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Abstract

The paper presents the first attempt to perform quality es-

timation (QE) of machine translation (MT) at the level of

phrases. Automatically translated sentences directly or indi-

rectly labelled by humans for quality at the word level are

used to devise phrase-level quality labels. We suggest meth-

ods of segmenting sentences into phrases which mimic the

actual segmentation that generated the translations. For the

prediction models, we apply two sets of phrase-level fea-

tures: (1) features used in sentence-level QE work, (2) fea-

tures based on word vector representations. Our experiments

show that the phrase-level models can improve over word-

level models in terms of how well they detect errors.

1. Introduction

Quality estimation (QE) of machine translation (MT) aims

at determining the quality of an automatically translated text

without comparing it to a reference translation. This task of-

ten arises in real-world applications of MT, e.g. when users

of an MT system translate new data and are interested in un-

derstanding how reliable the system output is. No reference

translations are available for such data, and therefore the use

of standard MT evaluation metrics is not possible. The only

way of determining the quality of the automatic translation

is the use of indirect evidence. QE is particularly useful in

applications which provide automatic translations for gisting

and in computer-assisted translation (CAT) settings where

automatic translation is followed by post-editing by humans.

The QE task started as the estimation of confidence of

individual words in a translated sentence with respect to a

particular translation model. Back then the task focused on

the confidence of a particular MT system about an automatic

translation, and as such explored features that required infor-

mation from the MT system, such as hypotheses and n-best

lists statistics [1], word posterior probabilities [2], n-gram

posterior probabilities [3].

More recently QE acquired a broader sense [4]: esti-

mating the quality of a translation for a particular purpose

(e.g. gisting or further post-editing), often disregarding the

MT system that generated it. The features currently used in

QE are thus system-independent; they use properties of the

source text and its translation (e.g. number of tokens, num-

bers, punctuation marks in sentences) or information from

external resources not related to the MT system that pro-

duced the translation (POS tags, syntactic features, perplex-

ity under external LMs) [5].

The labelling of translations (and therefore the score to

estimate) has changed as well: instead of using automatic

MT evaluation metrics to produce labels, the labelling is

more often done by humans (e.g. post-editing effort of a sen-

tence within to a 1-5 point scale [4]) or deduced from man-

ually generated data (e.g. post-editing effort defined by the

percentage of editing a translator performed, or post-editing

time measured by a CAT tool [6]). These are all labels for

sentence-level QE. Word-level labels, on the other hand, are

less clearly defined.

The task of word-level QE has regained attention since

2013, when it became part of the WMT evaluation campaign

[6]. The post-editing of MT output was used to automatically

collect translations annotated for quality at the word level: a

word left unchanged by a translator was labelled as “OK”,

while a word edited was labelled as “BAD”. However, fram-

ing the QE task in this way has serious limitations. Notably,

the fact that errors in different words are not independent

from one another. For example, if two words agree in their

grammatical features, changing one of them will most likely

cause the need to change the other one as well. For exam-

ple, if we translate the English phrase “My dear friend” into

French, a possible translation is “Mon cher ami”. However,

a post-editor will change it into “Ma chère amie” if “friend”

refers to a feminine entity. Here one mistranslation (“ami”

instead of “amie”) will have resulted in three corrections.

Such groups of related edits were defined in [7] as post-

editing actions (PEAs) — minimal units that should be post-

edited jointly in one action according to some pattern. The

MQM (Multidimensional Quality Metrics) framework [8] for

translation error analysis also focuses on defining errors that

can span phrases of any length. This leads us to the idea

that QE should be done at the level of phrases, as opposed

to words. Analysing groups of words jointly can provide ad-

ditional information which is not available at the word level,

and notifying a user that the errors in several adjacent words

are related can help them use quality predictions more effi-

ciently.

Another motivation for phrase-level QE is the fact that

the most widely used MT engines are phrase-based, i.e. at

each step the MT decoder extends the translation hypothe-



sis with a phrase. In other words, decisions are made over

phrases, rather than over single words. Therefore, it is likely

that translation errors can also be generated at the phrase-

level. In addition, phrase-level QE models could be used to

guide decoding to avoid certain errors.

Previous work on word-level QE has highlighted the in-

tuition that errors can span over entire phrases. [9] use a

number of features that rely on the source phrase that gen-

erated the current target phrase. In [2] the word posterior

probability is computed at the phrase level: it is regarded as

the probability of a word being generated by a source phrase

rather than by the entire source sentence. However, in pre-

vious research the quality labels are defined for every word,

and thus our work represents the first effort to estimate the

quality of a target phrase as an atomic unit. We identify the

main challenges in this task and suggest ways of dealing with

them.

The biggest challenge in phrase-level QE is segmenta-

tion: the task requires the automatic translations to be seg-

mented into phrases, and each phrase to be labelled for qual-

ity. Although there exist datasets labelled for errors at the

phrase level (e.g. using the MQM framework [10]), they do

not provide a segmentation that can be used directly for the

task. Since only errors are labelled, very long sequences of

error-free segments are found in these datasets, and there is

no clear way to segment them. If we train a classifier based

on such data to discriminate between good and bad phrases,

it is very likely to be biased by a phrase length and to classify

shorter phrases as bad and longer phrases as good regardless

of their actual quality. In addition, if the phrase segmenta-

tion is done based on the reference labels, we have no way of

segmenting unseen data, for example the test data to evaluate

the model’s performance.

Since no existing phrase-labelled datasets can be used for

the task, we explore and adapt datasets labelled for quality

at the word level. We expand this labelling by performing

decoder-like segmentation. We test different sets of features

and compare the performance of phrase-level QE models on

different feature sets.

The rest of the paper is organised as follows. In Section 2

we describe our segmentation strategies and ways of adapt-

ing word-level labels for phrases. Sections 3 and 4 describe

the feature sets and training algorithms and in Section 5 we

report the results of our experiments.

2. Segmentation and labelling

Phrase-level QE relies heavily upon appropriate sentence

segmentation. One of the main difficulties involved in the

segmentation task is the lack of a strict definition of what

a phrase is for this purpose. In linguistics, phrase is a unit

where words are connected by dependency relationships. In

statistical MT, phrases are simply sequences of words that

frequently co-occur and are aligned with the same source

word sequences.

Given that a lot of the translation data is likely to be pro-

duced by statistical MT systems nowadays, for this work we

assume the latter notion of segmentation and reproduce the

segmentation produced by a statistical MT decoder. Since

we do not have access to the MT system that produced the

translations, we re-decode the source data with a statistical

MT system and reproduce its phrase segmentation. We are

not guaranteed that this segmentation will match the original

one, i.e., the one that generated the target data. However, the

two MT systems are very similar, and thus we hope to get

similar segments. We suggest two ways of segmenting sen-

tences into Moses-like phrases [11]: segmentation of both

source and target sentences jointly with a source-target MT

system, and independent segmentation of target sentences.

2.1. Source segmentation

The datasets we use for QE systems training have source sen-

tences and their automatic translations. If we had access to

the MT system which generated the translation, we could re-

produce the original segmentation accurately by simply re-

decoding the source sentences. However, such MT models

are rarely made available, and we are not guaranteed to get

the same output using another MT system, even if it trained

on the same data.

One possible solution is to constrain the decoder to use

only phrases that appear in the target sentence. However,

constrained decoding is often unable to fully reach the trans-

lation provided, usually because of out-of-vocabulary (OOV)

words or lack of suitable phrases in the phrase table. In or-

der to supply the system with this information we trained an

additional phrase table on the data to be decoded (i.e. phrase-

level QE data), and produced translations using both phrase

tables.

Despite this additional data-specific phrase table, a small

percentage of sentences still could not be decoded. In those

cases we considered each word of the sentence a separate

phrase, and the corresponding source phrase as the word

aligned to it. Therefore, for some “phrases” of such sen-

tences, the source phrase will be empty.

2.2. Target segmentation

Our second technique consists in segmenting only the target

sentence with an MT system which translates from the target

language into the source language. We translate the target

sentence with no constraints and retrieve the phrase segmen-

tation for it. The actual translation will not match the source

side of our data, which is not an issue as we will not use it.

Moreover, we suppose that the output language of such a sys-

tem is not important, because we only use it to segment the

input sentence.

We obtain the source segmentation by combining the tar-

get segmentation and source-target alignments: for each tar-

get phrase, the corresponding source phrase is composed of

all source words aligned to the words in the target phrase.

The source phrase needs to be continuous, i.e. if two source



Figure 1: Overlapping source phrases generated by projection of target phrases onto the source sentence. Red lines denote word

alignments, blue lines denote phrase alignments.

words aligned to one target phrase have an unaligned word

(or a word aligned to another target phrase) in between, this

unaligned word also has to be included into the correspond-

ing target phrase. Figure 1 shows this case: the phrase “usted

lo” is aligned to two source words: “you” and “it”. They

have two words between them, so the source phrase will be

“you look for it”. The figure also gives an example of over-

lapping source phrases.

This approach has a few drawbacks: it can include a

source word in more than one phrase, it does not guaran-

tee the full coverage of a source sentence and it can generate

an empty source phrase if all words in the target phrase are

unaligned. In addition to that, when performing this type of

segmentation we feed the automatically translated sentences

to the decoder, because the target side of our QE training data

has been generated by an MT system. Since the majority of

these sentences contain errors, the phrase segmentation for

them can be different from the one generated for a valid tar-

get language sentence.

2.3. Phrase labelling

Datasets with post-edited machine translations can be la-

belled at the word level by comparing the automatic transla-

tions with its post-edited version. This can be done with edit

distance metrics such as the one implemented in the Tercom

tool [12]. This tool identifies an edit operation (substitution,

deletion, shift) which needs to be performed on a word to

make the automatic translation match its post-edition. The

word labels could thus be the edit operations which need to

be performed on words to improve the sentence translation,

as in the dataset created for the WMT-13 QE shared task

[6]. Other datasets have incorrect words manually labelled

with fine-grained error classes (grammatical error, mistrans-

lation, etc.) [10]. However, since the number of errors is

relatively small (10-30% for different datasets), in order to

reduce sparsity, binary (“OK”/“BAD”) labels are often used

[10, 13]. They indicate simply whether a word suits the con-

text or needs to be edited. However, both these types of labels

are defined over words only. When segmenting a sentence

with one of the techniques described above, we are likely to

face a situation where words put together into a phrase have

different tags. Thus we need to combine word labels to get

to a single phrase label.

The most obvious combination strategy is majority la-

belling, i.e. to assign the most common label of the words in

the phrase to that phrase. However, such a strategy is likely to

further increase the skewed discrepancies between the num-

ber of occurrences of “BAD” and “OK” labels. The majority

tagging strategy can reduce even more the number of “BAD”

tags, which will in turn make learning harder. We propose

three alternative labelling strategies to mitigate this issue:

• optimistic — if half or more of words have a label

“OK”, the phrase has the label “OK” (majority tag-

ging),

• pessimistic — if 30% words or more have a label

“BAD”, the phrase has the label “BAD”,

• super-pessimistic — if any word in the phrase has a

label “BAD”, the whole phrase has the label “BAD”.

The latter strategy is motivated by the possibility of us-

ing phrase-level QE to support phrase-based MT decoding.

At each step of the search process the decoder chooses a new

phrase, and the best candidate phrase should contain only

“good” words. If one of the words does not fit into the con-

text, the entire phrase should be considered unsuitable.

2.4. Joint target+data segmentation

Instead of changing the edit distance-based labels, we can get

rid of phrases with ambiguous tags if we combine the phrase

borders identified by the decoder with the borders of “OK”

and “BAD” spans in our data. Let us consider the following

example. The target phrase “¿Sabes lo que voy a hacer, sin

embargo?” and its original edit distance-based tagging “OK

OK OK OK BAD BAD BAD BAD BAD BAD OK” create the

following segmentation:

[ ¿ Sabes lo que ] [ voy a hacer , sin embargo ] [ ? ]

The target segmentation procedure for the same sen-

tence returns a different segmentation with ambiguous tags:

[ ¿ Sabes ] [ lo que voy a hacer ] [ , ] [ sin embargo ] [ ? ]

OK OK/BAD BAD BAD OK

However, if we combine two sets of borders, we convert

one phrase with ambiguous tagging (“lo que voy a hacer” —

2 “OK”, 3 “BAD” words) into two unambiguous phrases:



[ ¿ Sabes ] [ lo que ] [ voy a hacer ] [ , ] [ sin embargo ] [ ? ]

OK OK BAD BAD BAD OK

Note that we can join the phrase borders with the label

span borders only for the target segmentation, because the

source segmentation has the corresponding source phrases,

which cannot be segmented into “BAD” and “OK” segments.

2.5. Evaluation

In order to implement a phrase-level QE system we need to

segment both training and test data, and then label the test

phrases with a trained model. However, the phrase-level out-

put currently cannot be evaluated directly, because we have

no datasets with phrase-level annotation. Therefore, we seg-

ment the test sentences into phrases and label them, and then

we propagate the phrase labels onto all words of the phrase.

After that the test output can be evaluated at the word level.

3. Features

The the majority of features used in word-level QE systems

cannot be applied to phrases. However, most of the sentence-

level features are suitable for any sequence of words, not only

full sentences. For our experiments we used a list of 79 sen-

tence features used in the QuEst QE framework [14]1. These

features are called “black-box” because they do not use the

information from MT system. Some examples:

• LM features: language models (LM) score of source

and target phrases under source and target LMs.

• POS features: numbers of verbs, nouns and other parts

of speech in the source and the target.

• Features that indicate the number of tokens from dif-

ferent closed classes: numbers, alphanumeric tokens,

punctuation marks.

• Average number of translations of source words.

• Average number of n-grams in different frequency

quartiles.

Another set of features we use relies on source-only in-

formation, namely vector representations of words gener-

ated with word2vec tool2. Word2vec assigns every word

a fixed-size vector of numbers that encodes information on

the word’s contexts. Therefore, similar words should have

similar vectors (for a detailed description of word2vec see

[15]). The vectors are word-level, but unlike other word-

level features they can be easily combined for phrases that

are longer than one word. We can use two vector operations

to combine two or more vectors of the same size while keep-

ing the dimensionality of these vectors: element-wise sum or

average of the vectors. According to our preliminary exper-

iments, systems trained on summed vectors showed higher

performance than systems with averaged vectors, so in the

experiments reported below we use the sum of the vectors.

1For the complete list of features: http://www.quest.dcs.

shef.ac.uk/quest_files/features_blackbox
2https://code.google.com/p/word2vec/

4. Training algorithms

Most word-level QE approaches rely on sequence labelling

algorithms. One of the best-performing sequence labelling

techniques is conditional random fields (CRF) [16], which

has been used by many word-level QE systems [17, 18].

However, a CRF model might be less helpful for phrase-

level QE. The errors in words may be dependent on each

other, and thus the labels of neighbouring tokens can influ-

ence each other. Linear chain CRFs are well suited for mod-

elling this type of dependency. However, in phrase-level QE

the relatedness of word-level errors is already captured by

the phrases. In other words, if the segmentation is accurate,

it encapsulates related errors in one unit. While there are no

constraints on labels of adjacent phrases (i.e., two or more

OK/BAD phrases can occur consecutively), these labels are

not expected to be as closely related as those in word-level

QE. Therefore, we also explore a standard classifier, a ran-

dom forest classifier [19], which showed good performance

in our previous experiments on word-level QE.

5. Experiments

We performed a set of experiments to test how phrase-level

systems compare to previous work on word-level QE and to

find the optimal parameters for the phrase-level training. We

tested performance varying the following parameters:

• Segmentation: target segmentation, source segmenta-

tion, target+data segmentation,

• Phrases labelling: optimistic, pessimistic or super-

pessimistic,

• Feature set: sentence-level features from QuEst, com-

bined word2vec word vectors, both sets of features,

• Models: CRF or Random forest.

We conducted our experiments on two datasets used for

the QE shared tasks in 2014 and 2015, so we can compare

the performance of our systems with state-of-the-art results.

5.1. Systems

The training of a phrase-level QE system was performed with

the open-source QE tool Marmot3. We trained three distinct

systems on three datasets:

• phrase-wmt-14: trained on the WMT-14 dataset la-

belled with error types [10].

• Two systems were trained on fractions of the WMT-15

dataset [13]. This dataset has 11,000 post-edited auto-

matic translations. However, the majority of them con-

tain too few errors, and QE systems trained on the full

dataset tend to perform overly optimistic labellings.

Therefore, following [20] we use only sentences with

the highest HTER score (i.e. largest number of errors

normalised by the sentence length):

3https://github.com/qe-team/marmot/tree/phrase_

level



– phrase-wmt-15-2000: trained on the 2,000

worst sentences from WMT-15,

– phrase-wmt-15-5000: trained on the 5,000

worst sentences from WMT-15.

We also compare our system with the following represen-

tative systems that participated in the WMT-14 and WMT-15

QE shared tasks at the word level:

• Systems from WMT-14:

– Baseline-all-bad — trivial baseline strategy that

assigns the tag “BAD” to all words. No other

system could beat it in terms of F1-BAD score.

– FBK-UPV-UEDIN [18] — system with features

from word posterior probabilities and confusion

network descriptors computed over 100,000-best

translations. Tagging was done with bidirec-

tional long short-term memory recurrent neural

networks. This was the best system in WMT-14.

– LIG [17] — system with 25 black-box features

and was trained with CRF. It was the 3rd best

system in WMT-14.

• Systems from WMT-15:

– Baseline [13] — system that was used as a base-

line at the WMT-15 word-level QE task.

– Baseline-all-bad — the same “all-bad” strategy.

– UAlacant [21] — system that used features

drawn from pseudo-references (automatic trans-

lations of the source sentence) generated by dif-

ferent MT systems, and baseline features re-

leased for the task. Best best-performing system.

– Shef-word2vec [22] — system that used word

vector representations as features and performed

labelling with a CRF model. This system was

ranked 3rd out of 8.

5.2. Tools and datasets

Besides the training and test sets, a QE system requires vari-

ous resources and tools for feature extraction:

• The word alignment model was trained on the Europarl

corpus [23] using the fast-align tool4.

• LM and n-gram count features were extracted using

LMs trained on the Europarl corpus using SRILM5.

• POS features were extracted with TreeTagger [24].

• The translation probability features were computed us-

ing lexical probability tables trained with Moses sys-

tem [11] on the Europarl corpus.

• The word vector representations were computed

with gensim [25] — Python implementation of

word2vec models. The training data for the vectors

is the concatenation of Europarl, News-commentary6

4https://github.com/clab/fast_align
5http://www.speech.sri.com/projects/srilm/
6http://statmt.org/wmt15/

and News crawl7 corpora. The vectors are 500-

dimensional.

5.3. Segmentation properties
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Figure 2: Phrase length frequencies for different segmenta-

tion techniques.

The segments produced by two segmentation strategies

differ substantially. The main difference is the distribution

of phrase lengths: while the target segmentation tended to

segment the sentences into shorter phrases, the majority of

phrases used by the source segmentation are 5-word long

(see Figure 2). This is explained by the fact that the former

strategy uses an independent translation table, whereas the

latter decodes the sentences with a translation table trained

on the same sentences, so it contains longer phrases.
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datasets segmented with different segmentation techniques

(source/target) and re-labelled with either of the labelling

strategies (optimistic/pessimistic/super-pessimistic).

We also looked at the amount of word labels that were

modified by different labelling strategies under the target-

7http://statmt.org/wmt14/
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Figure 4: Results for systems with pessimistic and super-

pessimistic phrase tagging schemes. Results of systems that

differ only in terms of tagging strategy are joined with a line.

based and source-based segmentation types. Figure 3 shows

the percentage of words in different datasets that needed to

change the label from “OK” to “BAD” and vice-versa. Under

source segmentation all labelling techniques become more

aggressive, i.e. they change more words. The “optimistic”

strategy changes zero or few words from “OK” to “BAD”,

whereas the “super-pessimistic” strategy does not change

words from “BAD” to “OK”. Datasets converted with the

“pessimistic” strategy contain both types of conversions, but

tend to add “BAD” labels rather than “OK” labels.

5.4. Selection of optimal parameters

Here we study which parameters we should use to achieve

the best prediction quality for our datasets. We found that

most of the parameters depend on datasets and values of

other parameters. In addition, the performance of a system

is difficult to define: as the F1 score for the “BAD” class

(primary metric for the word-level QE task used for systems

comparison in [13]) grows, the F1 score for the “OK” class

drops. In order to account for both of them we plot the F1-

BAD with respect to F1-OK scores. In each plot we compare

systems that differ in one parameter. They are usually shown

as items of different colours and shapes. Some items of the

same configuration can lie quite far apart. That happens be-

cause other parameters of a given pair of systems influenced

their performance.

The performance of systems that use different labelling

schemes follow a certain pattern: the F1-BAD grows as more

negative data is added, while the F1-OK score drops. Thus,

the ‘optimistic’ labelling scheme is almost always inferior

to the other two strategies. The ‘pessimistic’ and ‘super-

pessimistic’ schemes perform closer, but the latter returns

higher F1-BAD scores for most settings (Figure 4).

This can also be attributed to the source segmentation

strategy, which generates longer phrases and therefore re-

quires more words to change tag from “OK” to “BAD”. Fig-

ure 5 shows the comparison of different segmentation strate-

gies and training algorithms. It can be seen that CRF pro-

duced the best- as well as the worst-performing systems de-

pending on the type of segmentation: the source-segmented

data achieves high F1-BAD score, whereas target segmenta-

tion does not perform well in terms of F1-BAD. On the other

hand, the systems trained with the Random Forest classifier

do not discriminate between the segmentation types. In ad-

dition to that, these systems proved very unstable, whereas

CRF always returned the same results for a given configu-

ration. In order to get more meaningful results, we ran the

Random Forest classifier 20 times for each configuration and

averaged the results.

0 

0,2 

0,4 

0,6 

0,8 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 

F
1

 O
K

 

F1 BAD 

Source 

Target 

Classification 

Sequence labelling 

Best result 

Figure 5: Differences between target and source segmenta-

tion and between classification and sequence labelling for

phrase-level systems.
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Figure 6: Performance of systems with different feature sets.

The different sets of features do not lead to as much vari-

ance in performance as the other parameters. However, we

can notice that systems with word2vec features are more

stable and less dependent on other parameters: all systems

which use these features perform closely. The use of QuEst

and word2vec features in combination can lead to the im-



proved performance, whereas systems using only QuEst fea-

tures are the least stable.

The settings that returned the highest F1-BAD scores for

all the datasets were similar: source segmentation, super-

pessimistic labelling, system trained with CRF (see yellow

star in Figure 5). The optimal feature sets differ for differ-

ent datasets. All the figures in this section show the perfor-

mance of systems trained on 5,000 sentences from the WMT-

15 dataset, but the the trends hold for the rest of the systems.

5.5. Comparison to word-level systems

We trained our phrase-level systems on datasets used in the

WMT-14 and WMT-15 QE shared tasks, so that we can com-

pare our systems with word-level systems for the task. The

WMT-14 system used QuEst features, the WMT-15 system

with 2,000 sentences — word2vec features, the WMT-15

system with 5,000 sentence — the combination of QuEst and

word2vec features (although for both WMT-15 systems all

feature sets performed closely). The rest of the parameters

were fixed for all the datasets: source segmentation, super-

pessimistic labelling, CRF.

System F1-BAD ↑ F1-OK Weighted F1

phrase-wmt-14 62.76 39.07 56.80

Baseline-all-bad 52.52 0.0 18.7

FBK-UPV-UEDIN 48.72 69.33 61.99

LIG 44.47 74.09 63.54

Table 1: Performance on WMT-14 test set, systems sorted

from best to worst, our system in bold.

System F1-BAD ↑ F1-OK Weighted F1

phrase-wmt-15-5000 51.84 49.38 51.08

phrase-wmt-15-2000 51.57 49.05 50.79

UAlacant 43.12 78.07 71.47

SHEF-word2vec 38.43 71.63 65.37

Baseline-all-bad 31.75 0.0 5.99

Baseline 16.78 88.93 75.31

Table 2: Performance on WMT-15 test set, systems sorted

from best to worst, our systems in bold.

Table 1 shows the performance of systems trained and

tested on the QE dataset released for the WMT-14 shared

task. Our system is the only system which beats the triv-

ial all-bad baseline strategy in terms of F1-BAD score. The

same trend is seen in Table 2, which shows the performance

of systems on the WMT-15 data. Both our systems outper-

form all other system including the winner. They achieve

very close scores, which confirms that sentences with less

errors do not contribute much for word-level QE.

6. Conclusions and future work

We introduced an approach for quality estimation of MT at

the phrase level. To the best of our knowledge, this is the first

attempt to label MT phrases with quality. We found that our

phrase-level systems outperform word-level systems.

We tested a number of different parameters and found

that sentence-level features give better results than word em-

bedding features, CRF model performs better than Random

Forest classifier, and the best segmentation strategy is to per-

form decoding of a source sentence restricting the decoder to

output the target sentence, and use the phrase segmentation

generated during the decoding. The best tagging strategy is

to assume that every phrase that contains at least one “BAD”

word should be tagged as “BAD”.

In future work we will investigate the performance of

other training algorithms. We believe that phrase-level QE

can benefit from more advanced algorithms that take into ac-

count the segmentation of a sentence in subsequences. For

example, Semi-Markov CRFs [26] are designed to solve

segmentation and labelling tasks jointly, and higher order

CRFs [27] explicitly consider relations between non-adjacent

words which can be useful for modelling phrase errors.

An issue with phrase-level QE is that all available

datasets are annotated only at the word level. Another di-

rection for future work will thus be the development of a

dataset of automatic translations annotated for quality at the

level of phrases. From an application perspective, we assume

that the phrase segmentation should be guided by segments

in statistical MT rather than linguistic properties of the data.

However, it would also be interesting to test the usefulness

linguistically-informed segmentation.

Finally, further research is necessary to design features

that are specific for phrase-level QE. Phrases combine prop-

erties of sentences and words: they are sequences, like sen-

tences, but can be quite short, so sentence-level features may

be uninformative. The usefulness of linguistically motivated

features in particular needs to be tested: as the phrase seg-

mentation performed by an MT decoder does not take into

account linguistic information, features indicating whether a

phrase is valid based on linguistic information may not suit

the task. On the other hand, linguistic information can be

useful as it is often unknown to the MT system.

Phrase-level QE of MT is a new field of research. In this

paper we proposed the first strategy for the task, highlighted

some of its challenges and outlined possible directions of fu-

ture work.
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