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Background
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Phrase-Based Machine Translation
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๏ Translate and reorder by phrases. 
- Easy to learn translation model.  
- Low translation accuracy  
  on language pairs with different word order.

John           hit        a  ball

ジョンは　打った　ボールを

ジョンは　ボールを　打った

Translation Model

Reordering Model

[Koehn et al., 2003]
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Tree-to-String Machine Translation
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๏ Use the source language parse tree in translation 
- High translation accuracy on language pairs with  
  different word order. 
- Translation accuracy is affected greatly by the parser accuracy.

[Liu et al., 2006]
S

NP0

NN

VP

VBD NP1

DT NN

John         hit      a             ball

x0:NP0  は  x1:NP1  を  打った
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Forest-to-String Machine Translation
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๏ Use the source language parse forest in translation 
- Decoder can choose the parse tree that has 
high translation probability from the parse tree candidates

Forest-to-String 
decoder

Source language 
parse forest

Target language 
sentence

[Mi et al., 2008]

[Zhang et al., 2012]
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Parser Self-Training
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๏ Use the parser output as training data.

Parser
Input 

sentence Parse tree

Use as training data

[McClosky et al., 2006]

๏ Improve the parser accuracy. 
- Parser is adapted to the target domain.
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Self-Training for Preordering
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๏ By selecting the parse trees,  
more effective self-training (Targeted Self-Training). 
- Use only high scored parse trees. 
- However, in this method, we need hand-aligned data. 
- It is costly to make hand-aligned data.

Parser

Input 
sentence

Candidate  
preordering parse trees

Use as training data

Evaluation
High scored 
parse tree

Correct preordering data

[Katz-Brown et al., 2011]



Proposed Method
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Proposed Method

9

๏ Targeted Self-Training using MT automatic 
evaluation metrics 
- low cost and accurate evaluation

Parser
Input 

sentence Parse forest

Use as training data

Evaluation using 
MT automatic 

evaluation metrics
High scored 
parse tree

Forest-to-String 
Decoder

Translated sentence 
and parse tree 

used in translation
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Selection Methods
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๏ Sentence selection  
- Select the sentences to use from the entire corpus

๏ Parse tree selection 
- Select a parse tree to use from a single sentence

One 
sentence Several parse tree 

candidates

Parse tree 
selection

High scored 
parse tree

Several 
sentences

Sentence 
selection Sentences to be used
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Parse Tree Selection
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๏ Parser 1-best 
- Use the parser 1-best tree. 
- Traditional self-training [McClosky et al. 2006]. 

๏ Decoder 1-best 
- Use the parse tree used in translation. 

๏ Evaluation 1-best 
- Among the translation candidates, use the 
parse tree used in highest scored translation.
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Decoder 1-best
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Parser
Input 

sentence Parse forest

Forest-to-String 
Decoder

๏ Decoder 1-best 
- Use the parse tree used in translation.

Translated sentence 
and parse tree 

used in translation
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Evaluation 1-best
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Parser
Input 

sentence Parse forest

Forest-to-String 
Decoder

๏ Evaluation 1-best 
- Among the translation candidate, use the parse tree used 
in highest scored translation.  
- This highest scored translation is called Oracle translation.

Translation and 
parse tree candidates

Automatic 
Evaluation

High scored translation 
and parse tree 

(Oracle translation)
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Sentence Selection
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๏ Random 
- Select sentences randomly from the corpus.  
- Traditional self-training. 

๏ Threshold of the evaluation score  
- Use sentences that score over the threshold. 

๏ Gain of the evaluation score  
- Use sentences that have a large gain in  
score between decoder 1-best and oracle 
translation.
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Threshold of the Evaluation Score
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Selection  
based on the score

๏ Threshold of the evaluation score 
- Use sentences that score over threshold.

Use

Score≧Threshold

Score<Threshold

Do not use

High scored translation 
and parse tree 

(Oracle translation)
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Gain of the Evaluation Score

16

Oracle translation, 
parse tree Selection based on 

the gain of the score

๏ Gain of evaluation score 
- Use sentences that have a large gain in score 
between decoder 1-best and oracle translation.

Decoder 1-best translation, 
parse tree

Use

Large gain

Small gain

Do not use



Experiments
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Experimental Setup 
(for Self-Training)

18

Parser 
(Egret)

Evaluation 
(BLEU+1)

Forest-to-String 
Decoder (Travatar)

Japanese Dependency Corpus (7k)

Parallel corpus  
(ASPEC 2.0M)

Source 
language

Target 
language

Existing model

Parser self-training
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Existing Parser 
(Egret)

Forest-to-String 
Decoder (Travatar)

Translated 
sentence

Decoder training

Decoder dev, test
Parallel corpus  

(ASPEC dev:2k, test 2k)

In these experiments, 
we focused on Japanese-English, 
Japanese-Chinese translation

Self-Trained Parser 
(Egret)

Experimental Setup 
(for Evaluation)

Parallel corpus  
(ASPEC 2.0M)

Source 
language

Target 
language

Source 
language

Target 
language
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Experiment Results 
(Japanese-English Translation)
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Tree Selection Sentence Selection Sentences (k) BLEU RIBES

Baseline - 23.83 72.27

Parser 1-best Random 96 23.66 71.77

Decoder 1-best Random 97 23.81 72.04

Oracle Random 97 23.93 72.09
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Oracle Translation Score Distribution

• It contains a lot of noisy sentences.
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Experiment Results 
(Japanese-English Translation)

22

๏ By self-training, the accuracy significantly improved

Tree Selection Sentence Selection Sentences (k) BLEU RIBES

Baseline - 23.83 72.27

Parser 1-best Random 96 23.66 71.77

Decoder 1-best Random 97 23.81 72.04

Oracle Random 97 23.93 72.09

Oracle BLEU+1 Threshold 120 24.26 72.38

Oracle BLEU+1 Gain 100 24.22 72.32

**

*

** : p < 0.01*   : p < 0.05



Manual Evaluation
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Tree 
selection

Sentence 
selection

Score
Significance 
between 
Baseline

Significance 
between 
Parser -best

Baseline 2.38 ̶ ̶

Parser 1-best Random 2.42 No ̶

Oracle BLEU+1 
Threshold 2.50

Yes 
(99% level)

Yes 
(90% level)

๏ We could verify that our method is effective.

Score range is 1 to 5
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Example of an improvement
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Source C投与群ではRの活動を240分にわたって明らかに増強した

Reference
in the C - administered group, thermal reaction 
clearly increased the activity of R for 240 minutes.

Baseline for 240 minutes clearly enhanced 
the activity of C administration group R.

Self-Trained
for 240 minutes clearly enhanced 

the activity of R in the C - administration group.



Makoto Morishita, AHC Lab, NAIST

Before Self-Training
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PP

NP P

NP N

SYMP P

AUX_SYMP

SYM AUX_SYM

SYMP

SYMAUX_VP

N PP

P P

C              投与           群         で          は     R        の        活動       を
administered group in TOP of activity OBJ
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After Self-Training
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VP

PP VP

NP PP

NP N

SYM N

P P

PP VP

NP P

SYM NP

ADV N

C       投与     群         で          は           R            の          活動 を
administered group in TOP of activity OBJ
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Tree Selection Sentence Selection Sentences (k) BLEU RIBES

Baseline - 29.60 81.32

Parser 1-best Random 129 29.75 81.55

Decoder 1-best Random 130 29.76 81.53

Oracle Random 130 29.89 81.66

Oracle BLEU+1 Threshold 82 29.86 81.60

Oracle BLEU+1 Gain 100 29.85 81.59

Oracle (ja-en) BLEU+1 Threshold 120 29.87 81.58

27

** : p < 0.01*   : p < 0.05

**

*

**

**

**

*

*

*

**

*

๏ By self-training, the accuracy significantly improved 
๏ By using ja-en self-trained model,  

it also improved the accuracy.

Experiment Results 
(Japanese-Chinese Translation)
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Tree Selection Sentence Selection Sentences (k) BLEU RIBES

Baseline - 29.60 81.32

Parser 1-best Random 129 29.75 81.55

Decoder 1-best Random 130 29.76 81.53

Oracle Random 130 29.89 81.66

Oracle BLEU+1 Threshold 82 29.86 81.60

Oracle BLEU+1 Gain 100 29.85 81.59

Oracle (ja-en) BLEU+1 Threshold 120 29.87 81.58
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** : p < 0.01*   : p < 0.05

**

*

**

**

**

*

*

*

**

*

๏ By self-training, the accuracy significantly improved 
๏ By using ja-en self-trained model,  

it also improved the accuracy.

Experiment Results 
(Japanese-Chinese Translation)



Parser Accuracy



Experimental Setup

30

100 manually annotated trees

๏ Evalb: tool of scoring parsing accuracy based on Collins, 1997. 

๏ We test Ja-En parsers.

Parser Evalb
Test sentence



Experiment Results
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Tree 
selection

Sentence 
selection Recall Precision F-Measure

Baseline 84.88 84.77 84.83

Parser 1-best Random 86.52 86.41 86.46

Oracle BLEU+1 
Threshold 88.13 88.01 88.07**

** : p < 0.01*   : p < 0.05

*

๏ Our method improves not only MT results, 
but also parser accuracy itself.



Conclusion
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Conclusion

33

๏ By our proposed self-training method,  
translation and parser accuracy improved. 

๏ Self-Training does not rely on target language 
- By using Ja-En self-trained model, Ja-Zh translation 
accuracy improved. 

๏ Future work 
- Verify this method is applicable in other languages.  
- Self-training using several target languages data.  
- Test the effect when performing the parser self-
training repeatedly.



END
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Tree Selection Sentence Selection Sentences (k) BLEU RIBES

Baseline - 23.83 72.27

Parser 1-best Random 96 23.66 71.77

Decoder 1-best Random 97 23.81 72.04

Oracle Random 97 23.93 72.09

Oracle BLEU+1 ≧ 0.7 206 24.27 72.38

Oracle BLEU+1 ≧ 0.8 120 24.26 72.38

Oracle BLEU+1 ≧ 0.9 58 24.26 72.49

Oracle BLEU+1 Gain 100 24.22 72.32

** : p < 0.01
*   : p < 0.05

**

**

**

*

Experiment Results 
(Japanese-English Translation)
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Tree Selection Sentence Selection Sentences (k) BLEU RIBES

Baseline - 29.60 81.32
Parser 1-best Random 129 29.75 81.55
Decoder 1-best Random 130 29.76 81.53
Oracle Random 130 29.89 81.66
Oracle BLEU+1 ≧ 0.7 240 29.86 81.60
Oracle BLEU+1 ≧ 0.8 150 29.91 81.47
Oracle BLEU+1 ≧ 0.9 82 29.86 81.60
Oracle BLEU+1 Gain 100 29.85 81.59
Oracle (ja-en) BLEU+1 ≧ 0.8 120 29.87 81.58
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** : p < 0.01
*   : p < 0.05

**

**

*

**

**

**

*
*

*

**

*

Experiment Results 
(Japanese-Chinese Translation)

** **
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Why decoder 1-best parse tree is 
better than parser 1-bset?
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๏ Probability considered in Forest-to-String translation  
- Parse tree probability  
- Translation model 
- Language model 

๏ The rule that use correct tree have  
high probability on translation model.  
- The rule that use incorrect tree have low probability. 

๏ By using language model, 
the correct parse tree tends to be chosen. 
- The correct tree have high probability on language model.


