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m Modular deep neural network acoustic models
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Introduction A\KIT

m Goal: Combination of multiple input features

m Approach: Modular Deep Neural Network Acoustic Models

m Evaluated on the following German test sets
m IWSLT dev2012:

m TED and TEDx talks
m 2 hours of audio from 7 speakers with a total of 18k words
m Word error rate measured using 3 significant figures

m Quaero eval2010:

m Podcasts, talkshows, broadcast news
m 3.5 hours of audio from 135 speakers with a total of 32k words
m Word error rate measured using 4 significant figures

m Baseline system: KIT 2014 IWSLT system
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Feature combination in neural networks AT

m Many approaches

m Disregard irrelevant information: speaker, background noise, ...
m Fundamentally similar and often equally useful

m Can be complementary

m ASR systems using different features can be combined for better results

m Neural networks can be used to combine multiple features in a single
ASR system

m C. Plahl, R. Schliiter, and H. Ney, “Improved acoustic feature combination for
Ivesr by neural networks.”, INTERSPEECH, 2011

m K. Kilgour, T. Seytzer, Q. Nguyen, and A. Waibel, “Warped minimum variance
distortionless response based bottle-neck features for LVCSR,” ICASSP, 2013

m C. Plahl, M. Kozielski, R. Schliiter, and H. Ney, “Feature combination and
stacking of recurrent and non-recurrent neural networks for Ivcsr,” ICASSP, 2013

B F. Metze, Z. A. Sheikh, A. Waibel, J. Gehring, K. Kilgour, Q. B. Nguyen, and
V. H. Nguyen, “Models of tone for tonal and non-tonal languages,” ASRU, 2013
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Features A\KIT
m MFCC

m 20 dimensional feature vector
m Standard ASR feature for the past two decades

= MVDR

m 20 dimensional feature vector

m Improves on linear prediction features

m M. Welfel, J. W. McDonough, and A. Waibel, “"Minimum variance distortionless
response on a warped frequency scale.” INTERSPEECH, 2003

= IMEL:

m 40 dimensional feature vector

m Precursor feature to MFCC features

m Typically outperform MFCCs in large DNNs
m Tonal:

m 14 dimensional feature vector

m Combination of pitch (7) & FFV (7) feature vectors
m Can not be used as stand alone features
m

F. Metze, Z. A. Sheikh, A. Waibel, J. Gehring, K. Kilgour, Q. B. Nguyen, and
V. H. Nguyen, "Models of tone for tonal and non-tonal languages,” ASRU, 2013
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Neural Network Feature Combination Approaches ~KIT
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m Deep bottle neck features

m Deep neural network acoustic models
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Multi-Feature DBNF AT

ruhe nsitute of Tecanaloay

MVDR (t-s) discarded after
small bottleneck layer training
sigmoid AF

MVDR (t-2)

MVDR (t-1)

MVDR (t)

stacked input features

softmax output layer: CD - phone states

main hidden layers final hidden layer
sigmoid AF sigmoid AF

Kevin Kilgour - IWSLT 2015 Multi-Feature Modular Deep Neural Network Acoustic Models



Multi-Feature DBNF Results A\KIT
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Multi-Feature DNN AM
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Modular Deep Neural Network Acoustic Models KIT
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Modular Deep Neural Network Acoustic Models  KIT
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Modular Deep Neural Network Acoustic Models  SKIT
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Modular Deep Neural Network Acoustic Models  SKIT
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Modular Deep Neural Network Acoustic Models
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Modular Deep Neural Network Acoustic Models

MVDR (t-5-r)

erlsruhe insttte of Tecnology

MVDR (t-s-1)

MVDR (t-2)

MVDR (t+1)
MVDR (t+2)

softmax output layer: CD - phone states

MVDR (t+5+1)

Kevin Kilgour - IWSLT 2015 Multi-Feature Modular Deep Neural Network Acoustic Models



22

21

20

19

18

WER (in %)

17

16

15

14

Modular DNN AM Results
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eval2010  dev2012

MFCC 15.35 19.5
+MVDR 14.71 19.4
+Tone 1454 19.3
+IMEL 14.31 18.9
IMEL 14.72 19.5
+Tone 14.52 19.0
MVDR 14.81 19.5
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mDNN AM with Multiple BNF Modules AT
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mDNN AM with Multiple BNF Modules Results <NCIT

BNF modules | eval2010 dev2012
IMEL+Tone 1 14.52 19.0
MFCC+MVDR+Tone 1 14.54 19.3
MFCC+MVDR+Tone+IMEL 1 14.31 18.9
MFCC 1 15.35 19.5
& MVDR 2 14.54 19.2
@ IMel 3 14.73 19.3
MFCC @& MVDR @ IMel+Tone 3 14.24 18.7
IMEL+Tone & MFCC+MVDR+Tone 2 14.19 18.8
@ MFCC+MVDR+Tone+IMEL 3 14.06 18.7
@ MFCC & MVDR 5 14.33 18.9
@ IMEL & MFCC+MVDR 7 14.44 18.8
IMEL & MFCC+MVDR 2 14.34 19.1
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Results Summary AT

eval2010 dev2012
baseline MFCC DNN 15.88 20.3
best single-feature DNN 15.31 20.1
best DNN system combination (CNC) | 14.45 19.2
best multi-feature DNN 14.71 19.4
best mDNN with a single module 14.31 18.9
best mDNN with multiple modules 14.06 18.7
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Conclusion A\KIT

m DNNs can benefit from multiple input features
m A modular DNN topology can improve its quality

m Multiple feature modules can outperform networks with only a single
module

m simply concatenating all features in the input layer is no longer the best
approach
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