
Risk-aware Distribution of SMT Outputs for Translation of Documents

Targeting Many Anonymous Readers

Yo Ehara†, Masao Utiyama‡, Eiichiro Sumita‡

†: Tokyo Metropolitan University, Tokyo, Japan

‡: National Institute of Information and Communications Technology, Kyoto, Japan

†:ehara@tmu.ac.jp, ‡:{mutiyama,eiichiro.sumita}@nict.go.jp

Abstract

Web documents and news articles are typically written for

many anonymous readers. Thus, when translating such doc-

uments, the total quality of translations distributed to the en-

tire readers should be considered. Previous statistical ma-

chine translation studies have focused on selecting the best

translation from N -best candidates. However, when dealing

with many readers, it is not necessary to identify the best

translation. Our key idea is to distribute all good candidate

translations to the readers and improve the total quality of the

translations. We simulated a case with 1, 000 news document

readers and showed statistically significant gain in sentence-

level BLEU scores averaged over those readers.

1. Introduction

Web documents and news articles are typically written for

many anonymous readers. Unlike documents that target spe-

cific readers such as mails and letters, the number of readers

of web documents and news articles cannot be determined

in advance. When translating documents that target a large

number of readers, our goal is to improve the total quality

of all translated documents rather than improving the trans-

lation quality of a single document.

Previous statistical machine translation (SMT) studies

have focused on selecting one best translation from many

candidate translations and have not considered the number

of readers [1, 2]. Selecting one translation frees us from

considering the number of readers because a target language

reader usually only reads one translation of source language

material. Thus, selecting a single translation is an effective

strategy if a good translation is always selected as the best

translation.

However, current SMT techniques cannot always iden-

tify the actual best translation from candidate translations. In

many cases, even when there is a good translation among the

candidates, SMT systems frequently rank bad translations

higher than good translations. In other words, the strategy
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Figure 1: Schematic Comparison of Previous and Proposed

Approach

that attempts to find a single best translation risk selecting

poor translations, even when good candidate translations are

available. Thus, it is preferable to select multiple candidate

translations when the task setting allows us to do so.

We propose an approach for distributing multiple transla-

tion candidates when translating documents for many anony-

mous readers, such as web documents and news articles. Our

key idea is to distribute all seemingly good candidate trans-

lations. A schematic diagram of the proposed approach is

presented in Figure 1. In a previous approach [1], for source

sentence si, an SMT system produces and ranks several can-

didate translations of si, i.e., t1i and t2i . Only the top ranked

translation, t1i , is used; therefore, the three readers only read

t1i . However, it is possible that the actual quality of t1i is

lower than that of t2i . In this situation, the readers do not

have access to the best translation. In the proposed approach,

we perform quality estimation (QE) for the quality and qual-

ity variance of each candidate translation. Considering both

quality and variance, we calculate rates that determine how

many of the entire readers should read each candidate trans-

lation. Then, using these rates, we distribute candidate trans-

lations to all the readers. As can be seen in Figure 1, the



Table 1: Motivating Example using Japanese to English

Translation; “inu” means dog or dogs, and “naku” has multi-

ple meanings. BLEU[3] is a widely used translation quality

metric.

Legend Context BLEU

Source inu/N ga/SUBJ-marker naku/V . -

1st best A dog cries. 50.8

2nd best A dog barks. 100.0

3rd best Dog weeps. 38.5

Reference A dog barks. 100.0

Table 2: BLEU scores of Translations Distributed to Each

Reader (when “1st best” candidate is distributed to all four

readers)

Candidate to be Distributed BLEU

Reader1 1st 50.8

Reader2 1st 50.8

Reader3 1st 50.8

Reader4 1st 50.8

Average - 50.8

Table 3: BLUE scores of Translations Distributed to Each

Reader (when “2nd best” candidate is distributed to one

reader and “1st best” is distributed to the other three read-

ers)

Candidate to be Distributed BLEU

Reader1 1st 50.8

Reader2 2nd 100.0

Reader3 1st 50.8

Reader4 1st 50.8

Average - 63.1

proposed method distributes t1i to two readers and t2i to one

reader. In this example, if the quality of t1i is lower than that

of t2i , the average quality of the three translations distributed

to the three readers is improved.

We explain our motivation using the example in Table 1.

In this example, we want to translate the Japanese sentence

“inu ga naku” (A dog barks.) to English. Here “inu” trans-

lates as dog or dogs, and “ga” is a subject marker that

does not need to be translated. Translating the verb “naku”

is problematic because it is ambiguous in English; “naku”

means to cry, to bark, and to weep.

Suppose an SMT system translates this Japanese source

sentence to English and that the top three translations are

Table 4: BLUE scores of Translations Distributed to Each

Reader (when “3rd best” candidate is distributed to one

reader and “1st best” is distributed to the other three read-

ers.)

Candidate to be Distributed BLEU

Reader1 1st 50.8

Reader2 1st 50.8

Reader3 1st 50.8

Reader4 3rd 38.5

Average - 47.7

those shown in Table 1. Moreover, suppose there are four

readers. If we distribute the “1st best” candidate in Table 1

to all four readers, the baseline average BLEU [3] score, a

widely used metric for translation quality, is 50.8 (Table 2).

Because we rely only on the “1st best” candidate, if this can-

didate’s quality is low, the translation quality will be affected.

In contrast, considering the risk that the SMT system may

fail to identify the actual best translation, we can distribute

other candidates to a small number of readers. For example,

as shown in Table 3, if we distribute the “2nd best” trans-

lation to one reader randomly, we can achieve an average

BLEU score of 63.1, which is a great improvement compared

to distributing the “1st best” candidate to all readers.

However, avoiding the risks associated with SMT sys-

tems in this manner does not always achieve good results.

For example, as can be seen in Table 4, if we distribute the

“3rd best” translation to one reader randomly, the average

BLEU score is 47.7, which is less than the baseline average

BLEU score (50.8; Table 2).

Thus, to improve performance in averaged quality, we

need to 1) estimate (predict) quality of candidates accurately

without a reference translation, and 2) optimize and deter-

mine the risks associated with considering both successful

and unsuccessful cases.

We conducted simulation experiments to evaluate the

proposed approach. In these simulation experiments, an

SMT system distributes translations to 1, 000 readers. We

found that the proposed approach consistently and signifi-

cantly outperform the previous approach.

The contributions of this study are summarized as fol-

lows.

• We propose an approach for distributing translation

candidates to readers when documents with many

readers such as web documents and news articles are

translated.

• Our key idea is to use all translation candidates rather

than using only the top candidate by considering the

possibility that the top ranked candidate is not actually

the best translation.



• Our experimental results show that the proposed ap-

proach consistently outperforms the baseline approach

in which only the top candidate is distributed to all

readers.

The remainder of this paper is organized as follows. Sec-

tion 2 differentiates our task from previous studies. Section 3

describes how to estimate quality considering risks. Sec-

tion 4 explains the key idea of the proposed approach: how to

use the estimated quality and its risk to distribute translations.

Section 5 describes the experimental settings. Section 6 and

Section 7 present quantitative and qualitative results, respec-

tively. A discussion is presented in Section 8, and the paper

is concluded in Section 9.

2. Related Work

Our approach is closely related to a quality estimation (QE)

task. In this approach, the QE task estimates the quality of

a given source text and its translation without a reference

translation [4, 5]. From a machine learning perspective, a

QE task is generally categorized as a regression problem [6].

A regression problem differs from typical classification prob-

lems, such as those that apply support vector machine (SVM)

techniques, in that it tries to predict real values while the lat-

ter tries to predict classes. Many regression algorithms have

been applied to QE tasks, e.g., SVM-based regression [7] and

Gaussian process (GP) regression [8, 6, 9].

In addition to predicted scores, a GP can output their vari-

ances [10]; however, SVM-based regression algorithms can

only output predicted scores and cannot output their vari-

ances. More precisely, SVMs can output confidence values;

however, such values cannot be interpreted as variances. Al-

though GPs can output variances, most QE systems that use

a GP only use the predicted scores.

QE tasks can also be categorized by the source text unit

used to estimate quality: words, sentences, or documents.

This study uses sentences because they are the most widely

used and studied [7]. However, the proposed approach is

also applicable to words or documents. To use other types of

source text units, we simply switch sentences in Figure 1 to

another unit type.

Our task is also related to another previous approach, i.e.,

system combination [11, 12]. Given single best translations

from multiple SMT systems, system combination techniques

attempt to output a more sophisticated single translation by

combining the given translations. Like the system combi-

nation approach, the proposed approach deals with multiple

translations for a given source text.

However, the proposed task clearly differs from system

combination in both objective and outputs. The objective of

the proposed task is to distribute given translations to read-

ers considering the risk in translation quality. In contrast, the

goal of the system combination approach is to refine trans-

lations. In the proposed task, a translation distributed to a

reader is one of the input translations. In contrast, the trans-

lation output by a system combination technique can be very

different from the input translations because its objective is

to refine translations.

The system combination approach and the proposed ap-

proached can be aggregated to create a new system. Given a

source text, suppose a system-combination system can out-

put multiple sophisticated translations rather than a single

best translation. Then, the proposed approach can input

the sophisticated translations and distribute them to readers.

Note that, for simplicity, we do not focus on this aggregated

system; however, being able to create an aggregated system

implies that our task is independent of the system combina-

tion tasks.

Re-ranking candidates to find the best translation candi-

date has been addressed in a previous study [13]. However,

unlike our goal, this study does not aim to distribute transla-

tion candidates.

3. Gaussian Process-based Quality Estimation

Here we explain how to estimate the quality of given transla-

tions considering risks in quality. As described in Section 2,

we use a GP to estimate quality and its risk simultaneously

because a GP can output variance in addition to quality, and

this variance encodes the quality’s risk.

We introduce the notations used to explain the GP. Our

notations are based on a previously QE study that used a GP

[6]; however, this study used a GP for multitask learning, a

purpose very different from ours.

We model the proposed task as a regression problem

where the training data is given as M pair D = {(xi, yi)}.

Here xi ∈ R
d denotes a d-dimensional feature vector con-

structed from a pair of source sentences and its translation.

xi ∈ R
d encodes linguistic features taken from the pair.

yi ∈ R is a response variable, which is the gold standard

in regression problems. It numerically encodes the transla-

tion quality, i.e., how good the translation is for the source

sentence in the i-th source sentence-translation pair. For yi
in QE, typically, a manual quality assessment such as post-

editing time or a Likert score is used. However, to the best

of our knowledge, no dataset with manually assessed quality

for N -best output of an SMT system exists. Therefore, we

have used sentence BLEU scores implemented in the Moses
2 toolkit [2].

The goal of the GP is to predict y∗ for an unseen test

sample x∗ given the training data D. The GP performs this

prediction by integrating over a functional space as follows.

Intuitively, this means that all possible regressor functions f

within the functional space are considered in the GP.

p(y∗|x∗,D) =

∫

f

p(y∗|x∗, f)p(f |D) (1)

In (1), function f is defined as follows.

f (x) ∼ GP (0, k(x,x′)) (2)

2http://www.statmt.org/moses/



(2) has two parameters. The first is the mean function 0,

which simply implies that the function f is normalized to 0.

The key component in (2) is k, a covariance kernel function,

which intuitively encodes the closeness of x and x′.

A typical covariance kernel function is a radial basis

function (RBF), which is expressed as follows3.

k(x,x′) = σ2

f exp

(

−
1

2
(x− x′)⊤A−1(x− x′)

)

(3)

There are two hyperparameters in (3), σf and A. σf is

a scalar that determines the overall size of the variances.

A = diag(a) is a diagonal matrix that determines the weight

of each feature; the importance of the i-th feature increases

as ai increases. Typically, a is defined as a = σ2

ℓ1 where 1 is

a vector of appropriate size whose elements are all 1 and σℓ

is a hyperparameter. In this definition, the importance of all

features is equal and hyper-parameter σℓ tunes the kernel’s

sensitivity to feature values. This definition is also advanta-

geous in that σℓ can automatically be tuned only using the

training data [10]. We use this definition in our experiments.

3.1. Prediction of a single unseen datum

An advantage of the GP is that we do not need to perform nu-

merical integration to calculate (1). Given the characteristics

of Gaussian functions, y∗ in (1) can be obtained analytically

as follows where N denotes the Gaussian (Normal) proba-

bility distribution.

y∗ ∼ N
(

k⊤

∗
(K + σ2

nI)
−1y, k(x∗,x∗)− k⊤

∗
(K + σ2

nI)
−1k∗

)

(4)

In (4), y = (y1, . . . , yM ), k∗ =
(k(x∗,x1), k(x∗,x2), . . . , k(x∗,xM ))⊤, and K is

an M × M matrix whose i, j element is defined as

Ki,j = k(xi,xj).

In summary, given an unseen test sample x∗, we can ob-

tain its prediction using (4).

The GP is also advantageous in that hyperparameter op-

timization is computationally easy because of the use of the

Gaussian function. To this point, we have the following hy-

perparameters: σf , σn, and a. These hyperparameters can be

tuned automatically so that the likelihood of D can be maxi-

mized.

3.2. Prediction of multiple unseen data

Section 3.1 discussed the prediction of a single unseen data

x∗. When n multiple unseen data, e.g., x∗1,x∗2, . . . ,x∗n,

the GP considers not only the closeness between each un-

seen data point and the training data but also the closeness

between each unseen data point. In this case, the prediction

can be written as follows.

y∗ ∼ N (µ,Σ) (5)

3⊤ denotes the transpose of a vector or a matrix.

Here µ = (µ1, . . . , µn)
⊤ and Σ are the quality prediction

and its covariance matrix, respectively. These play a key role

and are used in the subsequent distribution process. They can

be calculated analytically as follows.

µ = K∗(K + σ2

nI)
−1y (6)

Σ = (K∗∗ + σ2

nI)−K∗(K + σ2

nI)
−1K⊤

∗
(7)

Here K∗ is an n × M matrix whose i, j-th element is

defined as (K∗)i,j = k(x∗i,xj), and K∗∗ is an n× n matrix

whose i, j-th element is defined as (K∗∗)i,j = k(x∗i,x∗j).
In summary, given multiple unseen data points

x∗1, . . . ,x∗n as input, the GP outputs quality predictions

in the form of a vector, µ = (µ1, . . . , µn)
⊤, and the (co-

)variance matrix between the predicted values, Σ. Intuitively,

the diagonal element of Σ, i.e., i, i-th element, encodes the

risk or uncertainty of the prediction of the i-th unseen input.

In addition, the nondiagonal element of Σ, i.e., the i, j-th ele-

ment where i ̸= j, encodes how uncertain the i-th prediction

is when the j-th prediction is uncertain (and vice versa).

The theoretical background of the GP has been addressed

in [10] . For implementation, we used the GPy toolkit 4, a GP

library for the Python language.

4. Risk-aware Distribution of Translation

Candidates

This section explains the key idea of the proposed approach:

how the proposed system distributes translation candidates

to readers considering the risk in translation quality. Assume

that an SMT system outputs n-best translations for a source

sentence. Here let x∗1,x∗2, . . . ,x∗n be the feature vectors

constructed from the source sentence and the n-best trans-

lations. As explained in (3.2), given x∗1, . . . ,x∗n as input,

the GP outputs the predicted quality µ = (µ1, . . . , µn)
⊤ and

the covariance matrix of the prediction Σ, which can be in-

terpreted as the risk encoding how inaccurate the predicted

quality might be.

Given µ and Σ, our goal is to calculate the rate vector

λ = (λ1, . . . , λn)
⊤ where each λi is the probability that

i-th best translation is selected and distributed to a reader.

In other words, λi determines what percentage of the en-

tire readers should read the i-th best translation. This can

be formally expressed as
∑n

i=1
λi = 1, and for each i ∈

{1, . . . , n}, λi ≥ 0.

The rate vector can be calculated by optimization using

the following formula.

maximizeλ1,...,λn

n
∑

i=1

λiµi −
1

2
α

n
∑

i=1

n
∑

j=1

λiλj(Σ)i,j (8)

subject to

n
∑

i=1

λi = 1 (9)

∀i ∈ {1, . . . , n}, λi ≥ 0 (10)

4http://sheffieldml.github.io/GPy/



In (8), the objective function, i.e., the first term, attempts

to maximize the predicted quality averaged over n candi-

dates. In contrast, the second term penalizes the first term

when the risk of the quality is large. Thus, (8) can be in-

tuitively interpreted as maximizing the averaged predicted

quality while penalizing the candidate whose risk is large.

(8) has a hyperparameter, i.e., α, that tunes the strength of

the risk penalization.

As explained, the constraints (9) and (10) guarantee that

λ is always a probability vector whose elements can be inter-

preted as probability mass.

Notably, (8) includes the case wherein the predicted best

translation is distributed to all readers. This case arises when

we set α to 0. In this case, only the first term remains in

(8). Because of the constraints (9) and (10), λ remains a

probability vector in this case. Because of the first term that

maximizes the quality, λ becomes a unit vector such that the

i-th element with the highest µi value is set to 1 and all other

elements are set to 0.

The solution of (8) can be obtained in practical time.

Theoretically, (8) can be solved using linear-constrained con-

vex optimization techniques, which obtain a global optimum.

Moreover, through preliminary experiments, we found that

we could find the solution in practical time. We were able to

achieve good performance in average translation quality with

small n, e.g., 5 and 3. In contrast, large n values degrade

performance. This is presumably because n is the number

of n-best translations output from SMT systems, and we re-

rank these outputs. Thus, n values that are too large increase

the number of low-quality candidates and makes it difficult

to determine good candidates.

After calculating λ, according to this vector, the proposed

system distributes candidate translation to the readers.

5. Experiment Setup

We performed our experiments under two settings, i.e., a sys-

tem selection setting and an n-best output setting. The n-best

output setting is identical to what we have explained so far.

Under the system selection setting, we use the n single-best

outputs from n SMT systems as input rather than the n-best

outputs of an SMT system. The system is required to dis-

tribute the n single best outputs to readers.

In both system selection and n-best output settings, we

have simulated a case wherein translations are distributed to

1, 000 readers. In both settings, five-fold cross validation was

performed. To extract features from the source text and trans-

lations, we used a standard QE system, QuEST 5.

For features, we used the basic 17 feature set defined in

the literature [5]. Here, LM denotes a language model.

- Number of tokens in the source sentence

- Number of tokens in the target sentence

- Average source token length

5http://staffwww.dcs.shef.ac.uk/people/L.Specia/

projects/quest.html

- LM probability of source sentence

- LM probability of target sentence

- Number of occurrences of the target word within the

target hypothesis

- Average number of translations per source word in the

sentence

- Average number of translations per source word in the

sentence weighted by the inverse frequency of each

word in the source corpus

- Percentage of unigrams in quartile 1 of frequency, i.e.,

lower frequency words, in a corpus of the source lan-

guage

- Percentage of unigrams in quartile 4 of frequency, i.e.,

higher frequency words, in a corpus of the source sen-

tence

- Percentage of bigrams in quartile 1 of frequency of

source words in a corpus of the source language

- Percentage of bigrams in quartile 4 of frequency of

source words in a corpus of the source language

- Percentage of trigrams in quartile 1 of frequency of

source words in a corpus of the source language

- Percentage of trigrams in quartile 4 of frequency of

source words in a corpus of the source language

- Percentage of unigrams in the source sentence seen in

a corpus

- Number of punctuation marks in the source sentence

- Number of punctuation marks in the target sentence

6. Quantitative Evaluation

6.1. Evaluation under system selection setting

For the system selection setting, we used the dataset from the

system selection competition provided by WMT-13 quality

estimation shared tasks 6. This dataset uses an English-to-

Spanish translation setting. Here we have five single best

Spanish translations from five systems for an English source

sentence. The proposed systems distribute these five Spanish

translations to the readers.

In this dataset, through manual evaluation, it is known

that the “online-B” system achieves the best translation qual-

ity. Thus, as a baseline, we considered a case wherein trans-

lation by the “online-B” system is given to all readers. In this

dataset, 39.51% of translation by the “online-B” system were

the actual best.

6.2. Compared methods

We also experimented with other methods for comparison.

QE-max is a case where the best candidate with regard to

QE score is given to all readers. Support vector regression-

radial-basis function (SVR-RBF) is identical to QE-max, ex-

cept that the quality prediction is calculated using SVR, a

regression method based on a SVM, with an RBF kernel.

6http://statmt.org/wmt13/quality-estimation-task.

html



Table 5: Evaluation under System Selection Setting (values

are sentence-level BLEU scores

Proposed 35.52

QE-max 35.43

SVR-RBF 34.98

Baseline 34.88

6.3. Hyperparameter tuning

Essentially we chose hyperparameters from nine

points ranging in the log-space from 10−3 to 103:

10−12/4, 10−9/4, 10−6/4, 10−3/4, 100, 103/4, 106/4, 109/4,

and 1012/4.

For the GP, we used automatic tuning of hyperparameters

with the training data [10], which is implemented in the GPy

toolkit. Thus, the only hyperparameter that we tuned was α

(Section 4), which tunes the strength of the risk penalization.

SVM-based regression with an RBF kernel has hyperpa-

rameters, i.e., C and γ. We chose C from these parameters.

We fixed γ to 1 in this experiment.

6.4. Evaluation metric

Unlike previous studies, our objective is to improve the to-

tal quality of translations distributed to readers rather than

improve the quality of the single best translation. Since pre-

vious studies did not focus on the number of readers, to the

best of our knowledge, no previous evaluation metric specific

to this situation has been proposed. This is problematic be-

cause previous evaluation metrics were not designed to take

multiple translations as input although they are designed to

handle multiple references.

For the evaluation, we simply interpreted the average of

the quality scores passed to each reader as the metric for our

evaluation. Even though no metric has been previously pro-

posed for many readers, evaluation metrics for a single best

translation have been studied extensively. We can evaluate

the quality of the translation passed to one reader using an

evaluation metric for a single best translation. By consider-

ing previously proposed metrics for a single best translation

as metrics for a reader, it is natural to define the total qual-

ity of all readers as the quality score averaged over all read-

ers. Moreover, these metrics for a single best translation have

been tested extensively [3]. Therefore, we can leverage pre-

vious knowledge about these measures when analyzing our

results.

For the actual evaluation metric for a reader, we have

used sentence-level BLEU [3], because it is widely used for

automatic evaluation when reference translations are avail-

able. For the implementation of sentence-BLEU, we used the

“sentence-bleu” command bundled with the Moses toolkit.

6.5. Results

Table 5 shows our results. As can be seen, Proposed

Table 6: Evaluation under n-best Setting

Proposed 26.24

QE-max 26.06

Baseline 26.06

achieved the best results. We have also confirmed that Pro-

posed significantly outperforms Baseline.

We also performed a Wilcoxon significance test for these

results. As a result, Proposed was statistically significant

against the Baseline (p < 0.01) and QE-max (p < 0.01).

6.6. Evaluation under n-best setting

Here we evaluate the proposed approach in the n-best setting

where n-best outputs from one SMT system are distributed

to readers. For the SMT system, we used the English-to-

Spanish translation setting so that we could use the same fea-

ture set as the system selection setting.

In this evaluation, we used the News Commentary corpus
7 so that the choice of corpus matches our task’s target, i.e.,

web documents and news. The News Commentary corpus

is a parallel corpus that comprises “news text and commen-

taries from the Project Syndicate.” This corpus is provided as

a part of the corpora for the series of WMT translation shared

tasks.

We used the Moses toolkit trained with the News Com-

mentary corpus as the SMT translator in our task. As usual

for SMT evaluation, Minimum Error Rate Training (MERT)

[14] was used to train the SMT translator. We used the same

language pair, i.e., English-to-Spanish, for this evaluation,

because a well-studied feature extractor for QE is provided

for this language pair.

We set n = 5 in this experiment because, through a pre-

liminary experiment, we found that it is quite rare for candi-

dates ranked below fifth to be the actual best candidate. In-

deed, in this experiment, only 34.23% of the first-ranked can-

didate was the actual best. The values for the second, third,

fourth, and fifth ranked candidates were 21.31%, 17.05%,

13.92%, and 13.49%, respectively. The definitions of Base-

line, QE-max, and Proposed are the same as those in Sec-

tion 6.2.

Table 6 shows the results. Again, the proposed method

clearly outperforms the other three methods. We also found

statistical significance between Baseline and Proposed (p <

0.01).

7. Qualitative Evaluation by Examples

This section explains how the proposed method works suc-

cessfully by demonstrating examples taken from Proposed

in Section 6.6.

7http://www.statmt.org/wmt13/translation-task.

html#download



Table 7: Two-top Example (the first two among the 5-best outputs are significantly better than latter cases)

Legend Content Actual BLEU Predicted BLEU Rate

Source text Damascus, however , also brushed off this proposal . - - -

1st best Damasco , sin embargo , tambin desdeñó los esta propuesta . 23.46 27.74 0.45

2nd best Damasco , sin embargo , tambin descartaron de esta propuesta . 23.46 27.74 0.55

3rd best Damasco , sin embargo , tambin desdeñó los esa propuesta . 17.03 27.43 < 10−6

4th best Damasco , sin embargo , tambin desdeñó los de esta propuesta . 21.40 27.27 < 10−6

5th best Damasco , sin embargo , tambin los desdeñó los esta propuesta . 21.40 27.16 < 10−6

Reference entretanto , Damaskus critica tambin esta propuesta . - - -

As mentioned previously, Table 7 shows the first exam-

ple, which we call the “Two-top example.”

By focusing on the first two elements in the Actual

BLEU scores column, we can see that the actual BLEU

scores of these elements are equal and are the highest among

the five output translations. Since we cannot know the ac-

tual BLEU scores in advance, distributing only the “1st best”

translation to all readers is risky because the “2nd best” might

have a higher BLEU score. Thus, correctly recognizing these

equal scores is crucial for handling this example.

The Predicted BLEU column shows the predicted

BLEU scores obtained by GP-based quality estimation, i.e.,

the elements of the vector µ (Section 3). Comparing the pre-

dicted and actual BLEU scores, we find that the predicted

values are not particularly accurate. The actual BLEU scores

for all five examples are < 24; however, all of the predicted

scores are > 27. The reason for this is presumably because

the reference translation in this example is structurally dif-

ferent from the source text and its translation candidates, i.e.,

“however” in the source sentence is placed in the middle of

the sentence as an adverb, and in the reference translation, the

conjunction “entretanto” (meanwhile) is used instead and is

placed at the beginning of the sentence. This result clearly

demonstrates the difficulty of accurately estimating an exact

value for the BLEU scores. Although actual BLEU scores

depend on the reference translations, in QE, we must esti-

mate the scores without reference translations.

Although the Predicted BLEU scores in Table 7 are not

accurate as a regression problem, these scores successfully

capture the overall characteristics in the order of the candi-

dates with regard to their quality in this example. The first

two are significantly better than the rest. Thus, we can see

that the Predicted BLEU scores can be leveraged if we use

the scores intelligently.

In the fifth column, the Rate vector, which we define in

Section 4, successfully captures the basic characteristics of

the five candidates because of the use of the (co-)variance

matrix. The first two candidates consume nearly all of the

weights that are to be sum up to 1.0. The rates for the lat-

ter three candidates are < 10−6, which indicates that these

candidates are almost ignored and are essentially never dis-

tributed to readers. This reflects the fact that the two top can-

didates are by far better than the latter candidates. We also

find that the probability allocated to the first two candidates

is close to 0.5. This implies that our risk-aware distribution

system successfully recognizes that the first two candidates

are scored equally, and this decision is reflected in the rate

vector.

In summary, these experimental results show that our dis-

tribution system correctly recognizes that the first two can-

didates are significantly better than the latter cadidates and

that they are scored equally. Thus, our system distributes the

first two translations considering the case in which the sec-

ond best translation would actually be better than the first. In

this example, since the actual BLEU scores of the first two

candidates are equal, the quality is not improved compared

to the case wherein the “1st best” is distributed to all readers.

However, if the actual BLEU score of “1st best” was even

slightly less than that of “2nd best,” our approach would have

successfully outperformed the baseline.

8. Discussion

The optimization problem used to determine the rate of dis-

tribution introduced in Section 4 is a type of multi-objective

optimization. In multi-objective optimization, there are mul-

tiple objective functions to optimize, and the goal is to op-

timize the functions simultaneously. In our application, we

simultaneously maximize the predicted quality of the transla-

tions distributed to readers while minimizing risks. This use

of multi-objective optimization is based on modern-portfolio

theory, where the goal is to maximize financial profit rather

than translation quality [15]. However, our task is more than

a simple application of modern-portfolio theory in that we

cannot directly measure the objective function and its vari-

ances, whereas these are assumed to be directly observable

in modern portfolio theory. This unavailability of direct mea-

surement of the objective function and its variances is the rea-

son why we predict it from the training data using GP-based

QE (Section 3).

Unlike our task, previous use of multi-objective opti-

mization in machine translation studies appears limited to si-

multaneously optimizing multiple evaluation metrics. A pre-

vious study [16] used multi-objective optimization to opti-

mize multiple automatic evaluation metrics simultaneously,



i.e., BLEU and RIBES [17]. Another study used multi-

objective optimization to optimize document-level evalua-

tion metrics and sentence-level evaluation metrics [18]. In

computational linguistics, other than machine translation

tasks, multi-objective optimization was recently used in joint

disambiguation of nouns and named entities [19].

9. Conclusion

In this paper, we have proposed an approach for distribut-

ing translation candidates to readers for translated documents

with many anonymous readers, such as web documents and

news articles. Our key idea is to use all translation candi-

dates rather than the top candidate in consideration of the

risk that the top candidate actually has lower quality than

other candidates. Our experimental results show that the

proposed approach consistently outperforms the baseline ap-

proach wherein the top candidate is distributed to all readers.

In future, we would like to test the proposed approach

with other language pairs.
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