
The RWTH Aachen German to English MT System for IWSLT 2015

Jan-Thorsten Peter, Farzad Toutounchi, Stephan Peitz, Parnia Bahar, Andreas Guta and Hermann Ney

Human Language Technology and Pattern Recognition Group

Computer Science Department

RWTH Aachen University

Aachen, Germany

<surname>@cs.rwth-aachen.de

Abstract

This work describes the statistical machine translation

(SMT) systems of RWTH Aachen University developed for

the evaluation campaign of the International Workshop on

Spoken Language Translation (IWSLT) 2015. We partici-

pated in the MT and SLT tracks for the German→English

language pair. We employ our state-of-the-art phrase-based

and hierarchical phrase-based baseline systems for the MT

track. The phrase-based system is augmented with joint

translation and reordering model and maximum expected

BLEU training for phrasal, lexical and reordering models.

Furthermore, we apply feed-forward and recurrent neural

language and translation models for reranking. We also train

attention-based neural network models and utilize them in

reranking the n-best lists for both phrase-based and hierar-

chical setups. On top of all our systems, we use system com-

bination to enhance the translation quality by combining in-

dividually trained systems. In the SLT track, we additionally

perform punctuation prediction on the automatic transcrip-

tions employing hierarchical phrase-based translation.

1. Introduction

We describe the statistical machine translation (SMT) sys-

tems developed by RWTH Aachen University for the eval-

uation campaign of IWSLT 2015. We participated in the

machine translation (MT) track and the spoken language

translation (SLT) track for the German→English language

pair. A combination of several single machine translation

engines has proven to be highly effective on previous joint

submission, e.g. [1, 2], and a similar approach is used for

this task. We train individual systems using state-of-the-art

phrase-based and hierarchical phrase-based translation en-

gines. Each single system is a pipeline including either a

phrase-based or a hierarchical decoder with additional mod-

els such as hierarchical reordering models, word class (clus-

ter) language models, joint translation and reordering mod-

els, discriminative phrase training and reranking with differ-

ent neural network models. For the spoken language trans-

lation task, the ASR output is enriched with punctuation and

case information. The enrichment is performed by a hierar-

chical phrase-based translation system.

This paper is organized as follows. In Sections 2.1

through 2.3 we describe our translation software and base-

line setups. Sections 2.4 and 2.5 provide further details about

our joint translation and reordering models and discrimina-

tive phrase training, and sections 2.6, 2.7, and 2.8 describe

the neural network models used in our translation systems,

which are very effective in the shared task. Sections 2.9 ex-

plains the system combination pipeline applied on the indi-

vidual systems for obtaining the combined system. Our ex-

periments for each track are summarized in Section 3 and we

conclude with Section 4.

2. SMT Systems

For the IWSLT 2015 evaluation campaign, RWTH utilizes

state-of-the-art phrase-based and hierarchical translation sys-

tems. GIZA++ [3] is employed to train word alignments. We

used MultEval [4] to evaluate our systems on the BLEU [5]

and TER [6] measures. Due to using MultEval, BLEU scores

are case-sensitive and TER scores are case-insensitive.

2.1. Phrase-based Systems

Our phrase-based decoder is the implementation of the

source cardinality synchronous search (SCSS) procedure de-

scribed in [7] in RWTH’s open-source SMT toolkit, Jane

2.31 [8], which is freely available for non-commercial use.

We use the standard set of models with phrase translation

probabilities and lexical smoothing in both directions, word

and phrase penalty, distance-based reordering model, n-gram

target language models and enhanced low frequency feature

[9]. The parameter weights are optimized with MERT [10]

towards the BLEU metric. Additionally, we make use of a hi-

erarchical reordering model (HRM) [11], a high-order word

class language model (wcLM) [12], a joint translation and re-

ordering model (cf. Section 2.4), a maximum expected BLEU

training scheme (cf. Section 2.5) and reranking with different

neural network models (cf. Sections 2.6, 2.7 and 2.8).

1http://www-i6.informatik.rwth-aachen.de/jane/

http://www-i6.informatik.rwth-aachen.de/jane/


2.2. Hierarchical Phrase-based System

For our hierarchical setups, we also employ the open source

translation toolkit Jane 2.3 [13]. In hierarchical phrase-based

translation [14], a weighted synchronous context-free gram-

mar is induced from parallel text. In addition to contigu-

ous lexical phrases, hierarchical phrases with up to two gaps

are extracted. The search is carried out with a parsing-based

procedure. The standard models integrated into our Jane sys-

tems are phrase translation probabilities and lexical smooth-

ing probabilities in both translation directions, word and

phrase penalty, binary features marking hierarchical phrases,

glue rule, and rules with non-terminals at the boundaries,

enhanced low frequency feature and n-gram language mod-

els. We utilize the cube pruning algorithm [15] for decod-

ing. Reranking the n-best lists using neural network models

is also employed for our hierarchical systems.

2.3. Backoff Language Models

Both phrase-based and hierarchical translation systems use

three backoff language models that are estimated with the

KenLM toolkit [16] and are integrated into the decoder as

separate models in the log-linear combination: A large gen-

eral domain 5-gram LM, an in-domain 5-gram LM and a 7-

gram word class language model (wcLM). All of them use

interpolated Kneser-Ney smoothing. For the general domain

LM, we first select 1
2

of the English Shuffled News, French

Shuffled News and both the English and French Gigaword

corpora by the cross-entropy difference criterion described

in [17]. The selection is then concatenated with all available

remaining monolingual data and used to build an unpruned

language model. The in-domain language model is estimated

on the TED data only. For the word class LM, we train 200

classes on the target side of the bilingual training data using

an in-house tool similar to mkcls. With these class defini-

tions, we apply the technique shown in [12] to compute the

wcLM on the same data as the general-domain LM.

2.4. Joint Translation and Reordering Models in Phrase-

Based System

Joint translation and reordering (JTR) model [18] is intro-

duced into the log-linear framework of our phrase-based sys-

tem in order to include lexical and reordering dependencies

beyond phrase-boundaries. The JTR model allows for more

context than the previously developed extended translation

model [19]. The unique JTR sequences are obtained by con-

verting the full bilingual data and the corresponding Viterbi

alignments. We train count-based 7-gram models with modi-

fied Kneser-Ney smoothing [20] on the JTR sequences using

the KenLM toolkit [16].

In order to have the necessary information about the

JTR sequences available during decoding, we annotate each

phrase-table entry with the corresponding JTR sequence.

Within the phrase-based decoder, we extend each search state

such that it additionally stores the JTR model history. Dur-

ing decoding, a reordering token has to be appended to the

beginning of the hypothesized JTR sequence, if the align-

ment step from the previous JTR token in the history to the

current token is non-monotone.

Including the JTR model improved our phrase-based

baseline system by 0.7 BLEU on tst2013.

2.5. Maximum Expected BLEU Training

Discriminative training is a powerful method to learn a large

number of features with respect to a given error metric. In

this work we learn two types of features under a maximum

expected BLEU objective [21]. We used the TED portion of

the data for discriminative training, since it is high quality

in-domain data of reasonable size. This makes training fea-

sible while at the same time providing an implicit domain

adaptation effect. For our gradient based update method we

generate 100-best lists on the training data which are used as

training samples similar to [21]. A leave-one-out heuristic

[22] is applied to circumvent over-fitting. Here, we follow

an approach similar to [23]. Each feature type is first dis-

criminatively trained, then condensed into a single feature

for the log-linear model combination and finally optimized

with MERT. We simultaneously train phrase pair features and

phrase-internal word pair features, adding two models to the

log-linear combination. In the tables in Section 3 we denote

the maximum expected BLEU training as MaxExpBleu.

2.6. Feed-Forward Neural Network Models

We use four feed-forward neural network (FFNN) models

with similar structure as the models used by [24, 25]. The

models and following neural network models are applied for

reranking 1000-best lists. The new weights are trained with

one additional MERT iteration.

All networks are trained with different input features or

layers:

• Language model (LM), the 7 last words on the target

side, with two hidden layers (1000 and 500 nodes)

• Joint model (JM), the 5 source words around the

aligned source word (2 before the aligned word, and

2 after it) and the 4 last words on the target side, with

two hidden layers (1000 and 500 nodes)

• Translation model (TM), the 5 source words around

the aligned source word, with two hidden layers (1000

and 500 nodes)

• Translation model (TM), the 5 source words around

the aligned source word, with three hidden layers

(2000, 2000, and 1000 nodes)

The output layer in all cases is a softmax layer with a short

list of 10000. All remaining words are clustered into 1000

classes, and the corresponding class probabilities are pre-

dicted. The neural network was implemented using Theano

[26, 27].
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Figure 1: Architecture of the deep recurrent (a) language model, and (b) bidirectional translation model. By (+) and (−), we

indicate a processing in forward and backward time directions, respectively. A single source projection matrix is used for the

forward and backward branches.

2.7. Recurrent Neural Network Models

Our systems apply reranking on 1000-best lists using recur-

rent language and translation models. The recurrency is han-

dled with the long short-term memory (LSTM) architecture

[28] and we use a class-factored output layer for increased

efficiency as described in [29]. All neural networks are

trained using 2000 word classes. In addition to the recur-

rent language model (RNN-LM), we apply the deep bidirec-

tional word-based translation model (RNN-BTM) described

in [30]. This requires a one-to-one word alignment, which is

generated by introducing ε tokens and using an IBM1 trans-

lation table. We apply the bidirectional version of the trans-

lation model, which uses both forward and backward recur-

rency in order to take the full source context into account

for each translation decision. Two language models are used

for reranking, one is trained on the in-domain data, and the

other on the entire monolingual data. The in-domain lan-

guage model is set up with 300 nodes in both the projection

and the hidden LSTM layer, while the general-domain lan-

guage model is set up with 500 nodes in both layers. The

general-domain language model is the same model which

was used in the IWSLT 2014 evaluations [31]. For the BTM,

the in-domain bilingual data is used for training. Further-

more, we use 200 nodes in all layers, namely the forward

and backward projection layers, the first hidden layers for

both forward and backward processing and the second hid-

den layer, which joins the output of the directional hidden

layers. The architecture of the LM and BTM networks are

shown in Figure 1. The neural network was implemented

using the RWTHLM toolkit.2

2https://www-i6.informatik.rwth-aachen.de/web/

Software/rwthlm.php
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Figure 2: System A: the large building; System B: the large

home; System C: a big house; System D: a huge house; Ref-

erence: the big house.

2.8. Attention Based Recurrent Neural Network

The neural network models described in Section 2.6 and Sec-

tion 2.7 are either used as pure language models or rely on

the alignments given by the underlying system. To avoid this

dependency on the alignment while maintaining the transla-

tion model we also use an attention-based recurrent neural

network model as proposed in [32]. The model uses gated

recurrent units as proposed by [33]. They have comparable

properties to the LSTM architecture used by the recurrent

neural networks in Section 2.7. We use a bidirectional layer

on the source side with 1000 nodes for each direction and a

unidirectional model with 1000 nodes for the target side. The

GroundHog toolkit3 was used to train two models, one on the

in-domain data and one on the full data.

2.9. System Combination

System combination is applied to produce consensus trans-

lations from multiple hypotheses which are obtained from

different translation approaches. The consensus translations

outperform the individual hypotheses in terms of translation

quality. A system combination implementation which has

been developed at RWTH Aachen University [34] is used to

3https://github.com/lisa-groundhog/GroundHog

https://www-i6.informatik.rwth-aachen.de/web/Software/rwthlm.php
https://www-i6.informatik.rwth-aachen.de/web/Software/rwthlm.php
https://github.com/lisa-groundhog/GroundHog


combine the outputs of different engines.

The first step in system combination is generation of con-

fusion networks (CN) from I input translation hypotheses.

We need pairwise alignments between the input hypotheses,

and the alignments are obtained by METEOR [35]. The hy-

potheses are then reordered to match a selected skeleton hy-

pothesis in terms of word ordering. We generate I different

CNs, each having one of the input systems as the skeleton

hypothesis, and the final lattice will be the union of all I gen-

erated CNs. In Figure 2 an example of a confusion network

with I = 4 input translations is depicted. The decoding of a

confusion network is finding the shortest path in the network.

Each arc is assigned a score of a linear model combination

of M different models, which include word penalty, 3-gram

language model trained on the input hypotheses, a binary pri-

mary system feature that marks the primary hypothesis, and

a binary voting feature for each system. The binary voting

feature for a system is 1 iff the decoded word is from that

system, otherwise 0. The different model weights for system

combination are trained with MERT.

3. Experimental Evaluation

3.1. Machine Translation (MT) Track

For the German→English machine translation task, the word

alignment is trained with GIZA++ and we apply the phrase-

based decoder, as well as the hierarchical phrase-based de-

coder implemented in Jane. We use all permissible parallel

data for the IWSLT 2015 systems in training the translation

model. In a preprocessing step the German source is decom-

pounded [36] and part-of-speech-based long-range verb re-

ordering rules [37] are applied. The baseline contains three

backoff language models, namely a general-domain LM, an

in-domain LM and a word class LM as described in Section

2.3, and the hierarchical reordering model (HRM). In addi-

tion, we tune our systems on the development set dev2012,

which contains manual transcriptions from German talks and

is more similar to the evaluation data. As tst2013 is also

a manual transcription of TED talks, we will focus on the re-

sults for the dev2012-tuned system on this evaluation data

set. The performance of the individual MT systems based on

phrase-based and hierarchical phrase-based decoders is sum-

marized in Table 1.

The phrase-based baseline reaches a performance of 28.0

BLEU on tst2013. Adding the joint translation and re-

ordering (JTR) models to baseline increases the BLEU scores

to 28.7 on tst2013. Introducing maximum expected BLEU

training on top of JTR improves the translation quality by 0.5

BLEU on tst2013. We also apply different neural network

models for reranking the 1000-best lists obtained by phrase-

based system which is augmented with JTR. We use the four

feed-forward models described in Section 2.6, and they each

improve the JTR system by 0.1 to 0.3 BLEU. Moreover, we

employ recurrent models described in Section 2.7, and de-

pending on the model they can also improve the performance

by up to 0.4 BLEU. Introducing the attention-based recurrent

model (cf. Section 2.8), enhances the translation quality of

the phrase-based system with JTR by 0.8 BLEU. So far all

the neural network models were applied individually. In the

last two rows of the phrase-based section in Table 1, we use

all the above neural networks simultaneously for reranking

the n-best lists of the phrase-based system including JTR,

and we improve the translation quality by 1.1 and 1.2 BLEU

on tst2013 in two different optimization runs.

The hierarchical baseline system reaches a performance

of 28.8 BLEU on tst2013. We tried to add source reorder-

ing to the hierarchical baseline. Athough it does not improve

the translation quality of tst2013, we keep it as an in-

dividual system for our system combination pipeline. Ap-

plying a feed-forward neural network language model and a

recurrent neural network language model for reranking the

1000-best lists obtained by hierarchical baseline system im-

proves the translation quality by 0.1 and 0.2 BLEU, respec-

tively. We also use the attention-based recurrent neural net-

work in reranking, and it boosts the BLEU scores by 1 and 1.2

points in two different optimization runs. Using attention-

based networks trained on the in-domain data also enhances

the translation quality of baseline by 0.5 BLEU. Furthermore,

we use all the above neural networks at the same time for

reranking the n-best lists of the hierarchical baseline system,

and the improvement on tst2013 is 1.1 BLEU.

The final submission system for the MT track of IWSLT

2015 German→English task is the combination of all single

systems in Table 1 using the methods described in Section

2.9. In total, 20 systems are combined, and the parameters

are tuned on dev2012. The performance of the combined

system is summarized in Table 2. Comparing to our 2014

submission system, we have an improvement of 1.2 BLEU

on tst2014.

3.2. Spoken Language Translation (SLT) Track

RWTH participated in the German→English SLT task.

Punctuation marks and case information are reintroduced by

applying a monolingual hierarchical phrase-based translation

system as described in [38]. In such a system, hierarchical

phrases with a maximum of one non-terminal symbol are ex-

tracted and the feature weights can be tuned with MERT. In

addition, we add a word class language model (wcLM) to the

log-linear model combination.

Table 3 shows a comparison of monolingual phrase-

based [39] and hierarchical translation systems tuned on dif-

ferent optimization criteria.

For this task, tuning a monolingual hierarchical transla-

tion system on BLEU seems to work better than optimizing

towards F2-Score. In any case it outperforms the phrase-

based system. Furthermore, applying a word class language

model (wcLM) seems to help as well in terms of BLEU and

TER.

Since punctuation prediction and recasing are applied be-

fore the actual translation, our translation system can be kept



Table 1: Results of the individual systems for the German→English MT task. BLEU scores are case-sensitive and TER scores

are case-insensitive.

dev2012 tst2010 tst2011 tst2012 tst2013

Individual Systems BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

SCSS Baseline 25.3 59.6 29.8 48.8 35.4 43.4 29.7 48.9 28.0 51.1

+ JTR model 26.4 58.6 30.0 48.4 36.2 42.6 30.3 48.1 28.7 50.3

+ MaxExpBleu 26.8 57.7 30.9 47.2 37.0 41.8 30.7 47.5 29.2 49.9

+ FFNN-LM 26.6 58.3 30.4 48.4 36.6 42.4 30.6 48.3 29.0 50.1

+ FFNN-JM 26.7 58.2 30.1 48.4 36.3 42.4 30.7 48.0 28.8 50.4

+ FFNN-TM 26.7 58.2 30.1 48.4 36.4 42.2 30.4 48.1 28.9 50.1

+ FFNN-TM* 26.4 58.3 31.3 47.6 37.4 41.7 31.6 47.3 29.0 50.1

+ RNN-LM 26.8 58.3 30.0 48.4 36.1 42.6 30.4 48.3 29.1 50.0

+ RNN-LM-InDomain 26.3 58.4 30.4 48.3 36.6 42.3 30.5 48.1 28.2 50.9

+ RNN-BTM 26.7 57.8 30.8 47.7 37.3 41.7 31.2 47.2 29.1 49.9

+ RNN-Attention 27.0 57.9 31.5 47.1 38.0 41.2 31.8 46.8 29.5 49.6

+ AllAboveNNs 27.4 57.1 31.2 47.2 36.7 42.0 31.6 47.2 29.9 49.0

+ AllAboveNNs† 27.9 56.5 31.8 46.5 37.6 41.1 31.5 46.7 29.8 48.9

Hierarchical Baseline 25.3 60.0 30.2 49.3 35.3 44.0 30.1 49.0 28.8 51.6

+ SrcReordering 25.7 59.2 30.0 49.1 35.7 43.6 30.0 48.9 28.4 51.1

+ FFNN-LM 25.4 60.3 30.1 49.4 35.5 43.8 30.0 49.3 28.9 51.7

+ RNN-LM 25.9 60.0 29.9 49.4 35.2 43.7 30.1 49.2 29.0 51.4

+ RNN-Attention 26.4 59.3 31.4 48.2 36.5 42.9 31.4 47.8 30.0 50.5

+ RNN-Attention† 26.4 59.3 30.6 48.9 35.8 43.6 30.6 48.6 29.8 50.6

+ RNN-Attention-InDomain 26.3 59.0 30.8 48.5 36.0 43.2 30.8 48.3 29.3 50.9

+ AllAboveNNs 26.7 58.6 31.9 47.6 36.9 42.4 31.8 47.3 29.9 50.4

* This FFNN-TM has three hidden layers. The other FFNNs have two hidden layers. (cf. Section 2.6)

† A different optimization run.

Table 2: Results of the combined system for the German→English MT task submission. tst2014 and tst2015 results are

computed by the task organizers. BLEU scores are case-sensitive and TER scores are case-insensitive.

dev2012 tst2013 tst2014 tst2015

System BLEU TER BLEU TER BLEU TER BLEU TER

Best Individual System 27.4 57.1 29.9 49.0 25.2 56.4 31.1 48.3

Combined System (2015 Submission) 28.2 57.0 30.5 49.0 26.2 55.2 31.5 47.1

2014 Submission 27.0 57.2 27.6 52.1 25.0 55.5 - -

Table 3: Results of the German→English SLT task. Scores for tst2015 (case-sensitive) are computed by the task organizers.

Prediction Optimization dev2012 tst2013 tst2015

System Method Criterion BLEU TER BLEU TER BLEU TER

SCSS Baseline phrase-based F2 20.5 62.6 18.6 63.7 - -

BLEU 20.0 65.1 18.4 65.8 - -

hierarchical F2 20.9 62.1 18.7 63.4 - -

BLEU 20.9 62.5 19.0 63.4 - -

+ wcLM BLEU 21.3 61.7 19.1 62.8 - -

+ AllAboveNNs + wcLM BLEU 21.6 61.1 19.8 62.4 18.8 65.2



completely unchanged and we are able to use our final sys-

tem from the MT track directly. We use SCSS Baseline +

AllAboveNNs (cf. Table 1) for our final submission.

4. Conclusion

RWTH participated in the MT and SLT tracks for the

German→English IWSLT 2015 evaluation campaign.

The baseline systems for the MT track utilize our state-

of-the-art phrase-based and hierarchical translation decoders

and we were able to improve them by applying maximum

expexted BLEU training and employing several neural net-

work models for reranking the n-best lists. We built sev-

eral single machine translation engines which are based on

either phrase-based or hierarchical decoders, and combined

all the built systems using our system combination pipeline.

We achieve a performance of 26.2 in BLEU and 55.2 in

TER for tst2014 and 31.5 in BLEU and 47.1 in TER for

tst2015, and we improve the BLEU scores by 1.2 point on

the tst2014 compared to our 2014 system.

For the SLT track, the ASR output was enriched with

punctuation and casing information by a hierarchical trans-

lation system.
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[37] M. Popović and H. Ney, “POS-based Word Reorder-

ings for Statistical Machine Translation,” in Interna-

tional Conference on Language Resources and Evalua-

tion, 2006, pp. 1278–1283.

[38] S. Peitz, M. Freitag, and H. Ney, “Better Punctua-

tion Prediction with Hierarchical Phrase-Based Trans-

lation,” in International Workshop on Spoken Language

Translation, Lake Tahoe, CA, USA, Dec. 2014, pp.

271–278.

[39] S. Peitz, M. Freitag, A. Mauser, and H. Ney, “Model-

ing punctuation prediction as machine translation,” in

International Workshop on Spoken Language Transla-

tion, San Francisco, CA, USA, Dec. 2011, pp. 238–245.


	 Introduction
	 SMT Systems
	 Phrase-based Systems
	 Hierarchical Phrase-based System
	 Backoff Language Models
	 Joint Translation and Reordering Models in Phrase-Based System
	 Maximum Expected Bleu Training
	 Feed-Forward Neural Network Models
	 Recurrent Neural Network Models
	 Attention Based Recurrent Neural Network
	 System Combination

	 Experimental Evaluation
	 Machine Translation (MT) Track
	 Spoken Language Translation (SLT) Track

	 Conclusion
	 Acknowledgements
	 References

