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Abstract

We describe the University of Maryland machine translation

systems submitted to the IWSLT 2015 French-English and

Vietnamese-English tasks. We built standard hierarchical

phrase-based models, extended in two ways: (1) we applied

novel data selection techniques to select relevant informa-

tion from the large French-English training corpora, and (2)

we experimented with neural language models. Our French-

English system compares favorably against the organizers’

baseline, while the Vietnamese-English one does not, indi-

cating the difficulty of the translation scenario.

1. Introduction

Our goal at the University of Maryland (UMD) for the 2015

IWSLT evaluation campaign was to test our redesigned ma-

chine translation (MT) pipeline for different language pairs

and data conditions. We selected the French-English and

Vietnamese-English tasks, consisting of translating the tran-

scripts of TED talks.1 The French-English task is a standard

one, with a large amount of available data. On the other end

of the spectrum, the Vietnamese-English language pair is a

scarce-resource scenario and has not yet received much at-

tention in the Machine Translation community. We translated

into English in both tracks, so as to have a larger amount

of monolingual data available for training neural language

models. Our systems all use a standard hierarchical phrase-

based architecture, outlined in Section 2. We describe how

we used data selection techniques (Sections 4 and 5) to make

the most of the available data (Section 3). We also discuss

the impact of neural language models (Section 6) on transla-

tion output. Official results on the evaluation test set show

that our French-English systems outperformed the organiz-

ers’ baseline by +0.65 to +1 BLEU, while our Vietnamese-

English system were -3 BLEU below the public baseline. We

discuss these results in Section 7.

2. Core Machine Translation Architecture

We use the cdec [1] machine translation toolkit to build hi-

erarchical phrase-based MT systems [2]. We expected the

1http://www.ted.com

resulting synchronous context-free grammar (SCFG) phrasal

rules to be well suited to modeling both the local reorder-

ings arising from translating French into English, as well

as the more complex translation rules needed to map Viet-

namese – an analytic head-initial language – into English.

Training the MT systems was done by following the base-

line cdec pipeline.2 Word alignments were generated using

fast_align [3], and symmetrized using the grow-diag-
final-and heuristic. The SCFG rules extracted for each test

sentence were scored using a small number of dense fea-

tures, including rule frequency, maximum lexical alignment

within the rule, etc. We mostly used 4-gram language mod-

els, trained using kenlm [4], unless stated otherwise. Model

weights were tuned using the MIRA algorithm [5] in order to

maximize BLEU [6] on held-out test sets.

3. Data Preparation

The 2015 IWSLT campaign released parallel data from both

Wikipedia [7] and TED talks.3 The remaining corpora were

obtained from the 2015 Workshop on Machine Translation

(WMT ‘15) task.4 We translated into English in both of

the evaluation tracks we participated in. The English data

was all pre-processed the same way: first tokenized with the

Europarl tokenizer5 and then lowercased with the standard

cdec tool.

3.1. French–English Data

We processed the French data in the same way as the English

data, described above, except the tokenization was done with

the Moses tokenizer. Table 1 lists the specific sources con-

tained in the 41M parallel French-English training corpus.

3.2. Vietnamese–English Data

The Vietnamese-English translation task is a scarce-resource

scenario, with only 0.5% as much training data as the French-

English task. Our training corpus included all of the parallel

data made available by the organizers, including the auto-

2http://www.cdec-decoder.org/guide/tutorial.html
3https://sites.google.com/site/iwsltevaluation2015/data-provided
4http://www.statmt.org/wmt15/translation-task.html
5http://www.statmt.org/europarl/v7/tools.tgz

http://www.ted.com
http://www.cdec-decoder.org/guide/tutorial.html


Corpus Segments Tokens (Fr) Tokens (En)

Europarl v7 2.0 M 61.9 M 55.7 M

News Commentary 200 k 6.3 M 5.1 M

Common Crawl 3.2 M 91.2 M 81.1 M

Gigaword Fr-En 22.5 M 810.2 M 667.9 M

UN Corpus 12.9 M 421.7 M 361.9 M

Wikipedia 403 k 9.8 M 11.3 M

TED corpus 207 k 4.5 M 4.2 M

Total 41.5 M 1.406 B 1.187 B

Table 1: French-English Parallel Training Data

matically extracted Wikipedia corpus [7]. This was done to

increase vocabulary coverage, despite the domain mismatch

of the Wikipedia data with respect to the TED task. The size

of each corpus is shown in Table 2.

Corpus Segments Tokens (Vi) Tokens (En)

TED corpus 130.9k 3.2M 2.6M

Wiki 58.1k 662.2k 661k

Total 189k 3.86M 3.29M

Table 2: Vietnamese-English Parallel Training Data

The processing of the Vietnamese side was minimal: we

simply tokenized it as if it were English and removed any

uppercasing to normalize borrowed foreign words. We ex-

perimented with off-the-shelf chunking tools for Vietnamese,

but found that they did not help translation quality. The vn-

Tokenizer [8] tool takes a hybrid approach that combines

finite-state automata, regular expressions, and a maximal-

matching strategy. However, it proved too slow to process

our training data. We also tried the CRFChunker from the

JVnSegmenter software [9], which frames chunking as a su-

pervised sequence labeling problem. This tool comes with

a model trained on a small set of 8,000 hand-labeled Viet-

namese sentences. Unfortunately, using the CRFChunker to

preprocess Vietnamese degrades translation quality by about

-0.6 BLEU, possibly due to a domain mismatch.

Choosing not to chunk the Vietnamese text differs from

standard practice in related translation tasks. In Chinese-

English translation, for example, Chinese word segmentation

is a key step of the preprocessing pipeline (with the exception

of substring or character-based MT models, as in [10]). How-

ever, prior work suggests that defining Chinese word bound-

aries independently of the translation process is not optimal

[11, 12]. Based on this, it seems reasonable to let word align-

ment patterns define translation-driven Vietnamese phrases.

3.3. Postprocessing

Our translation system used tokenized and un-cased data

internally. As such, our MT output required the post-

processing steps of re-casing and then de-tokenizing before

submission. Recasing aims to restore the capitalization that

was lost when normalizing case during preprocessing. We

used the Moses recaser tool.6 This tool frames recasing as a

monotone translation task from un-cased English into cased

English. The tool runs Moses without reordering, using a

word-to-word translation model and a cased language model.

We trained the recaser language model on the English side of

the parallel training corpora in Tables 1 and 2. We detok-

enized the re-cased output using the rule-based detokenizer

tool7 from Moses [13]. We extended this script to support ad-

ditional special characters that caused the decoder to crash.

4. Training Data Selection

We faced two problems when building the French-English

system. The training process was computationally expensive

because of the large amount of parallel training data (41M

segments). Additionally, the vast majority of the parallel seg-

ments are drawn from various domains and genres that are

very different from TED. Table 1 shows that TED talks rep-

resent only 0.5% of the parallel segments. We addressed both

issues by using data selection to determine the most TED-like

subset of the parallel corpus. This pseudo in-domain sub-

set was then used to augment the TED data. This approach

yielded a medium-scale training setting, easily handled by

our standard MT pipeline on ordinary-sized computers.

4.1. Data Selection Techniques

We compared two data selection techniques in the French-

English track. The first was the popular cross-entropy dif-

ference or “Moore-Lewis" method from [14], which we refer

to as xediff for short. The second one was recently pro-

posed [15] and uses a hybrid word/part-of-speech text repre-

sentation to distinguish between rare and frequent events.

4.1.1. Cross-Entropy Difference

The Moore-Lewis method relies on cross-entropy difference

to produce domain-specific systems that are usually as good

as or better than systems using all available training data [16].

To implement Moore-Lewis selection, we first trained an in-

domain language model (LM) on the in-domain TED data,

and another LM on the full pool of general data. The algo-

rithm uses these language models to assign a cross-entropy
difference score to each data-pool sentence.

Lower scores for cross-entropy difference indicate more

relevant sentences, namely those that are most like the target

domain and most unlike the full pool average. After rank-

ing the data pool sentences by this score, the top-n sentences

(or sentence pairs) are used to create the desired subset of

most-relevant sentences. In this work, we added these sen-

tences to the in-domain corpus and trained MT systems on

the combined corpus. A range of values for n is typically

considered, selecting the n that performs best on held-out

6http://www.statmt.org/moses/?n=Moses.

SupportTools
7https://github.com/moses-smt/mosesdecoder/blob/

master/scripts/tokenizer/detokenizer.perl

http://www.statmt.org/moses/?n=Moses.SupportTools
http://www.statmt.org/moses/?n=Moses.SupportTools
 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl


in-domain data. The size of these domain-specific systems

scales roughly linearly with the amount of selected data: a

system trained on the most domain-relevant 10% of the full

out-of-domain dataset will be roughly one-tenth of the size

of a system trained using all the available data.

4.1.2. Hybrid Word/POS Representation

The data selection technique from [15] uses a hybrid

word/part-of-speech representation for corpora in order to

distinguish between rare and frequent events. In some sense,

this newer method is a pre-processing step before performing

the above-described cross-entropy difference data selection

method. This pre-processing step changes the representation

of the corpus into something better suited for computing the

relevance score for each sentence. After the sentence scor-

ing and corpus re-ranking is done, the original words are put

back and the downstream LM or MT system is trained as

usual. This method does not have a standard name yet, so in

this work we refer to it as min10 or new.

This newer hybrid word/POS data selection aims to im-

prove scaling of the data selection process itself and to im-

prove the vocabulary coverage of the selected data. This

is achieved by constructing a hybrid representation of the

text that abstracts away words that are infrequent in either

of the in-domain and general corpora. The threshold used

to determine “infrequent" is a minimum count of 10 in each

of the task and pool corpora, but other values could be ex-

plored. All words that do not meet this criterion are replaced

with their part-of-speech (POS) tags, permitting their n-gram

statistics to be robustly aggregated when the task and pool

language models are built.

The intuition for abstracting away rare words is that if a

domain-relevant sentence includes a rare word in some non-

rare context (e.g. “An earthquake in Port-au-Prince"), then

another sentence with the same context but a different rare

word is probably also just as relevant (e.g. “An earthquake in

Kodari"). Suppose “Kodari" is an out-of-vocabulary word

with respect to the task corpus, and that “Port-au-Prince"

appears three times in each corpus. The cross-entropy dif-

ference method would reward the first sentence because it

knows “Port-au-Prince", but penalize the second sentence be-

cause “Kodari" is unknown. The new method would also re-

ward the first sentence, because it has seen “An earthquake

in NPP" a few times. The new method would also reward the

second sentence, for exactly the same reason.

After the corpus has been transformed, the Moore-Lewis

data selection algorithm is then used to select parallel seg-

ments on the hybrid corpus representation, the data pool is

re-sorted by this score, and then the hybrid corpus represen-

tation is discarded and the original representations of the se-

lected segments (the regular sentence forms) are then used to

train MT systems.

Recent experiments on medium-scale Chinese-English

Machine Translation tasks [15] showed that this hybrid

method can substantially improve lexical coverage, reduce

computational requirements for the data selection model it-

self, and improve translation quality when compared against

the standard approaches of [14] and [16].

4.2. Training Data Selection Results

Each of the two data selection methods tested for the French-

English task has three possible instantiations: as a mono-

lingual method on the input side (French), as a monolin-

gual method on the output side (English), or as a bilingual

method that combines both the French and English monolin-

gual scores. In each of the six cases, we selected relevant

subsets of the data pool and concatenated each of them with

the in-domain TED training data when training the down-

stream MT system. We used cdec to train these downstream

systems for extrinsic evaluation.

For consistency, we used the KenLM toolkit [4] to build

all language models used for the data selection experiments.

All of them were 4-gram LMs. To enable fair compar-

isons, all of the word-based models had vocabularies fixed to:

{TED} ∪ {Pool minus singletons}. In constructing our hy-

brid word/POS representations for the new method, we used

the Stanford part-of-speech tagger [17] to generate the POS

tags for each of the languages.

The amount of data selected for each method was deter-

mined empirically by training MT systems on the selected

slices and comparing the BLEU scores on the tst2012

and tst2013 held-out sets. We tested all three conditions

for each of the two methods, though here we present only

results from using the monolingual English version of the

cross-entropy difference and the new hybrid methods. The

monolingual English results are shown in Figure 1. The new

method provides significantly better coverage of the words in

the in-domain corpus than the Moore-Lewis method, and at

least as good MT performance. Though the new method’s

BLEU scores are slightly better, the difference is not enough

to be particularly important.

For this submission, the best performance with the stan-

dard cross-entropy difference method was with 3 million se-

lected sentences. With the new hybrid word/POS method,

selecting 4 million sentences out of the 41 M in the data

pool. More results, graphs, and detailed analysis comparing

the two methods can be found in [18]. The results from the

monolingual French and bilingual scoring methods followed

the same trend as the monolingual English scores, but were

overall slightly lower.



Figure 1: Comparison of the two monolingual English-side

data selection methods: Moore-Lewis (grey dashed) and the

new hybrid word/POS (solid black): OOV tokens in the TED

training set (top), and BLEU scores on tst2012 (bottom).

Method BLEU (tst2013)

baseline 37.82

+xediff (3 M) 38.29

+min10 (4 M) 38.54

Table 3: Expanding the training set using data selection im-

proves Fr-En translation quality.

After determining the best amount of data to select with

each method, we evaluated whether these selected subsets

were helpful for translating in-domain test sets. These re-

sults are shown in Table 3. The baseline system used the

in-domain data in the MT pipeline described in Section 2,

and was tuned on the large development set defined below,

in Section 5. Table 3 shows that both data selection tech-

niques improve the BLEU score of the translation output.

The newer hybrid word/POS method from [15] yielded the

largest improvement (+0.7 BLEU), and was therefore used as

the training set for our French-English submissions.

5. Tuning Data Selection

Since selecting training data improves translation quality, we

hypothesized that similar techniques could also be used to

construct better tuning sets. Prior work shows that choosing

a good development test set to tune the MT log-linear model

parameters is crucial to performance [19, 20]. The IWSLT

organizers provided a large number of development test sets

for tuning and development purposes (Tables 4 and 5). As a

result, we had many options for defining the tuning and tests

sets for our experiments.

Corpus # segments # fr tokens # en tokens

dev2010 887 20214 20214

tst2010 1664 33846 31979

tst2011 818 15628 14498

tst2012 1124 23460 21473

tst2013 1026 23293 21706

Table 4: French-English Development Test Sets

Corpus # segments # vi tokens # en tokens

dev2010 769 20750 17410

tst2010 1342 35320 28317

tst2011 1435 32801 26887

tst2012 1553 34292 27983

tst2013 1268 33682 26728

Table 5: Vietnamese-English Development Test Sets

We made the assumption that the most recent test sets

would be closest to this year’s evaluation data, and therefore

used the tst2013 test set to evaluate translation quality dur-

ing system development. We proposed two ways to make use

of the remaining data at tuning time: First by increasing the

number of tuning examples, and secondly by ranking the tun-

ing set and ordering the examples from easiest to hardest.

The development test sets could be used differently: for

instance, we could have used several held-out test sets to

guide system development.Given our focus on data selection,

we decided instead to build a large tuning set by concate-

nating all development test sets, aside from tst2013. As

shown in Table 6, this simple strategy yielded a +0.8 BLEU

improvement for the Vietnamese-English task, and a +0.75

improvement for the French-English task.

Next, we investigated the impact of ranking the tuning

examples. The order in which tuning examples are seen has

an impact on learning, because we tune parameters using the

online MIRA algorithm [21]. Instead of using the natural

order of sentences in the original documents, we hypothe-

sized that presenting “easy" examples before “hard" exam-

ples might help learning, as in curriculum learning [22].



Task Tuning set BLEU

Vi-En dev2010 23.52

Vi-En dev2010+tst2010+tst2011+tst2012 24.30

Fr-En dev2010 36.43

Fr-En dev2010+tst2010+tst2011+tst2012 37.19

Table 6: Impact of expanding tuning set on translation quality

(train = TED, test set = tst2013)

We defined “easier" and “harder" to mean the tuning

sentences were more (and less, respectively) similar to the

parallel training data. We used the in-domain language

model perplexity as a similarity score over sentences. We

trained 4-gram models with modified Kneser-Ney smoothing

[23] using kenLM [4] on the source side of the in-domain

TED training data. We then ranked the tuning examples

by increasing perplexity. Tables 7 shows that this approach

yielded further improvements in translation scores, at least

for French-English ( +0.6 BLEU), though it had no effect on

Vietnamese-English ( +0.01 BLEU). This suggests that the

order of tuning examples can impact translation quality, but

is not guaranteed. However, it is not clear how to best rank

examples, and we will investigate alternate ranking criteria

(including random order) and re-sampling strategies in fu-

ture work.

We use the best performing strategy in the final system,

and tuned on the concatenation of examples from dev2010

to tst2012, ranked by perplexity.

Task Tuning set Order BLEU

Vi-En dev2010+tst2010-2012 default 24.30

Vi-En dev2010+tst2010-2012 ranked 24.31

Fr-En dev2010+tst2010-2012 default 37.19

Fr-En dev2010+tst2010-2012 ranked 37.82

Table 7: Impact on translation quality of ranking tuning ex-

amples by increasing perplexity, for a system trained on the

in-domain (TED) data and evaluated on tst2013.

6. Neural Language Models

Based on recent promising results[24], neural language mod-

els (NLMs) [25, 26] have become standard MT system com-

ponents. NLMs are typically trained by jointly learning word

embeddings and an estimator for the probabilities of words

conditioned on their preceding history. We used the Oxford

Neural Language Modeling Toolkit (OxLm) [27], which im-

plements two useful approximations that can significantly re-

duce the training and testing time. The first approximation is

a class-based factorization to word conditional probabilities

where classes are obtained by applying Brown clustering [28]

to the vocabulary of the training data. In our experiments,

we set the number of clusters to the recommended value of

3
√

|V |, where |V | is the vocabulary size. Second, OxLm

provides an implementation of a noise contrastive estimation

(NCE) training algorithm [26] which was shown to dramati-

cally reduce the training time with only a minor reduction to

the end-to-end BLEU scores.

We trained two kinds of neural language models on

datasets of different scale. The first type (labelled NlmS-

mall) was trained on a small amount of data, with a class-

based factorized OxLM using minibatch stochastic gradient

descent. The training set consisted of the English side of the

in-domain parallel data, described in Section 3. The second

set of models (labelled NlmLarge) were trained on much

larger data sets. These larger corpora were constructed by

augmenting the training set from NlmSmall wiht subsets of

the large pool of permissible monolingual English corpora.8

We used the xediff method described in section 4 to select

the 2.5M, 5M, and 7.5M samples from the monolingual pool

that were most similar to the training set of NlmSmall. We

trained three class-based factorized OxLms, one for the con-

catenation of each selected subset with the NlmSmall train-

ing corpus. These models are labelled NlmLarge2.5m,

NlmLarge5m and NlmLarge7.5m in Table 8. We used

the NCE-based algorithm to speed up the training of the three

large models.

Neural LM Model Hyperparameters Vi-En BLEU

None (baseline) N/A 24.23

NlmSmall l:100,h:8,f :15,λ:1 25.23

NlmLarge2.5m l:100,h:6,f :20,λ:2 25.43

NlmLarge5m l:100,h:6,f :20,λ:1 25.29

NlmLarge7.5m l:100,h:6,f :20,λ:1 25.48

Table 8: The best hyperparameters and the corresponding

BLEU scores of the Vietnamese-English pipeline of each of

our neural language models.

We fine-tuned the hyperparameters of our language mod-

els based on the devset perplexity of each hyperparameter

setting. We considered all combinations of the following val-

ues of four hyperparameters: (1) dimension of word embed-

dings l = {50, 100, 200, 300}, (2) history length (order) that

the model conditions on h = {4, 5, 6, 7, 8}, (3) frequency

cutoff (the frequency threshold below which a word is con-

sidered unknown) f = {5, 10, 15, 20}, and (4) training regu-

larization parameter λ = {0.01, 0.1, 1, 2, 5}. We noticed that

setting l to 200 or 300 hurt the training and testing times sig-

nificantly without introducing much benefit to the perplexity

scores. Table 8 shows the final hyperparameters learned.

Finally, we evaluated the impact of the neural language

models on the output scores of our Vietnamese-English sys-

tem. All models improved the BLEU score. The largest

improvement (+1.2) was obtained with NlmLarge7.5m,

which we included in our final Vietnamese-English submis-

sion. For the French-English system, we used NlmSmall.

8https://sites.google.com/site/

iwsltevaluation2015/data-provided

https://sites.google.com/site/iwsltevaluation2015/data-provided
https://sites.google.com/site/iwsltevaluation2015/data-provided


7. Conclusion

We have described the UMD systems submitted to the

IWSLT 2015 evaluation campaign. Official results on the

evaluation data are provided in Table 9. This table contains

scores on the cased, detokenized, output, unlike our internal

experimental results in Sections 4, 5, and 6.9

System vi-en fr-en (2014) fr-en (2015)

Primary submission 21.57 33.20 32.59

Organizers’ baseline 24.61 32.22 31.94

Table 9: Results on evaluation test sets; BLEU scores

are computed on cased, untokenized data, using the official

IWSLT evaluation server.

The French-English system outperformed the organizers’

baseline by approximately +1 BLEU on the 2014 progress

test set, and +0.6 on the 2015 test set. This reiterates the

benefits of data selection. It is worth noting that these re-

sults were obtained using a single n-gram English language

model, trained only on the English side of the parallel corpus.

The Vietnamese-English system performed significantly

worse than the baseline. This might be due to the lack of pre-

processing on the Vietnamese side: as the Vietnamese text

was not segmented, the source context captured in SCFG

rules was very narrow. In addition, the English n-gram

model was trained only on the English side of the parallel

data. This can be problematic in a low-resource task such as

Vietnamese-English. After the official evaluation period, we

augmented our system with 4-gram language models trained

on the monolingual English corpus used for neural language

modeling. As expected, this approach improved translation

quality: we obtained improvements of up to +2 BLEU points

on the development test sets.

Overall, our experiments showed that using a standard

MT architecture and focusing on parallel data selection for

the task at hand is a simple but effective strategy for build-

ing MT systems. We will turn our attention to monolingual

English data in future work.
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