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Miguel Ángel del-Agua, Adrià Martı́nez-Villaronga, Santiago Piqueras
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Abstract

This paper describes the Machine Learning and Lan-

guage Processing (MLLP) ASR systems for the 2015 IWSLT

evaluation campaing. The English system is based on the

combination of five different subsystems which consist of

two types of Neural Networks architectures (Deep feed-

forward and Convolutional), two types of activation func-

tions (sigmoid and rectified linear) and two types of input

features (fMLLR and FBANK). All subsystems perform an

speaker adaptation step based on confidence measures the

output of which is then combined with ROVER. This system

achieves a Word Error Rate (WER) of 13.3% on the 2015

official IWSLT English test set.

1. Introduction

TED is a global set of conferences around the world carried

out by the non-profit organisation Sapling Foundation. Its

talks cover a wide range of different topics such as science,

culture, economics or politics, always keeping in mind the

slogan ”ideas worth spreading”. The speakers are given a

maximum of 18 minutes to present their ideas in the most

appealing way they can, typically in a storytelling format.

In order to ensure the maximum spread of these talks,

turns out to be essential their transcription and translation.

Big efforts have been devoted to this task, such as The Open

Translation Project (OTP), which aims to reach out to the 4.5
billion people on the planet who do not speak English. Nev-

ertheless, the OTP utilises crowd-based subtitling platforms,

powered by volunteers to translate and caption the videos,

which is still a very time-consuming task.

TED talks conform a very appropriate case study where

new technologies can be applied. Particularly from the ma-

chine learning community, the International Workshop on

Spoken Language Translation (IWSLT) organises a yearly

challenge which aims at evaluating the core technologies in

spoken language translation: automatic speech recognition

(ASR), machine translation (MT) and spoken language trans-

lation (SLT). Automatically transcribing this kind of videos

is still a challenging task due to the spontaneous nature of

the speech; variety in acoustic conditions, the presence of

disfluencies, hesitations and different accents states a great

challenge even for cutting-edge technology in automatic au-

tomatic speech recognition.

This paper describes the English and German ASR sys-

tems developed in the MLLP group for the IWSLT 2015

evaluation campaign. Most effort went into the develop-

ment of the English recognition system which is based on the

ROVER combination of five subsystems. Each of those sub-

systems was based on hybrid Deep Neural Networks Hidden

Markov Models (DNN-HMM) [1] with different input fea-

tures (MFCCs and filter bank), activation functions (sigmoid

and rectified linear) as well as various architectures such as

Deep Convolutional Neural Networks (CNN). It is worth not-

ing that all of these systems were entirely trained using our

own software; the transLectures-UPV toolkit.

The rest of this paper is organised as follows. Section 2

describes the ASR toolkit used for the experiments. In Sec-

tion 3 the automatic audio segmentation technique is intro-

duced. Section 4 is devoted to the English transcription sys-

tem. Similarly, in Section 5 the German ASR system is de-

scribed. Finally, conclusions are given in Section 6.

2. Translectures-UPV Toolkit

The transLectures-UPV toolkit (TLK) is composed by a set

of tools that allows the development of an end-to-end speech

recognition system. Its application range extends from fea-

ture extraction to HMM and DNN training and decoding.

Since last state published of the toolkit [2] new state-of-the-

art techniques have been added:

• DNN training and decoding hybrid based systems.

• Support to Convolutional NNs.

• Support to Multilingual NNs.

• DNN speaker adaptation techniques such as output-

feature discriminant linear regression (oDLR) [3].

• DNN sequence discriminative training based on Max-

imum Mutual Information (MMI).



3. Audio Segmentation

The audio segmentation step performed by the MLLP group

for English and German can be viewed as a simplified case

of ASR, in which the system vocabulary is constituted by the

power set of segment classes: speech and background noise.

Provided an audio stream x, the segmentation problem

can be stated from a statistical point of view as the search of

a sequence of class labels ĉ so that

ĉ = argmax
c∈C∗

p(x | c) p(c) (1)

where, as in ASR, p(x | c) and p(c) are modeled by acoustic

and language models, respectively. In our case, it should be

noted that each word is composed by a single phoneme.

Acoustic models were trained on MFCC feature vectors

computed from acoustic samples using TLK. We used a 0.97
coefficient pre-emphasis filter and a 25 ms Hamming win-

dow that moves every 10 ms over the acoustic signal. From

each 10ms frame, a feature vector of 12 MFCC coefficients

is obtained using a 26 channel filter bank. Finally, the en-

ergy coefficient and the first and second time derivatives of

the cepstrum coefficients are added to the feature vector.

Each segment class is represented by a single-state Hid-

den Markov Model (HMM) without loops, and its emis-

sion probability is modeled by a Gaussian Mixture Model

(GMM). Acoustic HMM-GMM models were also trained us-

ing TLK, which implements the conventional Baum-Welch

algorithm.

A 5-gram back-off language model with constant dis-

count was trained on the sequence of class labels using

the SRILM toolkit [4]. Finally, the segmentation process

(search) was also carried out by the TLK toolkit.

4. English Transcription System

4.1. Acoustic Modeling

In this section the acoustic modeling process for the En-

glish system is described. First, the data selected for training

is showed as well as the techniques used for its collection.

Then, the training procedure is detailed along with all the

subsystems associated.

4.1.1. Data Collection

This year, the IWSLT challenge allowed the use of any pub-

licly available data for acoustic modeling, including TED

talks without publication date restrictions (except those listed

as disallowed). Given these requirements, roughly 400 hours

of TED talks were downloaded from its official web-page [5].

The subtitles attached to a large part of the talks neither

match the speaker’s speech nor the timings. Therefore, a data

filtering process is needed, in which those segments with a

deficient or non-existent transcription must be removed. This

process was performed in a similar manner to the data filter-

ing performed for building the TEDLIUM corpus [6].

First of all, the input audio was segmented and prepro-

cessed according to the caption timings. Secondly, a recog-

nition step was performed using an out-of-domain acoustic

model and a finite state language model. This finite state

language model was built using the sequence of words from

the reference with silence in-between, allowing loops (hes-

itations), initial state to any word transitions and from any

word to final state transitions.

This way, those segments whose recognition does not

match the reference suggest that either the timings are

wrongly set or the system is unable to recognise the segment

due to non-speech audio. Therefore, after decoding, all of

these incorrectly recognised segments were removed, which

left us a total of 245 hours of clean speech distributed among

1900 talks.

4.1.2. Training

Regarding feature extraction, two types of acoustic features

were extracted. The first type of features are Mel-frequency

cepstral coefficients (MFCC), which were extracted with a

Hamming window of 25 ms, shifted at 10 ms intervals. The

MFCC feature consisted of 16 MFCCs and their first and

second derivatives (48-dimensional feature vectors). These

feature vectors were then normalised by mean and variance

at speaker level. After that, a single feature-space Maxi-

mum Likelihood Linear Regression (fMLLR) transform for

each training speaker was then estimated and applied to per-

form speaker-adaptive training (SAT). The second type of

features are log Mel filter bank (FBANK) with first and sec-

ond derivatives which left 120 dimension feature vectors.

Five different acoustic models were trained in our sys-

tem using TLK. All of them consisted of context-dependent

Deep Neural Networks (DNNs) following an hybrid ap-

proach. To train these models, we first trained a basic con-

text dependent triphone HMM model, after which a second-

pass feature-space Maximum Likelihood Linear Regression

(fMLLR) was applied. This model yielded a total of 10492
tied states, estimated following a phonetic decision tree ap-

proach [7]. It is worth noting that, in order to obtain the best

transcription as to better perform fMLLR, an standard DNN

was trained using the MFCCs features. The five models were

build on top of these HMM acoustic model and followed a

three-pass recognition approach as shown in Fig. 1.

From Fig.1, the fMLLR CD-DNN module can be

switched among the five different acoustic models. Three

of them are feed-forward DNNs and the other two are Deep

Convolutional Neural Networks (CNNs). From the first set,

all models took as input MFCCs feature frames with a win-

dow size of 11. Moreover, all three subsystems shared the

same topology: 528− 2048 ∗ 7− 10492, i.e., an input layer

with 528 neurons, 7 hidden layers with 2048 neurons and an

output layer of 10492 neurons. The pre-training phase tech-

nique is also shared, which consisted of the Discriminative

Pretraining [8] approach. The first system was a DNN with

sigmoid activation functions, trained with the cross-entropy
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Figure 1: Overview of a multi-pass recognition system in-

cluding DNN adaptation. Top: 2-pass recognition system

using fMLLR features. Bottom: Third pass DNN adaptation.

(CE) criterion (10 epochs) and after that, with sequence dis-

criminative training following the MMI criterion (hereafter

DNN-mmi). The second model was a DNN with rectified

linear activation functions, trained following the CE criterion

during 45 epochs (hereafter DNN-relu). And the third model

was a DNN with sigmoid activation functions trained with

the CE criterion during 45 epochs (hereafter DNN-sigm).

Two models belong to the second set of acoustic mod-

els. Both take as input FBANK features with a window size

of 11 and share the same topology. It consist of one con-

volution layer followed by a max pooling operation, 6 feed-

forward hidden layers of 2048 units each, and an output layer

of 10492. The convolutional layer is composed of 128 filters

with a filter size of 9 and shift of 1. Meanwhile, the max-

pooling layer was configured with a pooling width and shift

of 2. The difference between both models is the type of ac-

tivation functions used for the feed-forward layers: sigmoid

(CNN-sigm) and rectified linear (CNN-relu).

4.1.3. DNN Speaker Adaptation

The output from the second recognition step was used to

carry out speaker adaptation of DNNs (as indicated at the

lower box of Fig. 1). The technique used consisted of a con-

servative training approach, using a very small learning rate

and early stopping [9].

Moreover, we made use of confidence measures at word

level to exploit inexpensive yet reliable unsupervised speech

data. Specifically, confidence measures are estimated from

the output of the second recognition pass in order to improve

the DNN adaptation step. Although there are many different

ways to estimate confidence measures, here we will resort

to the conventional approach by which these measures are

computed as word posterior probabilities [10].

In order to take advantage of confidence measures, we

decided to use them to weight the samples during the adap-

tation. In this approach, all samples are taken into account,

but the contribution of each sample is weighted by its cor-

responding confidence measure. The rationale behind this

method is that only samples with high confidence measures

are relevant for the adaptation process, whereas those with

low confidence can be neglected. In some way, this method

can be seen as a refinement of taking away those samples be-

hind an specified threshold, avoiding the need of estimating

that threshold.

Formally, adaptation with weighted samples is based on

a modified cross entropy training criterion:

N∑

n=1

cn log p(sn | xn) , (2)

where x
N

1
is the set of frames, sn is the senone (label) ac-

cording to the output from the second pass, and cn ∈ [0, 1]
is its confidence measure. This modified criterion leads to

a different way to estimate errors in the Back-Propagation

algorithm. In particular, the error for the nth frame δn is



Table 1: Stats of the different LM training corpora. The poli-

Media [11], VideoLectures.NET and VL.NET subtitles [12]

corpora were generated during transLectures project.

Corpus Sentences Words Perplexity

Europarl 2.2M 53M 454.3

Europarl TV 128K 1.2M 454.5

Giga 109 22M 557M 296.9

Google Ngrams - 303B 1871.1

NewsCrawl 53M 1.1B 151.7

poliMedia 4K 95K 1393.1

VideoLectures.NET 5K 127K 871.4

VL.NET subtitles 85K 1.7M 371.5

Wikipedia 82M 1.5B 200.1

TED train 520K 3.7M 218.2

estimated as follows

δn = (yn − sn) · cn , (3)

where y
n is the output of the last layer, and s

n are the target

labels.

4.2. Language Modeling

We used several different text corpora to train the language

models. They were preprocessed to normalise capitalisation,

remove punctuation marks and transliterate numbers. We can

distinguish two different types of corpora, out of domain cor-

pora (OOD), most of them, and in domain corpora (ID), in

this case only TED train set. Table 1 summarises the main

figures of all the corpora used.

The vocabulary for the language models have been ob-

tained by selecting the 200K most frequent words of a 1-

gram LM interpolation of the OOD corpora. The words form

the ID corpus are added to this selection, obtaining a final

vocabulary of 209 660 words.

With this vocabulary, we trained standard Kneser-Ney

smoothed n-gram models for each one of the corpora using

the SRILM toolkit [4]. The order of each model is adjusted

to 3 or 4 depending on the size of the corpus. The last col-

umn of Table 1 shows the perplexity obtained with all these

models on the English development set.

All the resulting models are linearly interpolated to ob-

tain a final powerful model adapted to the characteristics of

the task, optimising the interpolation weights on the devel-

opment set [13]. To reduce the size of the final model, it is

pruned by removing those n-grams (n > 1) whose removal

causes (training set) perplexity of the model to increase by

less than 2 × 10−10. This model obtained a perplexity of

126.1.

4.3. Experimental Results

In this section all the recognition experiments performed for

the English transcription system are described. Recognition

experiments were carried out on the IWSLT 2015 English

ASR development and evaluation sets, the statistics of which

are shown in Table 2.

Table 2: Statistics of the English ASR development and eval-

uation sets.

Set # Talks Time

tst2013 28 4h:39m

tst2014 15 2h:22m

tst2015 12 2h:25m

Following the IWSLT evaluation requirements, tst2013

was used as development set, tst2014 as progressive evalua-

tion set and tst2015 as evaluation.

The decoding was performed for all the subsystems fol-

lowing the scheme from Fig. 1. The first step was common

and its output was used to perform fMLLR speaker adapta-

tion. After that, each subsystem performed the second recog-

nition step, the output of which was used to perform DNN

speaker adaptation using confidence measures. Results from

these two steps are shown in Table 3.

Table 3: Effect of DNN Speaker Adaptation on each subsys-

tem in terms of WER. Results are shown on tst2013 data-set.

Subsystem Non-Adapt Adapt R. Improvement

DNN-mmi 16.9 16.7 1.2%

DNN-sigm 17.1 16.7 2.3%

DNN-relu 18.5 17.8 3.8%

CNN-sigm 19.4 18.8 3.1%

CNN-relu 18.7 18.0 3.7%

It is worth mention that none of the above results has been

subjected to a process of spelling normalisation by means of

a global mapping file. As we can observe, the DNN-mmi

adaptation has not performed as the rest of system’s adapta-

tions. To our knowledge this is because there is not so much

room for improvement as occurs in the other systems, and

also to the change in the training criterion (from MMI to CE

during adaptation).

Finally, a recogniser output voting error reduction

(ROVER) algorithm was applied to combine the subsys-

tem’s output and further improve the recognition results. The

combination weights were estimated based on the develop-

ment set, giving 2:2:1:1:1 for DNN-mmi, DNN-sigm, DNN-

relu, CNN-sigm and CNN-relu. The final scoring results are

shown in Table 4. At the time of writing this paper results on

the progress test set tst2014 were not provided.

5. German Transcription System

In this section the German ASR system is described. The

first section details the data and training procedure, while the

second section shows the results obtained by the system.



Table 4: The final results of the English system in terms of

WER. (* means official result)

Set ROVER

tst2013 16.2
tst2015 13.3*

5.1. Training

For the acoustic modelling, we decided not to use the Eu-

ronews ASR provided corpus due to processing power con-

straints and its acoustic conditions being far from target con-

ditions. Instead, we downloaded and processed the Ger-

man Speechdata Corpus (GSC) [14], an open source cor-

pus recorded and released by the LT and the Teleccoper-

ation group from the Technical University of Darmstadt.

This corpus contains 180 different speakers and 36 hours of

speech, recorded under controlled conditions with many mi-

crophones in parallel. The whole corpus was used as train

data. The grapheme-to-phoneme conversion was performed

with the help of MaryTTS software [15].

The training procedure for German was the same as the

DNN-MFCC used in the English system (Sec. 4.1.2). 48-

dimensional MFCC acoustic vectors were extracted and nor-

malised by speaker. A single acoustic model was estimated

for German, which consists of a feed-forward DNN with a

window size of 11 and 4 hidden sigmoid layers with 2048

neurons each. The output layer features 12237 senones. The

network initialisation was performed with the DPT approach,

and then the network was trained using the Cross-Entropy er-

ror criterion for 10 epochs.

The training and recognition follow the same three-step

approach of the English system. An speaker-independent

model is used in the first step. The output transcription is

then used to perform unsupervised fMLLR adaptation. This

second transcription is employed to perform DNN Speaker

adaptation (Sec. 4.1.3). In the case of German, no confidence

measures have been used for this third step.

The language model for our German system is made up

by a standard linear interpolation of 4-gram language mod-

els. These models were estimated from different open corpus

downloaded from the Internet. The corpora were normalised

by lower-casing, removing punctuation marks and transliter-

ating numbers. The corpus statistics after this process can be

found in Table 5.

Table 5: Statistics of the German LM corpus.

Corpus Sentences Words Perplexity

Europarl 2M 46M 515.5

News-crawl 135M 2B 352.0

Wikipedia 31M 326M 423.4

When training, the vocabulary was restricted to 200k

words, selected with the same procedure described in Sec-

tion 4.2. The interpolation weights were set to optimise the

perplexity of the dev set. In order to improve recognition

time, the interpolated model was pruned with a prune factor

of 2× 10−9. The perplexity of the language model is 290.4.

5.2. Experimental Results

We tested our system on the tst2013 corpus, which was set as

the official development corpus of the 2015 challenge. This

corpus contains 9 videos from the TEDx website, with vary-

ing acoustic conditions. The results are summarised in Ta-

ble 6. At the time of writing this work results on tst2014 set

were not provided.

Table 6: The final results of the German system in terms of

WER. (* means official result)

Set WER

tst2013 43.6
tst2015 43.3*

Unlike the English task, we were not able to obtain state-

of-the-art results for the German task. We attribute this result

to the lack of relevant in-domain acoustic resources and the

simplicity of the approaches employed.

6. Conclusions

In this paper we have described the English and German ASR

systems developed for the IWSLT 2015 evaluation campaign.

For the first participation of the MLLP group, the presented

systems make use of the hybrid approach of HMM-DNN.

Particularly, the decoding step of the English system is based

on the combination of five different transcription subsystems.

Each one built as a three pass recognition system and com-

bining different types of NNs architectures, input features

and activation functions. Meanwhile, the German system

constitutes our first large scale speech recognition system on

this language and it is based on a three pass recognition sys-

tem with DNN speaker adaptation.
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