

# Multi-Feature Modular Deep Neural Network Acoustic Models

Kevin Kilgour & Alex Waibel 3. Dezember 2015



Kevin Kilgour - IWSLT 2015

Multi-Feature Modular Deep Neural Network Acoustic Models

## Overview



#### Introduction

- Feature combination in neural networks
  - Used features
  - Combination approaches
- Modular deep neural network acoustic models
  - Motivation
  - Topology
  - Multiple modules
- Results

# Introduction



- Goal: Combination of multiple input features
- Approach: Modular Deep Neural Network Acoustic Models
- Evaluated on the following German test sets
  - IWSLT dev2012:
    - TED and TEDx talks
    - 2 hours of audio from 7 speakers with a total of 18k words
    - Word error rate measured using 3 significant figures
  - Quaero eval2010:
    - Podcasts, talkshows, broadcast news
    - 3.5 hours of audio from 135 speakers with a total of 32k words
    - Word error rate measured using 4 significant figures
- Baseline system: KIT 2014 IWSLT system

### Feature combination in neural networks



- Many approaches
  - Disregard irrelevant information: speaker, background noise, ...
  - Fundamentally similar and often equally useful
- Can be complementary
- ASR systems using different features can be combined for better results
- Neural networks can be used to combine multiple features in a single ASR system
  - C. Plahl, R. Schlüter, and H. Ney, "Improved acoustic feature combination for lvcsr by neural networks.", INTERSPEECH, 2011
  - K. Kilgour, T. Seytzer, Q. Nguyen, and A. Waibel, "Warped minimum variance distortionless response based bottle-neck features for LVCSR," ICASSP, 2013
  - C. Plahl, M. Kozielski, R. Schlüter, and H. Ney, "Feature combination and stacking of recurrent and non-recurrent neural networks for lvcsr," ICASSP, 2013
  - F. Metze, Z. A. Sheikh, A. Waibel, J. Gehring, K. Kilgour, Q. B. Nguyen, and V. H. Nguyen, "Models of tone for tonal and non-tonal languages," ASRU, 2013

### Features



#### MFCC

- 20 dimensional feature vector
- Standard ASR feature for the past two decades
- MVDR
  - 20 dimensional feature vector
  - Improves on linear prediction features
  - M. Wölfel, J. W. McDonough, and A. Waibel, "Minimum variance distortionless response on a warped frequency scale." INTERSPEECH, 2003

#### IMEL:

- 40 dimensional feature vector
- Precursor feature to MFCC features
- Typically outperform MFCCs in large DNNs
- Tonal:
  - 14 dimensional feature vector
  - Combination of pitch (7) & FFV (7) feature vectors
  - Can not be used as stand alone features
  - F. Metze, Z. A. Sheikh, A. Waibel, J. Gehring, K. Kilgour, Q. B. Nguyen, and V. H. Nguyen, "Models of tone for tonal and non-tonal languages," ASRU, 2013

### Neural Network Feature Combination Approaches 🛓

- Deep bottle neck features
- Deep neural network acoustic models





softmax output layer: CD - phone state

# Multi-Feature DBNF





Kevin Kilgour - IWSLT 2015

Multi-Feature Modular Deep Neural Network Acoustic Models

# Multi-Feature DBNF Results





- Significant improvements on both test sets:
  - dev2012: 0.8% (vs. baseline)
    & 0.5% (vs. best single feature)
  - eval2010: 1.23% (vs. baseline)
    & 0.5% (vs. best single feature)



### Multi-Feature DNN AM





















Kevin Kilgour - IWSLT 2015

Multi-Feature Modular Deep Neural Network Acoustic Models











## Modular DNN AM Results



|       | eval2010 | dev2012 |
|-------|----------|---------|
| MFCC  | 15.35    | 19.5    |
| +MVDR | 14.71    | 19.4    |
| +Tone | 14.54    | 19.3    |
| +IMEL | 14.31    | 18.9    |
| IMEL  | 14.72    | 19.5    |
| +Tone | 14.52    | 19.0    |
| MVDR  | 14.81    | 19.5    |

# mDNN AM with Multiple BNF Modules







|                                         | BNF modules | eval2010 | dev2012 |
|-----------------------------------------|-------------|----------|---------|
| IMEL+Tone                               | 1           | 14.52    | 19.0    |
| MFCC+MVDR+Tone                          | 1           | 14.54    | 19.3    |
| MFCC+MVDR+Tone+IMEL                     | 1           | 14.31    | 18.9    |
| MFCC                                    | 1           | 15.35    | 19.5    |
| $\oplus$ MVDR                           | 2           | 14.54    | 19.2    |
| ⊕ IMel                                  | 3           | 14.73    | 19.3    |
| $MFCC  \oplus  MVDR  \oplus  IMel+Tone$ | 3           | 14.24    | 18.7    |
| $IMEL+Tone \oplus MFCC+MVDR+Tone$       | 2           | 14.19    | 18.8    |
| $\oplus$ MFCC+MVDR+Tone+IMEL            | 3           | 14.06    | 18.7    |
| $\oplus$ MFCC $\oplus$ MVDR             | 5           | 14.33    | 18.9    |
| $\oplus$ IMEL $\oplus$ MFCC+MVDR        | 7           | 14.44    | 18.8    |
| $IMEL \oplus MFCC + MVDR$               | 2           | 14.34    | 19.1    |

# **Results Summary**



|                                   | eval2010 | dev2012 |
|-----------------------------------|----------|---------|
| baseline MFCC DNN                 | 15.88    | 20.3    |
| best single-feature DNN           | 15.31    | 20.1    |
| best DNN system combination (CNC) | 14.45    | 19.2    |
| best multi-feature DNN            | 14.71    | 19.4    |
| best mDNN with a single module    | 14.31    | 18.9    |
| best mDNN with multiple modules   | 14.06    | 18.7    |

# Conclusion



- DNNs can benefit from multiple input features
- A modular DNN topology can improve its quality
- Multiple feature modules can outperform networks with only a single module
- simply concatenating all features in the input layer is no longer the best approach