEU

» Our measure of accuracy is the average of {m} per
sentence

> The input is the same desired average segment length p
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Pareto-Optimal Segmentation - An Example for ;= 8

K=2= L%J — [#Sentences = 3]

Avg {#B¢}/ Sentence = 12.7, Segs/Sec = 0.560

Segments

~

N ([

I am E_L ontemporary artist with a bit of an unexpected background .
NV N P DN PDJ N

T w_ my twentles before I Yever went to an art museum .

N NA V PDN N

1 w up in the middle of nowhere on a dirt road in rural Arkansas .
N R PD N PN PDN N PIJ N
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Pareto-Optimal Segmentation - An Example for ;= 8

K=2= LWJ — [#Sentences = 3]

Avg {#B¢}/ Sentence = 9.0, Segs/Sec = 0.956

Segments

I am g. ontemporary artist with a bit of an unexpected background .
NV N P DN PDJ N
1 w_ my twentles before I everfwent to an art museum .
N N A lv PDN N
1 grew up in the middle of nowhere on a dirt road in rural Arkansas 1
NV R PD N PN P DN N P N
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Sample Data Review

Feat  Freq | Feat Freq | Feat Freq
N-P J-N
P-D
D-N
N-.
N-V
V-D
Full Segmentation Set Size

[=)]
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as in my twenties before I ever went to an art | museum .
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Sample Data Review

Feat  Freq | Feat Freq | Feat Freq
N-P J-N
P-D
D-N
N-.
N-V
V-D
Full Segmentation Set Size
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Pareto-Optimal Segmentation - Initiating the Segmentation
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Pareto-Optimal Segmentation - Searching for first point
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Pareto-Optimal Segmentation - Searching for first point
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Pareto-Optimal Segmentation - Searching for first point
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Pareto-Optimal Segmentation - Searching for first point
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Pareto-Optimal Segmentation - Searching for first point
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Pareto-Optimal Segmentation - Searching for first point
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Pareto-Optimal Segmentation - Searching for second point
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Pareto-Optimal Segmentation - Searching for second point
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Pareto-Optimal Segmentation - Searching for second point
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Pareto-Optimal Segmentation - Searching for second point
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Pareto-Optimal Segmentation - Searching for second point
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Pareto-Optimal Segmentation - Searching for second point
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Pareto-Optimal Segmentation - Searching for second point
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Pareto-Optimal Segmentation - Searching for second point
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Pareto-Optimal Segmentation - Searching for second point
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Experiments and Results



Experimental Setup

» Task: English-German TED speech translation

» MT System Training Data: IWSLT 2013 Train data + half of
the Europarl data [Koehn 2005]

» MT System Tuning Data: IWSLT Test 2012

» German Language Model Data: monolingual data from WMT
2013 Shared Task

» Segmenter Training Data: IWSLT Dev 2010 and 2012 and
Test 2010

> Segmenter Test Data: IWSLT Test 2013
» Segmentation Train Size: 3669
» Segmentation Test Size: 1025
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Accuracy vs. Latency-Accuracy Evaluation Experiment

» We compared

» the state-of-the-art heuristic speech segmenter [Rangarajan et
al. 2013]

» Greedy Segmentation Approach [Oda et al. 2014]
» Pareto-Optimal Segmentation Approach
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Results on the Test Data
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Result comparison for =3 and =8

uw=3 w=2=8
Segs/Sec BLEU Segs/Sec BLEU
Pareto-Optimal Segmenter 0.474 18.07 0.315 21.77
Greedy Segmenter 0.424 18.07 0.305 21.63
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Summary

In this work we:

» Concentrated on the problem of data annotation for training
the segmentation classifier

> Presented a multi-metric optimization algorithm over both
latency and accuracy to solve the problem

» Showed that our algorithm performs better than the
state-of-the-art methods

» While we managed to keep the same translation quality of the
state-of-the-art

We Aim To:

» Extend this work with a larger variety of features

» Use the annotated data to fine-tune the simultaneous
translation system

» Which results in pushing “the knee of the plot” further
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Thank You!

contact: sshavara@sfu.ca
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Pareto-Optimal Segmentation - Algorithm

Algorithm 1 Pareto-Optimal Segmentation
1 SF 0
2: for k =1to K do

Sy, ¢ arg pareto frontier{ BC“(Sli—l U{p}), }
pEFSSAPESE_, Ao(Si_,U{ph

4: end for
5: return Sp.
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Pareto-Optimal Segmentation - Efficient Algorithm

Algorithm 2 Computationally Efficient Pareto-Optimal Segmentation

1. Bg 0
2: fork =1t K do
3: forj=0tok—1do

" O {0: (6 ¢ B;) A (count(ss F) = k — j)}

5: By, ;U {arg pareto fronticrd)e@/{B S(F, ;U {9})), Aa(s(F,®; U {0})) }}
6: end for

7: if £ < K then

8: D5 argmaxye (g, -0<j<k} By (s(F, ¢))

9: end if

10: Oy  argpareto frontierg e s, ;.0<; <k} {Bals(F, @), Aa(s(F, P))}

11: end for

12: return s(F, k)
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Pareto-Optimal Segmentation - Formulae

» K and p are the same as Greedy Segmentation Strategy

> Accuracy measure

< Ba(s)zzj’\’zl%ﬁﬂvef)_ﬂq

D,

» Latency measure

s
< Aals) = sy —

D

» The best set of segmentation strategies

b< S* = arg pareto frontier,cs. {Ba(s), Aa(s)}

D
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Size of Data used in Experiments

Sentences  Types Tokens
MT Train 1033491 105267 27948041
MT Tune 1730 3937 31568
Seg Train 3669 6773 74883
Seg Test 1025 3181 22026
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Greedy Segmentation Strategy - Formulae

» total number of expected segments in the corpus (K)

< K := max(0, LMJ —N) >

» 1 = the average expected segment length

» Accuracy measure

Bu(s) = XV, A(D(£. 5). ) — 0] D

» The best set of segmentation strategy

b< S* = argmaxycs., {Ba(s)} >4
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