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Abstract

Segmentation of the incoming speech stream and translat-

ing segments incrementally is a commonly used technique

that improves latency in spoken language translation. Previ-

ous work (Oda et al. 2014) [1] has explored creating train-

ing data for segmentation by finding segments that maxi-

mize translation quality with a user-defined bound on seg-

ment length. In this work, we provide a new algorithm, us-

ing Pareto-optimality, for finding good segment boundaries

that can balance the trade-off between latency versus transla-

tion quality. We compare against the state-of-the-art greedy

algorithm from (Oda et al. 2014) [1]. Our experimental re-

sults show that we can improve latency by up to 12% with-

out harming the BLEU score for the same average segment

length. Another benefit is that for any segment size, Pareto-

optimal segments maximize latency and translation quality.

1. Introduction

Minimizing latency is a challenge for any spoken language

translation system that does simultaneous translation. Ide-

ally the system should produce the translation of an utterance

soon after it has been produced. However, translation often

involves reordering and this means that a monotone transla-

tion which immediately translates as soon as possible can be

quite poor in translation quality. Waiting until the end of the

input can typically improve the quality of translation but has

very bad latency, while translating short segments improves

latency but typically makes the quality of translation much

worse. A common technique in the literature is to segment

the incoming speech stream into chunks that can capture re-

ordering between source and target languages and translate

these chunks in order to improve latency.

The technique of segmenting the input is often referred

to as the “salami technique” in the field of conference in-

terpreting (by humans) [2] referring to the slicing up of the

input into small, predictably sized units for translation. In

spoken language translation, the “salami technique” has been

mostly focused on fixed length segments or segments based

on monolingual features in the input such as pauses and

other similar cues [3, 4, 5, 6] to break the input into seg-

ments for incremental translation. In order to train a seg-

mentation classifier, one can go beyond simple cues such

as pauses and annotate training data with good segmentation

boundaries [7, 8]. These techniques require either heuristic

or human annotation of segment boundaries for some data

in the source language. The segmentation classifier can be

tightly integrated into a stream decoding process for incre-

mental translation [9]. The impact of the choice of segment

length has been studied in some previous work on segmenta-

tion [10] and stream decoding [11]. However, none of these

approaches explicitly consider the impact of selecting be-

tween different segments (perhaps of the same size) on the

translation quality in the target language. In the context of

this paper, we want to choose segments that are optimal in

some way with respect to latency and/or translation quality

and we wish to train a segmentation strategy that provides

such an optimality guarantee (on the training data).

Oda et al. (2014) [1] have explored finding segments that

maximize translation quality with a user-defined bound on

segment length. The training data set required for this is

much more complex because, in order to optimize for seg-

ments with good translation quality, we need a training set

translated with all possible segment choices and sizes and

the eventual translation quality for each possible segmenta-

tion choice. Once such a training data set is built, one can

apply the algorithms in [1] to find segmentation decisions

that are optimal with respect to some evaluation measure of

translation quality such as BLEU [12] score.

In this work, we extend previous work [1] on finding op-

timal segments and provide a more appealing algorithm, us-

ing Pareto-optimality, for finding good segment boundaries

that can balance the trade-off between latency and translation

quality. Latency is measured in terms of segments translated

per second and translation quality is measured using a trans-

lation evaluation measure such as BLEU score. Using data

that was produced by simultaneous translation by human in-

terpreters, the study in Mieno et al. [13] considers how hu-

mans view the tradeoff between latency and translation qual-

ity. What they found was that humans were very sensitive to

translation quality, and this implies that we need algorithms

that can make a careful choice between different segmen-

tation decisions of the same latency to produce translations

with the best translation quality possible (for that latency).



In this paper we provide efficient algorithms to find segmen-

tation decisions that explicitly rank these decisions based on

the trade-off between latency and translation quality.

We provide experimental results to evaluate our approach

on the English-German TED talk translation task which uses

data from the IWSLT shared task data from 2013, 2012 and

2010. The results show that we can provide qualitatively bet-

ter segments (compared to previous work) that improve la-

tency without substantially hurting translation quality.

2. Segments that Maximize Translation

Quality

Greedy segmentation (Oda et al. 2014) [1] is the state-of-the-

art method for creating segmentation training data. In this ap-

proach, the best possible segmentation points are found over

an unsegmented corpus which maximize the translation ac-

curacy of the segmented sentences in a greedy way.

The algorithm in [1]1 has a parameter for the number of

expected segments, K, which is given by Equation 1. Using

this equation, the segmentation model is trained on a paral-

lel corpus F = ⟨F,E⟩ which has N source/target sentence

pairs. |f | provides the length of sentence f in words and µ is

the average segment length.

K := max(0,

⌊

∑

f∈F |f |

µ

⌋

−N) (1)

Finding each of these K segmentation points in the algorithm

involves searching through all the N sentences in the corpus

and examining each segment boundary in the whole corpus.

For K = 1, one sentence in the corpus is segmented into

two chunks. This way, they will produce all possible hypoth-

esized segmentations of the entire corpus, one of which is

going to be the optimal one.

Given an MT system, D, which is already tuned on a

given development set, D(f, s) is the translation output of

the MT system D for a given source sentence f obtained by

concatenating the translations of the individual segments de-

fined by the set of segmentation decisions s. This set s is

created by adding a segmentation point at each place where

a segmentation classifier fires. In [1] the segmentation clas-

sifier is determined by checking a single feature firing. This

single feature is a bigram part of speech (POS) tag. Each

segmentation of the corpus is a collection of such features

called Φ. Thus, s, the set of segmentation points is propor-

tional to the number of sentences inF and the features Φ that

determine the segments: s ∝ {F ,Φ}.

The accuracy score of each possible segmentation choice

for a given number of segments s is computed for the whole

1It might seem so, but we are not duplicating a lot of content from their

paper, and what is included is necessary to understand our proposed algo-

rithm. We provide an example that is used to explain our algorithm as well

and which will help the reader understand the difference with our proposed

algorithm. We also change their notation to match our own.

corpus as follows:

B(s) =
N
∑

j=1

β(D(fj , s), ej) (2)

where D(fj , s) produces target translations for each source

sentence fj based on the segments in s. Each output sentence

is scored by β which can be any automatic evaluation mea-

sure for translation quality. We use per-sentence smoothed

BLEU score (BLEU+1) [12, 14] in this paper. B(s) is the

sum of the translation quality scores for each segmented sen-

tence. The argmax of B(s) finds the optimal segmentation

for the entire corpus, searching over all possible s segment

boundary points. This argmax of B(s) is repeatedly com-

puted for every segmentation set of size k = 1 . . .K, and the

set of size K is returned.

Because such an approach is computationally complex,

Oda et al. (2014) [1] introduce the idea of feature grouping.

Using feature grouping, once a feature has been greedily cho-

sen, all the points exhibiting that feature are segmented at the

same time and added to the set of selected features. More-

over, they take advantage of dynamic programming (DP) im-

plementation of the greedy approach to reflect optimal fea-

ture grouping. DP is used to build larger sets of segmentation

points from smaller sets. This method is called Greedy-DP

or the GDP Segmentation approach in their paper.

Finally, they introduce a regularizer coefficient α to their

accuracy scoring function which is aimed to control the num-

ber of selected features out of the set Φ; as a higher α will

choose a smaller set of features in Φ which occur frequently

to produce the necessary number of segments while a lower

α tends to prefer a larger set of features in Φ, each of which

occur less frequently.

Bα(s) = B(s)− α|Φ| (3)

In an English-German translation task, consider the

three-sentence sample example of Figure 1 and the features

used for choosing the segmentation points to be the bigram

part of speech (POS) tags (like [1]). In this example, each

point has been labeled with a general POS tag out of the

set P={N[noun], V[verb], D[determiner], J[adjective], P[preposition],

S[possessive pronoun], A[adverb], R[particle], .[dot]}.

(1) I

N

am

V

a

D

contemporary

J

artist

N

with

P

a

D

bit

N

of

P

an

D

unexpected

J

background

N

.
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(2) I

N

was

V

in

P

my

S

twenties

N

before

P

I

N

ever

A

went

V

to

P

an

D

art

N

museum

N

.

.

(3) I

N

grew

V

up

R

in

P

the

D

middle

N

of

P

nowhere

N

on

P

a

D

dirt

N

road

N

in

P

rural

J

Arkansas

N

.

.

Figure 1: Example training set for segmentation choices containing the

source sentences and part of speech tags (target German sentences are not

shown in this figure but appear later).

Table 1 shows the feature frequencies of the sample cor-

pus. For µ = 1 (setting each word as one segment) for the



Φsent 2 #segments Segmented Sentence & Translation GDP Accuracy PO Accuracy Time Segs/Sec

1 ∅ 1
[I was in my twenties before I ever went to an art museum .]

0.224 0.224 16.097 0.062
Ich war in meinen zwanzig vor Ich in ein kunstmuseum ging .

2 P-S 2
[I was in][my twenties before I ever went to an art museum .]

0.382 0.191 15.206 0.131
Ich war in meine zwanziger vor Ich in ein kunstmuseum ging .

3 S-N 2
[I was in my][twenties before I ever went to an art museum .]

0.235 0.117 15.487 0.129
Ich war in meinem zwanziger vor Ich in ein kunstmuseum ging .

4 A-V 2
[I was in my twenties before I ever][went to an art museum .]

0.134 0.067 9.983 0.200
Ich war in meinen zwanzig Ich je vor ging zu einer kunst museum .

5 N-A 2
[I was in my twenties before I][ever went to an art museum .]

0.224 0.112 3.462 0.577
Ich war in meinen zwanzig Ich vor in ein kunstmuseum ging .

6 N-N 2
[I was in my twenties before I ever went to an art][museum .]

0.138 0.069 3.426 0.583
Ich war in meinen zwanzig vor Ich jemals zu einer kunst museum .

7 P-N 2
[I was in my twenties before][I ever went to an art museum .]

0.224 0.112 2.697 0.741
Ich war in meinen zwanzig vor Ich in ein kunstmuseum ging .

8 P-S,S-N 3
[I was in][my][twenties before I ever went to an art museum .]

0.382 0.127 2.586 1.160
Ich war in meine zwanziger vor Ich in ein kunstmuseum ging .

9 P-S,A-V 3
[I was in][my twenties before I ever][went to an art museum .]

0.272 0.090 3.137 0.956
Ich war in meine zwanziger vor Ich je ging zu einer kunst museum .

10 P-S,N-A 3
[I was in][my twenties before I][ever went to an art museum .]

0.382 0.127 5.350 0.560
Ich war in meine zwanziger vor Ich in ein kunstmuseum ging .

11 S-N,A-V 3
[I was in my][twenties before I ever][went to an art museum .]

0.141 0.047 2.762 1.086
Ich war in meinem zwanziger vor Ich je ging zu einer kunst museum .

12 S-N,N-A 3
[I was in my][twenties before I][ever went to an art museum .]

0.235 0.078 2.586 1.160
Ich war in meinem zwanziger vor Ich in ein kunstmuseum ging .

13 N-A,A-V 3
[I was in my twenties before I][ever][went to an art museum .]

0.134 0.044 2.632 1.139
Ich war in meinen zwanzig Ich vor je ging zu einer kunst museum .

Table 2: For the second sentence in Figure 1, we show the bigram part of speech features that pick the segment boundaries, the number of segments in this

sentence, the accuracy for both the Greedy-DP (GDP) algorithm of [1] and our Pareto-Optimal (PO) algorithm (see Section 3), the translation times and latency

measurements (with parameter µ = 8). GDP accuracy is different from PO accuracy because accuracy is measured differently in the two approaches.

Feat Freq Feat Freq Feat Freq

N-P 6 J-N 3 V-R 1

P-D 5 N-N 2 P-S 1

D-N 4 P-N 2 P-J 1

N-. 3 D-J 2 S-N 1

N-V 3 R-P 1 A-V 1

V-D 3 N-A 1

FSS Size 40

Table 1: Frequencies of the bigram part of speech tags in the example from

Figure 1.

example in Figure 1, the GDP segmentation algorithm will

set K = 40 = max(0,
⌊

[
∑

f∈F |f |=43]

[µ=1]

⌋

− [N = 3]). Like-

wise, if we set µ = 8, we will have K = 2, and our possible

segmentation sets will be in {{N-N}, {P-N}, {D-J}, {[R-P],[N-A]},

{[V-R],[P-S]}, ...} for our running example. Therefore, the seg-

mentation set will contain all the different ways to segment

the segmentation training data to obtain the average segment

length of 8. If we want to consider different possible seg-

mentations of the second sentence in our sample corpus with

µ = 8, the possible segmentations will be one of the sets

inside spossible.

spossible={{}, {N-N}, {P-N}, {{N-A}, {P-S}}, {{N-A}, {S-N}},

{{A-V}, {P-S}}, {{A-V}, {S-N}}, {{A-V}, {N-A}}, {{P-S}, {S-N}}}.

Table 2 shows the possible segmentations of the second

sentence of the example in Figure 1 for K = 2. We show

Φ only for the second sentence, so when Φsent 2 is ∅ the two

segments were chosen in other sentences not shown in this

table. The GDP algorithm will choose the segmentation that

maximizes accuracy, so for K = 2, the GDP algorithm will

pick either sentence 8 or 10 from Table 2 (the algorithm has

to break ties arbitrarily in the sorted order for segmentations

with equal accuracy).

The GDP algorithm thus picks the segmentation deci-

sions that result in the best accuracy on the training set. How-

ever, the GDP algorithm considers only accuracy to find the

optimal segmentations, so it tends to prefer larger segments

that can result in worsening the latency. Furthermore, the

trade-off between accuracy and latency is not modelled in

the search for good segmentations. This trade-off is crucial

in the design of simultaneous translation systems. Another

issue can be observed in Table 2, in choosing to spread the

segmentation points to more sentences or concentrating them

in fewer sentences, the GDP algorithm tends to choose the

latter in spite of the regularizer on the size of Φ. Equation 3

does not consider the number of segments which are placed

in each individual sentence. We try to address both of these

issues in our Pareto-optimal segmentation approach.

3. Pareto-Optimal Segmentation Approach

In this section, we will show how Pareto-optimality can help

producing a better segmentation with respect to both la-

tency and accuracy. To get to this point, we will first re-

view the concept of Pareto-optimality as it shows how one

could choose different equally important points in the two-

dimensional space of latency and accuracy.

Considering translation latency-accuracy points depicted

in Figure 2 as an example, a point will be Pareto-Optimal if



0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

La
te

n
cy

Pareto-Optimality Line

Weakly Pareto-Optimal

Figure 2: Pareto-Optimal and Weakly Pareto-Optimal points as well as the

dominated points scored on the two metrics of interest in this paper: latency

and translation accuracy scores (e.g. BLEU).

and only if there is no other point which is both faster and

more accurate than this point (or even equal in one aspect).

In other words, a point p1 is Pareto-optimal if and only if for

each point p2 in the region we have

Λ{p2} < Λ{p1} & B{p2} < B{p1} (4)

where Λ and B are representing functions measuring latency

and accuracy. Therefore, point p1 dominates any such point

p2, shown as p1 ▷ p2. If the dominated point p2 has an equal

latency or accuracy measure to the dominating point p1, we

call p2 a Weakly Pareto-Optimal point.

Based on these concepts and paying attention to the

Pareto-Optimality Line in Figure 2, we see that there may

be more than one optimal point on which one could tune the

MT system to enhance the performance of stream decoding.

Each of these points is one Pareto Frontier Point. The Pareto

frontiers provide a range of equally optimal points rather than

one most accurate point and we use this fact in our search for

optimal segments.

In our approach, we use the same notation of K and µ

introduced in the Greedy approach of Section 2 to explore

the space of possible segmentations in the training corpus.

However, in our algorithm, the parameter µ (the average seg-

ment length) can be seen as a way to explore the trade-off be-

tween latency and accuracy. Longer segments (with a higher

µ value) tend to be associated with higher translation qual-

ity. But the cost of this higher accuracy is that our translation

system will have a worse latency. Shorter segments (with a

smaller µ value) tend to be associated with better latency (on

average there will be more segments translated per second).

In this case the translation fluency scores tend to become

worse. We compare our approach to the Greedy approach

by (Oda et al., 2014) [1] which takes the value of K as an

input. We consider different values of K in our algorithm to

balance the latency-accuracy trade-off.

We search for the best set s, containing K segments (total

number of expected chunks) over the stream of an expected

known size. The cardinality of this segmentation set may

vary from 0 (no segmentation at all), to W =
∑N

i=1{|fi|−1}
(take each word as a segment). A ‘full segmentation set’

(FSS) will contain all possible W segments. Sall represents

a superset containing all possible segmentation sets over F

(source sentences in parallel corpora).

S∗ ∈ Sall is defined as a set of best segmentation strate-

gies which maximizes an evaluation function over latency

and accuracy (Equation 7). We propose two scoring func-

tions for latency and accuracy (Equations 5 and 6 respec-

tively) which are used in Equation 7.

We modify the accuracy function of Equation 3 to ad-

dress the problem of spreading the segmentation positions

(Equation 5).

Bα(s) =
N
∑

j=1

β(D(fj , sj), ej)

|sj |
− α|Φ| (5)

where K = |s|=
∑N

j=1 |sj | holds and |sj | is the number of

segments (i.e. the number of segmentation points plus one)

for each sentence fj .

The latency scoring function is defined as the average

number of segments translated in the unit of time, which can

be simply computed by dividing the the total number of seg-

ments by the total translation time as follows:

Λα(s) =
|s|

∑N
j=1 γ(D(fj , s))

− α|Φ| (6)

where γ function measures the time taken for computing

D(fj , s). Note that, here we use the same regularization

strategy used in Equation 3 (see Section 2).

S∗ = arg pareto frontier
s∈Sall

{Bα(s),Λα(s)} (7)

Note that in Equation 7, the output of “arg pareto fron-

tier” is the Pareto-optimality line in the accuracy-latency

plot. Therefore, S∗ might contain more than one best set

of segmentations.

S∗ can be found using a naı̈ve algorithm as described

in Algorithm 1. However, this algorithm is computationally

expensive and its time complexity is exponentially increased

by increasing the size of K.

Algorithm 1 Pareto-Optimal Segmentation

1: S∗0 ← ∅
2: for k = 1 to K do

3:

S∗k ← arg pareto frontier
p∈FSS∧p ̸∈S∗

k−1

{

Bα(S
∗
k−1 ∪ {p}),

Λα(S
∗
k−1 ∪ {p})

}

4: end for

5: return S∗K

Algorithm 2 depicts our Computationally Efficient

Pareto-Optimal Segmentation Method to find S∗. The main



Algorithm 2 Computationally Efficient Pareto-Optimal Segmentation

1: Φ0 ← ∅
2: for k = 1 to K do

3: for j = 0 to k − 1 do

4: Φ′← {ϕ : (ϕ ̸∈ Φj) ∧ (count(ϕ;F) = k − j)}

5: Φk,j ← Φj ∪
{

arg pareto frontier
φ∈Φ

′{Bα(s(F ,Φj ∪ {ϕ})),Λα(s(F ,Φj ∪ {ϕ}))}
}

6: end for

7: if k < K then ▷ To reduce the computational complexity

8: Φk,j ← argmaxφ∈{Φk,j :0≤j≤k} Bα(s(F , ϕ))
9: end if

10: Φk ← arg pareto frontierΦ∈{Φk,j :0≤j≤k}{Bα(s(F ,Φ)),Λα(s(F ,Φ))}
11: end for

12: return s(F ,ΦK)

loop (lines 2-11) each time finds the next best segmentation

feature (ϕ) and adds it to the set of best segmentation points

which are already found (creating a set of k points). Each

feature is a bigram part of speech tag. The inner loop (line

3) implements the dynamic programming (DP) condition as

in [1]. For instance, for Φ3 this inner loop would combine

the features in the set Φ0,Φ1 and Φ2 (for j = 0, 1, 2) with

the features that occur with a count of 3, 2 and 1 respectively.

So take Φ3,1 which is the set that is updated in line 5, the

points satisfying the Pareto frontier criteria are selected out

of Φ′ and combined with the segmentation points of the chun-

ked sub-segments. Φ3,1 contains the union of all features in

Φ1 computed previously in the DP table with new features

of count 2 collected in line 4. Eventually Φ3,1 is used to

search over Pareto frontier candidates to produce Φ3 in line

10. Line 7 limits the computational complexity of producing

Pareto frontiers out of a set containing previously computed

Pareto frontiers. This line sets the most accurate point out of

currently discovered Pareto frontiers, to be the only Φ of the

next step (to build Φj+1). In Line 10, all possible segmenta-

tion points are analyzed (for k < K there is just one point)

and the Pareto frontiers out of them are stored as Φk. Finally,

in line 12, the result of segmentation with the discovered seg-

mentation points of ΦK is produced and returned.

Performing the same segmentation task from Section 2,

over our running example using this Pareto-optimal segmen-

tation approach, will initially result in the same segmented

sentences but our algorithm has a different intuition about

choosing the best translations. Table 2 reports PO segmenter

accuracy, total translation time and latency measurement val-

ues besides the reported accuracy of GDP segmenter over

different segmented versions of second sample example (in

Figure 1) as well as the actual feature set (Φ) for each specific

segmentation and translation.

To explain the algorithm we have used the running ex-

ample in Figure 1 and traced the output of our Algorithm 2

for K = 2 and provided the plot of accuracy-latency val-

ues during one execution of this algorithm in Figure 3. We

get the highest accuracy with the worst latency in the be-

ginning. Then the algorithm starts to find the first best seg-

mentation point (K = 1; j = 0) and it finds four possible
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Figure 3: Evaluation results of different segmentation strategies in one loop

of the algorithm 2

segmentation candidates (depicted as filled circles in Figure

3). It chooses the best accuracy as Φ1 and moves to the next

round to find the second (last) segmentation point. It first

considers features happening twice (K = 2; j = 0), then it

again chooses the best accuracy as Φ2,0. Next, it examines

the strategy of adding a single repeated feature to Φ1 which

ends up to the points depicted as diamonds. When it finds the

second strategy which dominates the first strategy, it chooses

the Pareto-optimal points out of the new strategy and reports

it as Φ2. Although in this example, the final segmentation set

(Φ2) contains just one point, this is not always the case.

4. Experiments

4.1. Experimental Setup

We evaluate our approach on the English-German TED

speech translation data [15]. We used Moses [16] which

is a conventional phrase-based SMT system using the stan-

dard set of features in the discriminative log-linear model for

SMT to produce the translations for each possible segmenta-

tion decision in our segmentation training data. We used the

Stanford POS-Tagger [17] to tokenize and produce the POS

tags over the train and test data. We used IWSLT 2013 Train

data plus half of the Europarl data [18] to train our MT sys-

tem on English-German and IWSLT Test 2012 to tune it using

MERT [19]. Our German language model was trained using



the monolingual data from WMT 2013 Shared Task 2. The

segmentation training data was taken from IWSLT Shared

Task Dev 2010 and 2012 and Test 2010 and it has been tested

on IWSLT Shared Task Test 2013. Table 3 shows the statis-

tics of data used in our experiments.

Sentences Types Tokens

MT Train 1033491 105267 27948041

MT Tune 1730 3937 31568

Seg Train 3669 6773 74883

Seg Test 1025 3181 22026

Table 3: Size of datasets used in our experiments.

For the evaluation metrics used to evaluate segment trans-

lation quality and latency, we use BLEU+1 [12, 14] and the

number of translated segments per time unit (S/T), respec-

tively. We set the α regularizer coefficient to 0.5, for both

GDP and Pareto-Optimal (PO) segmenters. This value for

α avoids selecting features with extremely high or low fre-

quency.

We train the MT system and use it in all experiments. Us-

ing the trained MT system, we translate all possible segments

and store them in a lattice (like [1]). In this way, we can ac-

cess to a translation instantly while computing the evaluation

metrics (Equation 7).

We compute the time of translations over each segment

in order to evaluate the latency of translations. However, this

computed translation time is the result of many factors and

different seek and search algorithms and may depend on low-

level issues such as cache misses on the hardware where the

MT system is running. Our results were consistent across

many runs so we do not consider such issues to be dominant

in our experimental results.

4.2. Accuracy vs. Latency-Accuracy Evaluation

In this experiment, we would like to assess the effect of

adding latency to accuracy metric in the segmentation task.

In our experiments, we use two baselines: the state-of-the-

art speech segmenters (Rangarajan et al. 2013) [5] and GDP

(Oda et al. 2014) [1]. We implemented a heuristic segmenter

based on (Rangarajan et al. 2013) [5] which segments on

surface clues such as punctuation marks. These segments re-

flect the idea of segmentation on silence frames of around

100ms in the ASR output used in [4]. This type of heuristic

segmenter is a special case of a PO segmenter which inserts

segment boundaries only for POS bigrams that end with a

punctuation POS tag.

We ran our PO segmenter and the GDP segmenter with

different values of parameter µ (average segment length) be-

tween 2 and 15 as well as the heuristic segmenter over the

same data explained in Section 4.1. Due to the large number

of generated points and outputs, we summarize the results in

Figure 4 and Figure 5.

2http://statmt.org/wmt13/translation-task.html

Our experiments show that different possible values of µ

will divide the accuracy-latency area into districts and each

experiment is expected to exhibit a number of samples of

each district for each µ. We show each district with a circle

in the figures as the representative of the group of obtained

points relating to one specific µ. This circle is put in the cen-

troid of the points in the group. To show the size ratio of

districts to each other, the more points found in one district,

the bigger the circle is depiceted. But not all the points in

the group are Pareto-optimal, so we add another circle inside

the outer one showing the ratio of Pareto-optimal points to

the whole group of points. If all of the points for one µ were

Pareto-optimal, both circles would have the same radius and

the inner circle would not have been visible. In addition,

we show the results of the baseline heuristic and GDP seg-

menter using ♢s and Xs, respectively. Moreover, we plot the

real Pareto-optimality line with the actual points on it to give

the reader the chance to compare the actual results of the ex-

periments to the baseline results.

Our choice of the axis is different from previous work

in this area. Commonly, segmentation results are reported

with accuracy on the y-axis, but we use the x-axis instead in

order to easily get a better visual understanding of pushing

the Pareto-optimality line towards the trade-off area we care

about (the “knee” of our plots).

Figure 4 shows the latency (average number of segments

translated per second) and translation quality (BLEU) on the

training data. Figure 5 shows the latency and accuracy on the

unseen test set. These figures show that Pareto-optimality

is a useful methodology to explore the various options for

segmentation boundary selection. Optimizing for Pareto-

optimality leads to segmentations that provide latency and

accuracy improvements simultaneously and provide choices

for the trade-off between latency and accuracy.

While Figure 5 shows the overall trend for various seg-

ment sizes on the test data, we chose some specific segment

lengths and show a head to head comparison between the two

segmenters in Table 4. This comparison shows that our PO

segmenter can provide faster latency compared to the GDP

segmenter while retaining translation accuracy.

µ = 3 µ = 8

Latency Accuracy Latency Accuracy

GDP 0.424 0.18 0.305 0.21

PO 0.474 0.18 0.315 0.21

Table 4: Result comparison for µ = 3 and µ = 8.

Our approach of optimizing over the latency in addition

to the translation quality always results in better latencies

compared to the baseline while keeping the same translation

quality or even improving it in some cases.
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Figure 4: Comparison on the segmentation training data.

5. Related Work

In speech translation, the segmentation task can be per-

formed on speech or the transcribed text. Early work on

speech translation uses prosodic pauses detected in speech as

segmentation boundaries [3, 4]. Segmentation methods ap-

plied on the transcribed text can be divided to two categories:

heuristic methods which use linguistic cues, like conjunc-

tions, commas, etc. [5]; and statistical methods which train a

classifier to predict the segmentation boundaries. Some early

methods use prosodic and lexical cues as features to predict

soft boundaries [20]; while most recent methods rely on word

alignment information to identifies contiguous blocks of text

that do not contain alignments to words outside them [7, 8].

In addition to these segmentation approaches which are ap-

plied before calling the translation decoder, there is another

strategy which perform the segmentation during decoding

which is usually called stream or incremental decoding. Dif-

ferent incremental decoding approaches have been proposed

for phrase-based [11, 21] and hierarchical phrase- based

translation [8, 22]. He et al. [23] focus on language pairs with

divergent word order by designing syntactic transformations

and rewriting batch translations into more monotonic trans-

lations. Some research has been conducted on human simul-

taneous interpretation to determine the effect of the latency

and accuracy metrics on the human evaluation of the output

of simultaneous translation. The results indicate that latency

is not as important as accuracy [13]. This implies that we

0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23
Avg Sentence BLEU Score

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
v
e
ra

g
e
 #

se
g
m

e
n
ts

 p
e
r 

se
co

n
d

µ=2

µ=3

µ=4

µ=5

µ=6
µ=7

µ=8

µ=9
µ=10
µ=11
µ=12
µ=13
µ=14
µ=15

PO Segmenter(α=0.5)

Pareto Optimality Line

GDP Segmenter(α=0.5)

Heuristic Segmenter

µ=8

µ=9

µ=10

µ=11

µ=12

µ=13
µ=14

µ=15

Figure 5: Comparison on the segmentation test data.

need algorithms that can make a careful choice between dif-

ferent segmentation decisions of the same latency to produce

translations with the best translation quality possible (for that

latency) which we have done in this paper.

6. Conclusion

This paper explores multi-metric optimization in simultane-

ous translation that learns segmentations that optimize both

latency and translation quality. We provide an efficient algo-

rithm for Pareto-Optimal segmentation and conducted a se-

ries of experiments that compared our approach to Oda et al.

[1] which used translation quality as the only criteria to se-

lect segmentation choices. We showed that Pareto-optimality

provides a better trade-off between latency and translation

quality. For any segment size, Pareto-optimal segments max-

imize latency and translation quality.

In future work, we plan to iteratively use a weighted seg-

mentation model that is trained using the Pareto frontier in

order to iteratively find new weights for the segmentation

model that will extend the “knee” of the Pareto frontier. Such

an approach was explored in [24] for multi-metric tuning of

SMT models, but has not been explored for training a seg-

mentation model.
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