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Abstract

In this paper, we introduce the system developed at the Insti-

tute for Infocomm Research (I2R) for the English ASR task

within the IWSLT 2015 evaluation campaign. The front-

end module of our system includes a harmonic modelling

based automatic segmentation and the conventional MFCC

feature extraction. The back-end module consists of an aux-

iliary GMM-HMM training to provide the speaker adaptive

transform (SAT) and the initial forced alignment, followed

by a discriminative training DNN acoustic modelling. Multi-

stage decoding strategy is employed with a semi-supervised

DNN adaptation which uses weighted labels generated by

the previous-pass decoding output to update the trained DNN

models. Finally, Recurrent Neural network (RNN) is used to

train and rescore the language modelling to further improve

the performances. Our system achieved 8.4 % WER on the

tst2013 development set, which is better than the official re-

sults on the same set reported from the previous evaluation.

For this year’s tst2015 test set, we obtained 7.7% WER.

1. Introduction

The goal of the Automatic Speech Recognition (ASR) track

for IWSLT 2015 is to transcribe TED talks and TEDx talks

[1]. The speech in English TED talks are lectures related

to Technology, Entertainment and Design (TED) in sponta-

neous speaking style. Despite that the speech in the TED

talks is in general planned, well articulated, and recorded in

high quality, the task is challenging due to the large variabil-

ity of topics, the presence of non-speech events, the ascents

of non-native speakers, and the informal speaking style. In

this paper, we introduce our system for English TED ASR

track of the 2015 IWSLT evaluation campaign. We choose

to focus on developing a single system rather than a fusion

of multiple platforms. The overview of our ASR system is

illustrated in Fig.1. Since the TEDs’ audio samples, during

the test phase, are provided without class labels and timing

information, automatic segmentation is necessary to split au-

dio file into speech sentences to input the ASR system. In this

work, we develop a voice activity detection (VAD) method

based on harmonic modelling of speech signals and build the

automatic segmentation on top of that. As the TEDs audio is

normally recorded in relatively high quality, no noise com-

pensation method is needed and we just apply the conven-
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Figure 1: Overview of the I2R ASR system for IWSLT 2015.

tional MFCC features as the input to the ASR system. The

training is started with an auxiliary GMM-HMM training to

provide the speaker adaptive transform (SAT) and the initial

alignment. Then the DNN acoustic modelling is carried out

on top of SAT features with a fixed size concatenating win-

dow. The hidden layer weights are initialised using layer-

wise restricted Boltzmann machine (RBM) pre-training, us-

ing 100 hours of randomly selected utterances from the train-

ing materials. Multi-stage decoding strategy is employed

with semi-supervised DNN model adaptation using weighted

lattices generated by the previous-pass decoding output. Fi-

nally, Recurrent Neural network (RNN) is used to train and

re-score the language modelling to further improve the per-

formances. Our system obtained WER of 8.4% on the devel-

opment set (tst2013) and 7.7% on the test set (tst2015), re-

spectively. The organisation of the rest of the paper is as fol-

lows. Secs.2 introduces the automatic segmentation. Secs.3

and 4 describes the acoustic modelling and language mod-

elling, respectively. Secs.5 reports the experimental results

and analyzes the role of each module into the ASR perfor-

mances. Finally, Secs 6 concludes the paper.



2. Automatic Segmentation

The VAD module detects the speech segments based on the

harmonic to sub-harmonic ratio, and uses an adaptive thresh-

old to reject regions of noise and other non-speech and a post-

processing to smooth the result.

Our approach uses a vector quantisation (VQ) system

as the basis for voice activity detection (VAD), with frame

selection based on both energy and the harmonic to sub-

harmonic ratio (SHR) [2, 3], which is a feature for voiced

speech detection. Three acoustic categories are targeted in

this knowledge-based approach:

Speech - voiced speech is characterised by having both a

high SHR and high energy, due to the strong harmonic

structure produced during speech vocalisation.

Background Noise - for the task of lecture-style speech,

where the signal-to-noise ratio (SNR) is high, the

noise will typically have a much lower energy than the

speech signal.

Clapping - impulsive noise has a high energy but a low

SHR, which is due to the physical nature of the way

the sounds are generated.

To compute the SHR within each short-time windowed

frame, using a frame length of 32 ms, the amplitude spec-

trum E(f) is first computed. For voiced segments of speech,

E(f) has strong peaks at the harmonics of the fundamen-

tal frequency F0. From this spectrum, the summation of

harmonic amplitude (SHA) and summation of sub-harmonic

amplitude (SSA) is computed for each frequency in the range

[F0min, F0max] as follows:

SHA(f) =

Nharm∑

k=1

∆∑

a=−∆

E(k.f + a) (1)

SSA(f) =

Nharm∑

k=1

∆∑

a=−∆

E((k −
1

2
).f + a) (2)

where only the first Nharm harmonics are taken into account

in the summation, and a window of ∆ = 1 neighbouring bins

are included in the summation to account for inharmonicity.

Finally, the harmonic to sub-harmonic ratio (SHR) is the ratio

of the two, as follows:

SHR(f) =
SHA(f)

SSA(f)
(3)

where the maximum value maxf (SHR(f)) is taken as the

value of the feature for each frame, SHR[t].
The VQ process is applied on each TED talk indepen-

dently, and uses basic Mel-frequency cepstral coefficient

(MFCC) as the underlying features. Our approach is to

use k-Means clustering to build a set of representative vec-

tors for each of the three categories. The top 10% of the

available frames, ranked according to the above-mentioned

frame-selection criteria, are used for both the speech and

noise categories, while only the top 2% of frames are used for

the clapping category in anticipation that less data is avail-

able.

To allow a threshold to be set for the VAD, the VQ dis-

tances are compared using the following formula:

V QR = min(Dnoise, Dclapping)−min(Dspeech) (4)

where the distances D for each category are calculated as the

minimum Euclidean distance of the quantised vectors for that

category. We used a threshold set at thresh = 0 such that

speech frames are those with V QR > thresh.

Note that the frame-level output decision is first

smoothed to join together segments separated by a gap of

less than 500 milliseconds, with an additional hangover of

length 500 milliseconds then applied to ensure that unvoiced

speech at the start and end of the segments are not missed.

3. Acoustic Modelling

This section describes the acoustic modelling used in the I2R

ASR system, as shown in Figure 1. The following three as-

pects are detailed: (1) training data selection, (2) feature ex-

traction and auxiliary GMM-HMM, and (3) DNN acoustic

modelling.

3.1. Training Data

Following the success of the NICT system for IWSLT 2014

[4], we use a similar set of training data based on the follow-

ing three corpora:

Wall Street Journal - this comprises of 81.1 hours of read

speech, available from the Linguistic Data Consortium

(LDC), from LDC93S6B and LDC94S13B.

HUB4 English Broadcast news - unlike [4] we use the full

201 hours of broadcast news data from LDC97S44 and

LDC98S71.

TEDLIUM version 2 - this corpus contains 204 hours of

lecture-style TED speech [5] consisting of 1481 talks

after the removal of non-permissible talks.

Further experiments were conducted with an additional 44

hours of data extracted from the Euronews corpus [6], pro-

vided by the organisers. However, this was found to degrade

the WER results by approximately 4% relative so in the final

system we did not include it in the training.

3.2. Feature Extraction and Auxiliary GMM-HMM

The acoustic models (both GMM-HMM and DNN) are

trained on 13-dimensional MFCCs, without energy, which

are mean normalised over the speech segments extracted

from each conversation for the speaker. Later, these features

are spliced by ±3 frames adjacent to the central frame and



projected down to 40 dimensions using linear discriminant

analysis (LDA).

Prior to DNN training, an auxiliary GMM-HMM is first

trained to provide speaker adaptive transforms (SAT) and

the initial alignments for training the subsequent DNN sys-

tem by forced alignment, which inherits the same tied-state

structure. To train the GMM-HMM, a monophone system

is first trained using the shortest twenty thousand utterances,

to make the initial alignments based on a flat-start approach

easier. Next, triphone and LDA GMM-HMM systems are

trained with 2500 and 4000 tied states respectively, followed

by SAT training to give a final SAT GMM-HMM system

with 6353 tied triphone states and 150k Gaussians. The

SAT approach uses feature-space maximum likelihood lin-

ear regression (fMLLR) transforms, with speech segments

extracted from each conversation assumed to come from the

same speaker. For training, the fMLLR transforms are com-

puted from forced alignments, while for testing, the fMLLR

transforms are computed from lattices by using 2 passes of

decoding.

3.3. DNN Acoustic Modelling

The DNN acoustic model is trained on top of SAT features

that are spliced ±5 frames and rescaled to have zero mean

and unit variance. The DNN has 5 hidden layers, where

each hidden layer has 2048 sigmoid neurons, and a 6353 di-

mensional softmax output layer. The hidden layer weights

are initialised using layer-wise restricted Boltzmann machine

(RBM) pretraining, using 100 hours of randomly selected ut-

terances from the TEDLIUM corpus [5]. After pretraining,

fine-tuning is performed to minimize the per-frame cross-

entropy between the labels and network output. The first

stage of fine-tuning was performed using the same 100 hour

subset as for pretraining with a learning rate of 0.008 and

halving beginning when the network improvement slows.

This then generated alignments for a full training set to per-

form a second stage of fine-tuning. Finally, the DNN is re-

trained by sequence-discriminative training to optimise the

state minimum Bayes risk (sMBR) objective. Two iterations

are performed with a fixed learning rate of 1e-5. The Kaldi

toolkit is used for all experiments [7].

3.4. Semi-supervised DNN adaptation

During decoding, semi-supervised DNN adaptation is

utilised on a per-talk basis to reduce any mismatch between

training and testing conditions and to provide speaker adap-

tation of the acoustic model [8, 9]. Additional iterations of

fine-training of the DNN requires a frame-level label, and

potentially also a confidence measure, and these are gener-

ated based on the initial output of the system, as shown in

Figure 1.

The frame-level confidence cframei is extracted from the

lattice posteriors γ(i, s), which express the probability of be-

ing in state s at time i. The decoding output gives us the best

Category Corpus
Sentences

selected

Pct% of

Original

In-domain TED Talks 92k -

Out-of-

domain

CommonCrawl 770k 9%

Europarl 140k 6%

Gigaword FR-EN 0.9M 4%

NewsCommentary 47k 19%

News 12.3M 18%

Yandex 310k 31%

Table 1: Training data for the language models.

path state sequence, si,1best, and the confidence values are

the posteriors under this sequence, as follows [9]:

cframei = γ (i, si,1best) (5)

The best path state sequence and confidence measures are

then used as the target labels and weightings respectively for

additional iterations of DNN fine-tuning, with weights less

than c = 0.7 set to zero. In our experiments, all weights

in the network are updated, as our experiments suggested

this performed better than adapting only the first layer of the

DNN. The learning rate is 0.0008, with halving performed

each iteration until no improvement is observed.

4. Language Modelling

This section describes the language modelling and rescoring

approaches used in the I2R ASR system. The following three

aspects are detailed: (1) training data selection, (2) n-gram

language model training, and (3) RNN language modelling

and rescoring.

4.1. Training Data and N-gram Language Model

Table 1 shows the data used for training the language models

in the I2R ASR system. The out-of-domain data is provided

as part of the enhanced TEDLIUM version 2 corpus [5], and

consists of text selected from corpus from the WMT 2013

evaluation campaign. The selection is based on the XenC

tool [10], which is a filtering framework that trains both in-

domain and out-of-domain language models and uses the dif-

ference in the computed scores on the out-of-domain text as

an estimation of the closeness of those sentences to the in-

domain subject. Text from each corpus is concatenated to-

gether to form a single large set that is used for training each

of the subsequent language models.

Two n-gram language models are trained using the data

selected from the available corpus as described above. The

first is a 3-gram model, trained using the “Kaldi LM” pack-

age [7], which is used for DNN-based lattice generation dur-

ing the first pass of decoding. The second is a 4-gram model,

which is trained in an identical fashion to the one above, and

is used for rescoring of the word lattice to provide a consis-

tent improvement in WER performance.



Processing Step
WER tst2013

Ground Truth Segmentation

SAT GMM 21.3% 22.4%

DNN sMBR 12.3% 11.6%

+ LM Rescore 10.8% 10.1%

+ DNN Adapt 1 9.5% 8.7%

+ DNN Adapt 2 9.4% 8.5%

+ DNN Adapt 3 9.1% 8.4%

Table 2: Detailed experimental results on the tst2013 devel-

opment set showing the performance at each stage of the de-

coding system. Note that the DNN semi-supervised adapta-

tion step includes a final round of language model rescoring.

4.2. RNN Language Model Training and Rescoring

A recurrent neural network (RNN) language model is trained

and used for n-best list rescoring to further enhance the

WER performance. The RNNLM package version 0.3e [11]

was used, with 30k words in the vocabulary, 480 hidden

units, 300 classes, and 2000M direct connections. Back-

propagation Through Time (BPTT), with truncated time or-

der 5, was used for RNN training, which performs joint train-

ing with a maximum entropy model to reduce the hidden

layer size. The training data for the RNN was the same as

above, although to enable a faster training time a random

subset of 2M sentences (14% of the filtered corpora) were

selected for training.

The RNN language model has a perplexity of approxi-

mately 60, and is used to rescore the output decoding lattice,

with interpolation weight of 0.3 instead of using the 4-gram

LM. With lower perplexity, the RNN language model can

be beneficial in reducing the WER, since final ASR perfor-

mance is quite dependent on a strong language model. Note

that the CMU pronouncing dictionary [12] was used, limited

to the words that appear in the language training databases.

5. Experimental Results

In this paper, we opt to use a single system without any

combination using ROVER [13] or other techniques. At

the decoding stage, we first decode the whole test set from

the trained DNN acoustic models and 3-gram LM. Then the

4-gram LM rescoring is carried out, following by another

RNN rescoring, described above. Next, the semi-supervised

adaptation is applied for each TED test file. Each round

of semi-supervised adaptation includes DNN models lattice

outputting, 4-gram LM rescoring, RNN LM rescoring and

DNN model adaptation. After 3-rounds of semi-supervised

adaptation of the DNN acoustic model, there was no further

improvement in WER on the devleopment sets, hence we ap-

plied the same number during final testing. For this year’s

tst2015 test set, we obtained 7.7% WER.

Processing Step WER Gain (tst2013)

DNN sMBR 9%

+ LM Rescoring 1.5%

+ Semi-supervised DNN 1.7%

Table 3: Comparison of the approximate WER improve-

ments given by the key components of the system, compared

to the SAT-GMM result.

5.1. Results and Discussions

Table 2 reports detailed experimental results on the tst2013

development set showing the performance at each stage of

the training and decoding with ground truth segmentation

and the proposed automatic segmentation. We can see that

the performance of the proposed segmentation is compara-

ble to the ground truths at the baseline SAT-GMM models

and and even outperformed the latter at the more comprehen-

sive training models. The best result from tst2013 develop-

ment set is 8.4% WER and it was obtained with multi-stage

semi-supervised adaptation with rescoring of LM. This result

is better than the official result of 10.6% WER on the same

tst2013 set from last evaluation. The DNN with sMBR dis-

criminative training yields a reasonable result of 11.6% WER

and that system is fast enough to be real-time and hence rec-

ommended for the live engines.

5.2. Analysis of Word Error Rate Improvements

A summary of the contribution of each processing step to the

final WER result is shown in Table 3. It can be seen that the

DNN with sMBR discriminative training gives the most sig-

nificant improvement in performance over the baseline SAT-

GMM. In addition, the DNN decoding strategy gives a total

of around 2-3% improvement, with the biggest contribution

coming from the semi-supervised DNN speaker adaptation,

combined with a consistent improvement achieved through

language model rescoring. The semi-supervised DNN adap-

tation is suitable for TED and TEDx talks since it involves a

single speaker and long enough to be effective. However, a

big jump of performance is normally seen in the first round

of adaptation while it is very time consuming. Hence, in

practical situations, using one round of adaptation is recom-

mended.

6. Conclusions

In this paper, we described our English ASR system for

IWSLT 2015 evaluation campaign. This is a single system

consisting of harmonic modelling voice activity detection

(VAD) for automatic segmentation, speaker adaptive training

(SAT) GMM-HMM initial forced alignment, DNN acous-

tic modelling with sMBR discriminative training, RNN lan-

guage modelling and rescoring, and semi-supervised DNN

adaptation in decoding. We obtained good performances on

both the development and test sets. Among the system, the



harmonic modelling VAD, the DNN acoustic modelling with

discriminative training, the semi-supervised DNN adaptation

have found to be the key components which contributed to

the ASR improvements compared to the baseline systems.
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