Parser Self-Training
for Syntax-Based
Machine Translation
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e Translate and reorder by phrases.
- Easy to learn translation model.
- Low translation accuracy
on language pairs with different word order.
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e Use the source language parse tree in translation
- High translation accuracy on language pairs with
different word order.

- Translation accuracy is affected greatly by the parser accuracy.
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Forest-to-String Machine Translation 8\
[Mi et al.,, 2008] NS
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Source language
parse forest

e Use the source language parse forest in translation

- Decoder can choose the parse tree that has
high translation probability from the parse tree candidates
[Zhang et al., 2012]
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Use as training data
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Parse tree

e Use the parser output as training data.

e Improve the parser accuracy.
- Parser is adapted to the target domain.

Makoto Morishita, AHC Lab, NAIST
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Self-Training for Preordering
[Katz-Brown et al.,
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2011]
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Correct preordering data

e By selecting the parse trees,
more effective self-training (Targeted Self-Training)

- Use only high scored parse trees.
- However, in this method, we need hand-aligned data

I
It is costly to make hand-aligned data
Makoto Morishita, AHC Lab, NAIST
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Proposed Method
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Q _ Evaluation using
- e-> MT automatic -} High scored

Translated sentenc luat tri ree tree
and parse tree evaluation metrics pa
used in translation

e Targeted Self-Training using MT automatic

evaluation metrics
- low cost and accurate evaluation
9
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Selection Methods
e Parse tree selection
- Select a parse tree to use from a single sentence
Q Parse tree

IR Y S > 2

One High scored
sentence Several parse tree parse tree

candidates

e Sentence selection
- Select the sentences to use from the entire corpus
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Several
Makoto Morishita, AHC Lab, NAIST
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o Parser 1-best
- Use the parser 1-best tree.
- Traditional self-training [McClosky et al. 2006].

e Decoder 1-best
- Use the parse tree used in translation.

e Evaluation 1-best
- Among the translation candidates, use the
parse tree used in highest scored translation.

Makoto Morishita, AHC Lab, NAIST 11



\nst;
Stig,, o
o.
»
Q.
S
Qé"
N
yoor®

2 o
Y NAISTY o

Decoder 1-best
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Input
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Translated sentence
and parse tree
used in translation

e Decoder 1-best
- Use the parse tree used in translation.

Makoto Morishita, AHC Lab, NAIST
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Translation and High scored translation
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(Oracle translation)

e Evaluation 1-best
- Among the translation candidate, use the parse tree used

in highest scored translation.

- This highest scored translation is called Oracle translation.

Makoto Morishita, AHC Lab, NAIST 13
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@ Random
- Select sentences randomly from the corpus.
- Traditional self-training.

o Ihreshold of the evaluation score
- Use sentences that score over the threshold.

e Gain of the evaluation score
- Use sentences that have a large gain in
score between decoder 1-best and oracle
translation.

Makoto Morishita, AHC Lab, NAIST 14
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Threshold of the Evaluation Score

3 * Selection
— based on the score

High scored translation
and parse tree Score<Threshold
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(Oracle translation)
Do not use
o I hreshold of the evaluation score
- Use sentences that score over threshold.
15
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Gain of the Evaluation Score

Oracle translation, _ Larae gain

parse tree * Selecfuon based on geg Q
the gain of the score

Q _° Use
Decoder 1-best translation, Small gain -
parse tree ” I

Ly

Do not use

e Gain of evaluation score
- Use sentences that have a large gain in score

between decoder 1-best and oracle translation.

Makoto Morishita, AHC Lab, NAIST
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Experiments
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(for Self-Training)

Existing model
Japanese Dependency Corpus (7k)
Parser self-training

Evaluation
l (BLEU+1) 4-
Parallel corpus * *
(ASPEC 2.0M) ' Parser > Forest-to-String
— = (Egret) Decoder (Travatar)

Q

Source  Target
language language
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Experimental Setup

(for Evaluation)
Decoder training
Parallel corpus
(ASPEC 2.0M) ) (Egret)

Source  Target ﬂ Forest-to-String
language language Decoder (Travatar)

*

Self-Trained Parser
) (Egret)

Decoder dev, test
Parallel corpus
(ASPEC dev:2k, test 2k

Source  Target
language language

Makoto Morishita, AHC Lab, NAIST
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Translated
sentence

In these experiments,
we focused on Japanese-English,

Japanese-Chinese translation
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Experiment Results
(Japanese-English Translation)

Tree Selection éSentence Selection| Sentences (k) BLEU RIBES
Baseline - 23.83 12.27
Parser 1-best éRandom 96 23.60 E (1.77
ecoder Lbest Random | 97 2381 7204
ok madom | o7 2393 | 7200

Makoto Morishita, AHC Lab, NAIST
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Oracle Translation Score Distribution
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Experiment Results

(Japanese-English Translation)
Tree Selection éSentence Selection| Sentences (k) BLEU RIBES
Baseline - 23.83 12.27
Parser 1-best éRandom 96 23.66 : 71.77
Decoder 1-best Random | 97 2381 7204
oracle Rendom | 97 2303 7200
oracle BLEUI Threshold | 120 #+2426 7238
oracle BLEUI Gan | 100+ o422 7232

* :p<0.05 **:p<0.01

e By self-training, the accuracy significantly improved

Makoto Morishita, AHC Lab, NAIST
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Manual Evaluation

Tree Sentence Significance Significance
_ _ Score between between
selection selection a .
aseline Parser -best
Baseline 2.38 — —
Parser 1-best éRandom 2.42 No —
""""""""""""""""""""""""""""""""" BLEU+1 |  Yes  Yes
racl 2.50
Oracle Threshold (99% level) (90% level)

Scorerangeis1to 5

e We could verify that our method is effective.
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Example of an improvement

Source | CEREBETIHRDES %2409 Tz > THS MR LT
" in the C - administered group, thermal reaction
Reference . . .
clearly increased the activity of R for 240 minutes.

for 240 minutes clearly enhanced
the activity of C administration group R.

-----------------------------------------------------------------------

for 240 minutes clearly enhanced
the activity of R in the C - administration group.

Self-Trained °

Makoto Morishita, AHC Lab, NAIST
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Experiment Results
(Japanese-Chinese Translation)

Tree Selection %Sentence Selection| Sentences (k) BLEU RIBES
Baseline l - 29.60 31.32
Parser 1-best  Random 129 29.75  ** 8155
Decoder 1-best Random | 130 2076 * 8153
Oracle Random | 130 #2980 w3166
Oracle BLEU+1 Threshold| 82 £ 2986 | #8160
oOracle  BLEUs1Gan | 100 + 2085 | #8159
Oracle (ja-en) EBLEU+1 Threshold 120 * 2987 * 81.58

e By self-training, the accuracy significantly improved

e By using ja-en self-trained model,

it also improved the accuracy.

Makoto Morishita, AHC Lab, NAIST

* :p<0.05 **:p<0.01
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Experiment Results
(Japanese-Chinese Translation)

Tree Selection %Sentence Selection| Sentences (k) BLEU RIBES
Baseline l - 29.60 31.32
Parser 1-best  Random 129 29.75  ** 8155
Decoder 1-best Random | 130 2076 * 8153
Oracle Random | 130 #2980 w3166
Oracle BLEU+1 Threshold| 82 £ 2986 | #8160
oOracle  BLEUs1Gan | 100 + 2085 | #8159
Oracle (ja-en) éBLEU+1 Threshold 120 * 2987 * 81.58

e By self-training, the accuracy significantly improved

e By using ja-en self-trained model,

it also improved the accuracy.

Makoto Morishita, AHC Lab, NAIST

* :p<0.05 **:p<0.01
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Parser Accuracy



Experimental Setup

100 manually annotated trees
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Test sentence

e Evalb: tool of scoring parsing accuracy based on Collins, 1997.

e We test Ja-En parsers.
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Experiment Results

Tree. Senter.wce Recall Precision %F—I\/Ieasure
selection selection
Baseline 84.88 84.77 84.83

Parser 1-best éRandom

..............................................................................................................

BLEU+1
Threshold

.................................................................................................................

8652 8641  *86.46

................................................................................................................

88.13 8801 %8307

* :p<0.05 **:p<0.01

@ Our method improves not only MT results,

but also parser accuracy itself.

31
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Conclusion
e By our proposed self-training method,

translation and parser accuracy improved.

e Self-Training does not rely on target language
- By using Ja-En self-trained model, Ja-Zh translation

accuracy improved.

e Future work
- Verify this method is applicable in other languages.

- Self-training using several target languages data.
- Test the effect when performing the parser self-

training repeatedly.

Makoto Morishita, AHC Lab, NAIST
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Experiment Results N
(Japanese-English Translation)

Tree Selection éSentence Selection| Sentences (k) BLEU RIBES
Baseline l - 23.83 1227
Parser 1-best éRandom 96 23.60 .77
Decoder 1-best Random | 07 2381 7204
Oracle Random | 07 2393 7209
orace BLEU+1207 | 206 w2427 7238
orace BLEU+1208 | 120 #2426 7238
Oracle  BLEU+1209 | 58 w2426 | 7249
Oracle  BLEUs1Gan | 100  *2422 7232

* :p<0.05
**:p <0.01
35
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Experiment Results N
(Japanese-Chinese Translation)
Tree Selection éSentence Selection| Sentences (k) BLEU RIBES
Baseline ' -  29.60 81.32
Parser 1-best éRandom 129 29.75 **31.55
Decoder 1-best Random | 130 2976  * 8153
Oracle Random | 130 #2089 | *+81.66
Oracle BLEU+1207 | 240 %2086 | #8160
Oracle BLEU+1208 | 150 %2901 | . 8147
Oracle BLEU+1209 | 82 £ 2986 | #%81.60
Oracle BLEU+1 Gain | 100 »2085 | %8159
Oracle (ja-en) BLEU+1z 0.8 120 * 29.87 * 81.58
* :p<0.05
**:p <0.01
36
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Why decoder 1-best parse tree is M
better than parser 1-bset?

e Probability considered in Forest-to-String translation

- Parse tree probability
- Translation model
- Language model

@ The rule that use correct tree have

high probability on translation model.
- The rule that use incorrect tree have low probability.

e By using language model,

the correct parse tree tends to be chosen.
- The correct tree have high probability on language model.

Makoto Morishita, AHC Lab, NAIST 37



