
Improving Continuous Space Language Models using Auxiliary Features

Walid Aransa, Holger Schwenk, Loı̈c Barrault

LIUM, University of Le Mans, France

firstname.lastname@lium.univ-lemans.fr

Abstract

In this paper we introduce a novel method to improve the

continuous space language models using auxiliary features.

The suggested auxiliary features include text genre, line

length, various types of context vector representations. We

report perplexity improvements of around 7.5% of the En-

glish Penn Treebank data set. We also report an improve-

ment on a translation task up to 1.1 BLEU point on test by

re-scoring the n-best list generated by our phrase-based sta-

tistical machine translation system.

1. Introduction

The neural network LM (also known as continuous space

LM or CSLM) tries to overcome the disadvantages of

back-off n-gram LMs. One of these disadvantages is that the

probabilities are estimated in a discrete space which does

not allow directly the estimation of non-observed n-gram in

the training data. In a neural network LM, the words are

projected into a continuous space during the training. [1]

proposes a multi-layer neural network model that jointly

learns the word projection and the probability estimation.

The basic architecture of this neural network is shown in

Figure 1.

A CSLM has many advantages, it can be used to estimate

the probability of long n-gram (also short n-gram) which can

not be directly estimated using n-gram back-off LMs. Also,

it can be trained using longer context with just small increase

in the complexity which is not possible for n-gram back-off

LMs.

The CSLM was successfully applied to large vocabulary

speech recognition. It is usually used to rescore lattices and

improvement of the word error rate by about one point were

obtained for many languages and domains, for instance [3, 4,

5, 6]. More recently, the CSLM was also successfully applied

to statistical machine translation [7, 8, 9, 10].

In this paper, we present improvements of the CSLM.

The idea is to provide additional information at the input of

the neural network in a similar for recurrent NN LM by [18].

We call these additional inputs ”auxiliary features”. We use

different types of auxiliary features including line length,

text genre, line context vector representation,... etc. By these

means, better domain and context specific LM estimations

can be obtained.

P P P

H

M

P

Input Layer

Output Layer

second
hidden
layer

Shared Projection

Probability
Estimation

Neural Network

N

0 1 0 00 0.....0 1 0 0 0.................0 1 0

wj−n+1 wj−n+2 wj−1

P (wj = 1|hj) P (wj = i|hj) P (wj = n|hj)

projection
layer

Figure 1: The neural network language model

architecture.P,N and H are the size of one projection,

one hidden layer and the output layer respectively. hj

denotes the context w
j−1
j−(n−1).

We report the results using perplexity as well as when

these improved CSLMs are integrated into an SMT system.

This is performed by re-scoring the n-best list and adding an

additional feature function.

2. Modified architecture

The basic architecture of a CSLM with auxiliary data is

shown in Figure 2. The example in the figure shows only one

additional auxiliary feature vector. This architecture would

allow different auxiliary information for each n-gram, but

since our goal is to model the topic or long-term context,

we made the choice to keep the auxiliary data constant for

all n-grams of one sentence. Therefore, the auxiliary data

is loaded once for each sentence. If more than one auxil-

iary feature is desired, the dimension of the auxiliary feature

vector will be equal to the sum of the individual feature di-

mensions. In this case the auxiliary feature vector will be the

concatenation of two or more feature vectors. This architec-

ture also allows us to use sentence-level features as well as

document (or corpus) level features by using the same auxil-

iary vector for all lines in the document (or corpus).

The functionality of auxiliary features has been integrated in

the open-source CSLM toolkit 1 [9].

P P

H

M

P

Input Layer

Output Layer

second
hidden
layer

Shared Projection

Probability
Estimation

Neural Network

N

0 1 0 00 0.....0 1 0 0 0.................0 1 0

projection
layer

Auxiliary Data

P AUX

P(wj=1|hj) P(wj=i|hj) P(wj=n|hj)

wj-n+1 wj-n+2 wj-1
auxiliary vector

Figure 2: CSLM modified architecture with additional new

auxiliary data input to the neural network

3. Related work

Although, we focus on improving CSLM in this work, some

related research focus on improving the standard n-gram

language models by integrating more context or semantic

knowledge. Kuhn and De Mori [12] proposed to calculate

the probabilities which correspond to the relative proportion

of the last N words. They present a combined LM that inter-

polates a general trigram LM and another LM called a cache-

based LM which is trained on the last N words. The rel-

ative interpolation weights assigned to each component are

based on the POS of each word. The cache component as-

signs higher probability to recently encountered words. In

our work, the context is represented as a continuous space

vector. It can be one line or the whole history back to the

beginning of the document. In the latter case more weight is

given to recent lines.

Bellegarda [13] proposed a method to use more global

constraints to improve LM since local constraints are already

captured by the n-gram model. They use latent semantic

analysis (LSA) which automatically discovers the semantic

relationships between words and documents in a given cor-

pus. In their approach, words and documents are mapped

into a continuous semantic vector space, in which clustering

techniques are used. This allows the characterization of par-

allel layers of semantic knowledge in the space, with variable

granularity. The resulting LMs complement the conventional

n-gram LMs. They suggested to use hybrid n-gram+LSA

1Available for download from https://github.com/hschwenk/cslm-toolkit

models to benefit from the advantages of several smoothing

techniques.

In a similar work, Coccaro and Jurafsky [14] integrated

semantic knowledge into an n-gram LM using LSA and a

word similarity algorithm. Since LSA is a bad predictor of

frequent words, they used a geometric instead of a linear

combination based on a per-word confidence metric. In our

work, instead of using LSA , we use the line context vector

representations which is calculated using the embeddings of

the words in this line. The word embeddings are the pro-

jections learned during CSLM training. We were motivated

by what was reported recently by Baroni et al. [15] that

the context predictive models (i.e. word embedding) out-

perform classic count-vector-based distributional semantic

approaches.

Other works, like the work of Iyer and Ostendorf [16]

focused on developing a sentence-level mixture language

model that takes advantage of the topic constraints in a

sentence or article. They proposed topic-dependent dynamic

cache adaptation techniques in the framework of mixture

models. An automatic clustering algorithm was used to

classify text with two levels of mixture models for smooth-

ing. In our work a predefined genre is assigned to different

corpora, which is used as additional input to the neural

network. However, it is also possible to use topics instead of

genres and to assign the topic dynamically by using similar

automatic clustering algorithm like the one used by [16].

Khudanpur and Wu [17] proposed an LM that combines

collocational dependencies with the syntactic structure and

the topic of the sentence. They integrate these dependen-

cies using a maximum entropy technique. They report a

substantial improvement in perplexity and in the accuracy

of a speech recognition task. In our work, instead of using

topic, we used the genre of the sentence. Since we are

using auxiliary features on the sentence level, it could be

envisioned to extend our work to use syntactic features.

Mikolov and Zweig [18] focused on improving the

performance of recurrent neural network language models

(RNNLMs) by using a topic-conditioned RNNLM. They

used a contextual real-value input vector in association with

each input word. This vector is used to convey contextual

information about the sentence being modeled. They

use Latent Dirichlet Allocation (LDA) to get a compact

vector-space representation of a long span context which

they conventionally interpreted as a topic representation.

They argue that their approach has the key advantage of

avoiding the data fragmentation associated with building

multiple topic models on different data subsets. The main

differences with our work are, that we used a feed-forward

neural network and context vector representation instead of

LDA. Also, we evaluated the impact of using various types

of auxiliary feature as explained in Section 4.

4. Auxiliary features

In this work, we experimented with two types of auxiliary

features: the first one provides a feature of the current line

itself (e.g. the number of words or genre) which allows

us to train feature-conditioned continuous space language

models. Some of these features are motivated by research

in the machine translation quality estimation literature. The

second type of auxiliary feature aims at providing a larger

context. Table 1 summarizes the auxiliary features of this

type that we have experimented with. Each auxiliary feature

has a reference name that we are using in this paper.

One of the basic auxiliary feature we used is LineLen

or the line length, expressed in number of words. We used

an 1-of-n encoding to generate this feature vector. The ith

value in the vector is set to 1 if the line length is equal to i,

and zeros otherwise. We considered a maximum line length

of n = 200, so if the line length exceeded 200 words, we

use n = 200. In our experiments this 1-of-n encoding is

projected into a continuous space like for the words.

Aux feature Embeddings

CurrLine words in the current line

PrecLine words in the preceding line

PrecHCurrLines current line and h preceding

lines

AllPrecCurrWords words in the current and all

preceding lines

AllPrecWords words in all preceding lines

AllPrecLines all preceding lines

Table 1: Auxiliary features using normalized weighted sum

of different embeddings

The Genre consists of a binary vector with dimension

equal to the number of genres we have. As for LineLen,

we used a 1-of-n encoding. In our training data, we have 5

genres as shown in Table 3.

For the context vector representation auxiliary features, We

used various ways to compose them. One of the composition

is CurrLine α̂l of a line l. This will be the normalized sum

of the word embeddings ew of all tokens w ∈ l computed as

follows:

α̂l =

∑
w∈l ew

||
∑

w∈l ew||
(1)

Similarly, PrecLine auxiliary feature β̂l is calculated as

follows:

β̂l =

∑
w∈l−1 ew

||
∑

w∈l−1 ew||
(2)

For PrecHCurrLines, we calculate the weighted sum of

the context vector representation of the current line α̂l and

the preceding H lines. The farther the line is in the past, the

lower the weight is. The vector of a line l is calculated as

follows:

η̂l,H =

∑l

i=l−H α̂iλ
l−i

||
∑l

i=l−H α̂iλl−i||
(3)

In our experiments we used different values of H=10,

30, 50 and λ=0.95.

The differences between AllPrecLines and PrecHCur-

rLines is that the first one does not include the current line

context vector representation in the calculation of its vector

and that it uses all preceding lines not just the H preceding

lines. The equation used to calculate the feature vector of

AllPrecLines of a line l is as follows:

ω̂l =

∑l−1
i=1 α̂iλ

l−i

||
∑l−1

i=1 α̂iλl−i||
(4)

For the first line, we used the context vector represen-

tation of itself (i.e. ω̂1= α̂1). In our experiments, we used

several weights: λ = 0.85, 0.95, 0.98.

For AllPrecCurrWords, the line context vector repre-

sentation σ̂l is calculated using all preceding words with a

weight λ that gives more weight to the near history words

and lower weight to the far history words. The equation used

to calculate the feature vector of AllPrecCurrWords of a line

l is the following:

σ̂l =

∑W ′
−1

i=1 ewi
λW ′

−i

||
∑W ′−1

i=1 ewi
λW ′−i||

(5)

where W ′ is the number of words in the current and

all preceding lines. In our work we experiment with the

following weights: λ = 0.75, 0.85, 0.95.

AllPrecWords is calculated in a similar way as AllPrec-

CurrWords, but excluding the words of the current line.

5. Evaluation on Penn Treebank

We first evaluated our work on the English Penn Treebank

(PTB) corpus [19]. This is a very small corpus (< 1 million

words training data), but it has the advantage that many com-

parable results are published. We limited our evaluation on

PTB to use only the preceding line auxiliary feature (i.e. Pre-

cLine). The features LineLen and CurrLine can not be used

when using perplexity to evaluate an LM since they provide

information on the future. However, it is valid and useful

to apply them in an n-best list re-scoring framework, as dis-

cussed later in this paper.

The perplexity values on PTB for several configurations are

shown in Table 2. We experiment with different learning rate

scales for the first layer of the neural network as shown in the

third column in Table 2. This means that the first layer learn-

ing rate is scaled by this value which means that the network

learns the weights faster than other layers weights and pos-

sibly learns better projection weights. Copy means that no

weights are learned and the auxiliary feature vector is copied

to the next layer directly.

In CSLM1, using auxiliary features and unified learning

rate scale decreased the perplexity slightly. The same hap-

pen when we replaced Copy by a sequence of double hy-

perbolic tangent in CSLM3, and when we increased the

learning rate scale to 2 in CSLM4, comparing to Baseline2.

Changing the learning rate scale to 3 in CSLM5, again, de-

creased the perplexity by 7.5 on dev and 7.2 on test vs. Base-

line2. So the perplexity of CSLM5 compared to Baseline1

decreased by 7.6% on dev and 7.5% on test.

System Aux layer lrs DevSet TestSet

PPL PPL

Baseline1 - 1 133.19 127.66

(No Aux)

Baseline2 - 2 130.48 125.28

(No Aux)

CSLM1 Copy 1 128.26 123.45

CSLM2 Copy 2 124.80 120.32

CSLM3 Seq. of two tanh 1 127.15 121.93

CSLM4 Seq. of two tanh 2 124.22 118.57

CSLM5 Seq. of two tanh 3 122.98 118.08

Table 2: Perplexity on Penn Treebank using the PrecLine

auxiliary feature with different auxiliary layer topology and

learning rate scale (lrs) for the first layer.

To understand these results, we compared systems with

the same setup except for one variable. Comparing Base-

line1 and Baseline2 shows the impact of increasing the learn-

ing rate scale from unified to 2. Also comparing CSLM1

and CSLM2 gives us the impact related to the increase of

learning rate scale for word embeddings only since the Copy

layer used for auxiliary feature does not have any weights.

Also comparing CSLM1 and CSLM3, gives us the impact

of using sequence of double hyperbolic tangent layer for

auxiliary data instead of Copy. We observed that this al-

lows the network to deeply learn from the auxiliary data.

These three comparisons accumulated a perplexity decrease

of 7.28 on dev and 7.03 on test. We concluded that using aux-

iliary feature decreases the perplexity with different meta-

configuration and topology by around 7.5% on dev and test.

6. SMT experimental results

We evaluate the performance of our improved CSLMs which

use auxiliary features in the context of SMT. This is done by

using them to re-score the n-best list provided by an SMT

system. A new CSLM score is added to the n-best list for

each hypothesis and the coefficients of all feature functions

are optimized. In the following subsections, we describe our

baseline system and the rescoring results with some discus-

sions.

6.1. Baseline system of SMS/Chat

The language pair of the baseline system is Arabic Egyptian

dialect into the English. The translation task is SMS/Chat

translation in the context of DARPA BOLT project. The sys-

tem is a standard phrase-based system trained using Moses

toolkit [21], SRILM [22], KenLM [23], and GIZA++ [20].

Log linear weights are optimized using MERT [20]. We eval-

uated the translation quality using BLEU [24].

We used the following technique to build our baseline SMT

system:

• Data selection: We selected the most relevant sen-

tences to the task from the bilingual corpora based on

the work of [25] using XenC [26] open source toolkit

. The selected sentences are used to train our phrase-

based system. Since our SMT system is for SMS/Chat

genre, the training data size using data selection is

4.7m words only as shown in Table 3 compared to

the full available bilingual corpora size of 191.26m.

Another advantage of using data selection is to have

smaller translation model. Dev and test sets are shown

in Table 4. Dev set is used for tuning the weights of

the feature functions.

corpus corpus genre
selected size

Ar/En tokens

smschat SMS/CHAT (Egyptian) 648k/845k

gale

Modern Standard Arabic

128k/158k

e103 44k/46k

fix 73k/84k

ummah (MSA) 36k/37k

isi 354k/348k

bolt
FORUM (Egyptian)

136k/165k

bbnturk 167k/177k

bbnlev FORUM (Levantine) 111k/124k

un FORMAL MSA (UN) 1.34m/1.27m

cts CALLS (Egyptian) 1.24m/1.45m

Total - 4.28m/4.7m

Table 3: The size of the selected data from bilingual corpora

for SMS/CHAT SMT baseline system

type
Arabic # English

genre
tokens tokens

dev 19.7k 25.6k SMS/CHAT

test 19.4k 24.6k SMS/CHAT

Table 4: Development and test sets of SMS/Chat SMT system

• Data weighting: This method is used to weight the

bilingual sub-corpora models according to their im-

portance to the translation task. We used a method

based on the work of [27] using perplexity minimiza-

tion given the development set. if s and t denote the

source and target phrase respectively, we are instantly

optimizing the weight of the four features: p(s|t),
lex(s|t), p(t|s) and lex(t|s) in the Moses translation

model.

• Language modeling: We used data selection method

based on [28] to select the relevant monolingual data

for our 4-gram back-off language model. The back-

off LM was used in SMT decoding for generating the

1000-best translation output. We used this back-off

LM also in CSLM re-scoring to calculate the proba-

bility of words not in the CSLM shortlist.

type data set
English

genre
tokens

train

gale 5.01 MSA

bolt 2.05m
FORUM

(Egyptian)

smschat 845k SMS/CHAT

Total 7.9m -

dev smschat dev 25.6k SMS/CHAT

Table 5: Training corpora and dev set used to train and tune

the CSLM models

6.2. Result and analysis of re-scoring the n-best list

CSLM models with various auxiliary features were trained

using CSLM toolkit on three English corpora (total of 7.91m

words) which are the target side of the bilingual corpora

shown in Table 5.

The results obtained by re-scoring the n-best list created by

the baseline system are summarized in Table 6. The table

contains the best result for each auxiliary feature. Detailed

results can be found in Tables 7 and 8. Since the test set

BLEU scores of both SMT Baseline and CSLM Baseline

without auxiliary data are the same, we decided to use SMT

Baseline as the Baseline for the result analysis.

The CSLMs English training corpora used in these ex-

periments is about 7.9m tokens (see Table 5). These results

were obtained with the best meta-parameters (i.e. H and λ).

In Table 6, we described the CSLM model, auxiliary feature

dimension, auxiliary feature projection dimension along

with the BLEU scores on dev and test. We used projection

layer for LineLen auxiliary feature, Copy layer for Genre

auxiliary feature, sequence of double hyperbolic tangent

layer for the rest of auxiliary features. All experiments are

trained with 24-gram context size.

System Aux dim/proj. Dev Test

SMT Baseline - 27.35 25.72

CSLM Baseline - 28.04 25.67

(No AuxData)

LineLen 1/200 28.65 26.14

Genre 5/- 28.90 26.32

CurrLine 320/- 28.29 26.09

PrecLine 320/- 28.67 26.33

PrecHCurrLines 320/- 28.92 26.26

λ=0.95, h=50

AllPrecCurrWords 320/- 28.52 25.86

λ=0.75

AllPrecWords 320/- 28.77 26.82

λ=0.95

AllPrecLines 320/- 28.63 26.52

λ=0.98

Table 6: BLEU scores obtained when re-scoring the n-best

list using different auxiliary data.

Looking at Table 6, we observed a good improvement us-

ing LineLen auxiliary feature, but Genre has relatively better

gain on both dev and test. This means that Genre is better

discriminative auxiliary feature.

We observed that PrecLine provides better performance

due to better context information compared to CurrLine.

We also observed that CSLMs with auxiliary features

which contain the current line (i.e. AllPrecCurrWords,

PrecHCurrLines) generally have lower BLEU scores than

CSLMs with auxiliary features which do not contain the

current line. We concluded that using current line is not so

useful for re-scoring n-best list because instead of predicting

the next word, the CSLM would rather learn to find the next

word from the input auxiliary feature making undesirable

cycle in the model.

PrecLine has +0.6 BLEU gain on test. If one preceding

line is useful, two or more preceding lines would be more

useful (possibly weighted). We can verify this assumption

by looking at AllPrecLines result, which uses auxiliary fea-

ture that does not contain the current line (i.e. both AllPrec-

CurrWords, PrecHCurrLines contain the current line). The

results of AllPrecLines is 26.52 on test which is the second

best BLEU score in Table 5, which confirms that our assump-

tion is correct.

Looking at the additional results of AllPrecLines with

different λ(s) in Table 7, we observed that larger λ weight

improved the BLEU score on both dev and test sets. The best

BLEU scores are obtained using AllPrecWords CSLM. The

only difference between AllPrecLines and AllPrecWords is

that the second one is weighted sum of words’ embeddings,

while the first one is the weighted sum of lines’ embeddings.

System λ Dev Test

SMT baseline - 27.35 25.72

CSLM Baseline - 28.04 25.67

CurrLine - 28.29 26.09

PrecLine - 28.67 26.33

AllPrecLines 0.85 28.06 25.52

AllPrecLines 0.95 28.59 26.42

AllPrecLines 0.98 28.63 26.52

AllPrecWords 0.75 28.37 26.36

AllPrecWords 0.85 28.74 26.49

AllPrecWords 0.95 28.77 26.82

AllPrecCurrWords 0.75 28.52 25.86

AllPrecCurrWords 0.85 28.23 25.59

AllPrecCurrWords 0.95 28.21 25.64

Table 7: BLEU scores of re-scoring n-best list using AllPre-

cLines, AllPrecWords and AllPrecCurrWords auxiliary fea-

tures with various weights. Auxiliary layer is a sequence of

two tanh 320x320.

It means that AllPrecWords auxiliary feature includes better

and consistent context information. One possible reason for

this is that for AllPrecLines auxiliary feature vector, each

line has a different length, and hence the weight on each

line controls the contribution of a variable number of words.

This clearly is less stable than using the weighted sum of

individual words embeddings and hence the auxiliary feature

vector will be independent of individual lines lengths. In

Table 7, we noticed the same relation between λ and the

BLEU scores as we discussed for AllPrecWords auxiliary

feature.

Looking at the results of AllPrecCurrWords auxiliary feature

in Table 7, we observed that the results also are inconsistent

on test, λ=0.75 gives better scores than λ=0.85, but also,

λ=0.95 gives better scores than λ=0.85. We concluded

that including word embeddings of both current line and

preceding lines in the same auxiliary feature gives inconsis-

tent results. For the results of PrecHCurrLines in Table 8,

System H Dev Test

SMT baseline - 27.35 25.72

CSLM Baseline - 28.04 25.67

CurrLine - 28.29 26.09

PrecLine - 28.67 26.33

PrecHCurrLines 10 28.70 26.21

PrecHCurrLines 30 28.28 26.26

PrecHCurrLines 50 28.92 26.26

Table 8: BLEU scores using PrecHCurrLines auxiliary fea-

ture with number of preceding lines H and λ = 0.95. Auxil-

iary layer is a sequence of two tanh 320x320.

generally, we observed that including more preceding lines

does not give better scores on test (we used maximum 50

preceding lines in these experiments), even with H=50, the

scores are not better than just one preceding line PrecLine.

We concluded that the reason is that this auxiliary feature in-

cludes the current line embeddings which cause inconsistent

results on dev and almost no improvement on test.

7. Conclusions

In this paper we introduced a novel method to improve the

continuous space language model using auxiliary features.

We used different features which some of them are motivated

by the important features in machine translation quality

estimation literature. The suggested auxiliary features

include text genre, line length and various types of context

vector representations.

We reported perplexity improvement around 7.5% on

dev and test using the English Penn Treebank dataset. We

also reported an improvement on a translation task up to

1.42 BLEU on dev and 1.1 on test by re-scoring n-best list

of a strong baseline phrase-based SMT system. Also, the

results show that the weighted sum of the word embeddings

is more stable and outperforms the line level weighted sum

of embeddings. These results need to be validated on other

tasks with different language pairs, genres and data sets.

In future work, we would like to try using combined fea-

tures and explore syntactic features. Also we would like to

experiment with additional features like source language fea-

tures and study their impact on the CSLM performance.

8. Acknowledgements

This research was partially financed by DARPA under the

BOLT contract.

We would like to thank the reviewers of this paper for their

helpful comments.

9. References

[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A

neural probabilistic language model,” J. Mach. Learn.

Res., vol. 3, pp. 1137–1155, Mar. 2003. [Online]. Avail-

able: http://dl.acm.org/citation.cfm?id=944919.944966

[2] H. Schwenk, “Efficient training of large neural net-

works for language modeling,” in Neural Networks,

2004. Proceedings. 2004 IEEE International Joint Con-

ference on, vol. 4. IEEE, 2004, pp. 3059–3064.

[3] H. Schwenk, H. Schwenk, and J.-l. Gauvain, “Connec-

tionist language modeling for large vocabulary contin-

uous speech recognition,” IN INTERNATIONAL CON-

FERENCE ON ACOUSTICS, SPEECH AND SIGNAL

PROCESSING, pp. 765–768, 2002.

[4] H. Schwenk, “Continuous Space Language Models,”

vol. 21, no. 3, pp. 492–518, 2007.

[5] J. Park, X. Liu, M. J. Gales, and P. C. Woodland, “Im-

proved neural network based language modelling and

adaptation.” in INTERSPEECH, 2010, pp. 1041–1044.

[6] L. Lamel, J.-L. Gauvain, V. B. Le, I. Oparin, and

S. Meng, “Improved models for mandarin speech-to-

text transcription,” in Acoustics, Speech and Signal

Processing (ICASSP), 2011 IEEE International Con-

ference on. IEEE, 2011, pp. 4660–4663.

[7] H. Schwenk, D. Déchelotte, and J.-L. Gauvain, “Con-

tinuous space language models for statistical machine

translation,” in Proceedings of the COLING/ACL Con-

ference. Morristown, NJ, USA: Association for Com-

putational Linguistics, 2006, pp. 723–730.

[8] H. Schwenk, “Investigations on large- scale lightly-

supervised training for statistical machine translation,”

in IWSLT, 2008, pp. 182–189.

[9] ——, “Continuous space language models for statis-

tical machine translation,” in The Prague Bulletin of

Mathematical Linguistics, (93):137–146., 2010.

[10] H. S. Le, I. Oparin, A. Messaoudi, A. Allauzen, J.-L.

Gauvain, and F. Yvon, “Large vocabulary soul neural

network language models.” in INTERSPEECH, 2011,

pp. 1469–1472.

[11] H. Schwenk, “Continuous space translation mod-

els for phrase-based statistical machine translation,” in

COLING 2012, 24th International Conference on Com-

putational Linguistics, Proceedings of the Conference:

Posters, 8-15 December 2012, Mumbai, India, M. Kay

and C. Boitet, Eds. Indian Institute of Technology

Bombay, 2012, pp. 1071–1080. [Online]. Available:

http://aclweb.org/anthology/C/C12/C12-2104.pdf

[12] R. Kuhn and R. De Mori, “A cache-based natural lan-

guage model for speech recognition,” Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on,

vol. 12, no. 6, pp. 570–583, 1990.

[13] J. R. Bellegarda, “Exploiting latent semantic informa-

tion in statistical language modeling,” Proceedings of

the IEEE, vol. 88, no. 8, pp. 1279–1296, 2000.

[14] N. Coccaro and D. Jurafsky, “Towards better integra-

tion of semantic predictors in statistical language mod-

eling.” in ICSLP. Citeseer, 1998.

[15] M. Baroni, G. Dinu, and G. Kruszewski, “Don’t count,

predict! a systematic comparison of context-counting

vs. context-predicting semantic vectors,” in Proceed-

ings of the 52nd Annual Meeting of the Association for

Computational Linguistics, vol. 1, 2014, pp. 238–247.

[16] R. M. Iyer and M. Ostendorf, “Modeling long distance

dependence in language: Topic mixtures versus dy-

namic cache models,” Speech and Audio Processing,

IEEE Transactions on, vol. 7, no. 1, pp. 30–39, 1999.

[17] S. Khudanpur and J. Wu, “Maximum entropy tech-

niques for exploiting syntactic, semantic and colloca-

tional dependencies in language modeling,” Computer

Speech & Language, vol. 14, no. 4, pp. 355–372,

2000.

[18] T. Mikolov and G. Zweig, “Context dependent

recurrent neural network language model,” in

2012 IEEE Spoken Language Technology Work-

shop (SLT), Miami, FL, USA, December 2-5,

2012. IEEE, 2012, pp. 234–239. [Online]. Available:

http://dx.doi.org/10.1109/SLT.2012.6424228

[19] M. P. Marcus, M. A. Marcinkiewicz, and B. San-

torini, “Building a large annotated corpus of english:

The penn treebank,” Computational linguistics, vol. 19,

no. 2, pp. 313–330, 1993.

[20] F. J. Och and H. Ney, “A systematic comparison of var-

ious statistical alignment models,” Comput. Linguist.,

vol. 29, pp. 19–51, March 2003.

[21] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,

M. Federico, N. Bertoldi, B. Cowan, W. Shen,

C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,

and E. Herbst, “Moses: Open source toolkit for statisti-

cal machine translation,” in Meeting of the Association

for Computational Linguistics, 2007, pp. 177–180.

[22] A. Stolcke, “Srilm - an extensible language modeling

toolkit,” In Proceesings of the 7th International Con-

ference on Spoken Language Processing (ICSLP 2002,

pp. 901–904, 2002.

[23] K. Heafield, “KenLM: faster and smaller lan-

guage model queries,” in Proceedings of the

EMNLP 2011 Sixth Workshop on Statistical Ma-

chine Translation, Edinburgh, Scotland, United King-

dom, July 2011, pp. 187–197. [Online]. Available:

http://kheafield.com/professional/avenue/kenlm.pdf

[24] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:

a method for automatic evaluation of machine transla-

tion,” in Proceedings of the 40th Annual Meeting on As-

sociation for Computational Linguistics, ser. ACL ’02.

Stroudsburg, PA, USA: Association for Computational

Linguistics, 2002, pp. 311–318.

[25] A. Axelrod, X. He, and J. Gao, “Domain adaptation

via pseudo in-domain data selection,” in Proceedings

of the 2011 Conference on Empirical Methods in Natu-

ral Language Processing. Edinburgh, Scotland, UK.:

Association for Computational Linguistics, July 2011,

pp. 355–362.

[26] A. Rousseau, “Xenc: An open-source tool for data se-

lection in natural language processing,” The Prague

Bulletin of Mathematical Linguistics, vol. 100, pp. 73–

82, 2013.

[27] R. Sennrich, “Perplexity minimization for translation

model domain adaptation in statistical machine transla-

tion,” in Proceedings of the 13th Conference of the Eu-

ropean Chapter of the Association for Computational

Linguistics. Avignon, France: Association for Compu-

tational Linguistics, April 2012, pp. 539–549. [Online].

Available: http://www.aclweb.org/anthology/E12-1055

[28] R. C. Moore and W. Lewis, “Intelligent selection of

language model training data,” in Proceedings of the

ACL 2010 Conference Short Papers, ser. ACLShort ’10.

Stroudsburg, PA, USA: Association for Computational

Linguistics, 2010, pp. 220–224. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1858842.1858883

