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Abstract

This paper describes the Automatic Speech Recognition

and Spoken Language Translation systems developed by the

LIUM for the IWSLT 2015 evaluation campaign. We par-

ticipated in two of the proposed tasks, namely the Auto-

matic Speech Recognition task (ASR) in German and the En-

glish to French Spoken Language Translation task (SLT). We

present the approaches and specificities found in our systems,

as well as our results from the evaluation campaign.

1. Introduction

This paper describes the ASR and SLT systems developed

by the LIUM for the IWSLT 2015 evaluation campaign. We

participated in the two tasks mentioned above, with German

language for the ASR task; and English to French for the SLT

task.

The remainder of this paper is structured as follows: in

section 2.1, we describe the data used for both tasks and how

the selection was performed. In section 2, we present the ar-

chitecture of our ASR system and the results obtained on the

various corpora used during the campaign. Then in section 3,

we expose the architecture of our SLT system, along with its

results during the campaign. Lastly, the section 4 concludes

this system description paper.

2. Automatic Speech Recognition Task in

English

In this section, we will describe the Automatic Speech

Recognition system developed by the LIUM for the IWSLT

2015 campaign, as well as present the results (both in-house

and official) obtained on various corpora.

2.1. Data selection for the ASR task

Performance of Natural Language Processing (NLP) systems

like the ones we are going to present here can often be en-

hanced using various methods, which can occur before, dur-

ing or after the actual system processing. Among these, one

of the most efficient pre-processing method is data selection,

i.e. the fact to determine which data will be injected into the

system we are going to build. For this campaign, many data

selection processing was done, both in ASR and SLT tasks.

2.1.1. Data selection for acoustic models training

For our acoustic modeling we used as a primary source the

Euronews ASR 2013 dataset [1] provided by the campaign

organizers. In order to strengthen this base, we added data

from various in-house sources. Then, we also collected a set

of TEDx talks in German and carefully removed the off-limit

talks. The Table 1 summarizes the characteristics of the data

included in our ASR system acoustic models.

Corpus Duration Segments Words

Euronews 69.1h 22 707 506 019

In-house 207.2h 42 316 2 018 262

TEDx 38.0h 42 633 312 142

Total 314.3h 107 656 2 836 423

Table 1: Characteristics of the acoustic data used in the

LIUM ASR system acoustic models.

2.1.2. Data selection for language models training

Since language models training data is constrained for the

ASR task, we applied our data selection tool XenC [2] on

each allowed corpus at our disposal: basically all of pub-

licly available WMT15 data and a collection of TEDx Talks

closed-captions. Based on cross-entropy difference from a

corpus considered as in-domain and out-of-domain data, our

tool allows to perform relevant data selection by scoring

out-of-domain sentences regarding their closeness to the in-

domain data. The table 2 summarizes the characteristics of

the monolingual text data used to estimate our system lan-

guage models.

2.2. Architecture of the LIUM ASR system

Our architecture is based on two separate systems, mainly

based on the Kaldi open-source speech recognition toolkit

[3] which uses finite state transducers (FSTs) for decoding.

A first pass is performed by using a bigram language model

and deep neural network acoustic models. This pass gener-

ates word-lattices: an in-house tool, derived from a rescoring

tool included in the CMU Sphinx project, is used to rescore

word-lattices with a 3-gram, then a 4-gram back-off LM and



Corpus
Original # Selected # % of

of words of words Orig.

IWSLT14 2.85M 2.85M 100.00

Common Crawl 48.04M 4.24M 8.82

Europarl 47.40M 3.20M 6.74

News Crawl 1.4G 130.60M 9.26

News-Comm. 5.06M 0.62M 12.25

Total (w/o IWSLT14) 1.5G 138.66M 9.18

Table 2: Characteristics of the monolingual text data used in

the LIUM ASR system language models.

5-gram Continuous Space Language Model [4]. Last, an ac-

celerated version of the consensus approach [5], which takes

into account temporal information to speed up the process-

ing, is applied on the confusion networks built from the 5-

gram rescored word-graphs.

2.2.1. Acoustic modeling

The GMM-HMM (Gaussian Mixture Model - Hidden

Markov Model) models are trained on 13-dimensions PLP

features with first and second derivatives by frame. By

concatenating the four previous frames and the four next

frames, this corresponds to 39 ∗ 9 = 351 features projected

to 40 dimensions with linear discriminant analysis (LDA)

and maximum likelihood linear transform (MLLT). Speaker

adaptive training (SAT) is performed using feature-space

maximum likelihood linear regression (fMLLR) transforms.

Using these features, the models are trained on the full

314.3 hours set, with 9 500 tied triphone states and 325 000

gaussians.

On top of these models, we train two separate deep neural

networks (DNNs). The first one is based on TRAP features:

For each frame, DNN inputs were composed of 368 TRAP

coefficients computed on a sliding window of 31 frames.

Each frame was constituted by the outputs of 23 Mel-scale

filterbanks. Speaker adaptation was trivial: it only consists

on mean subtraction applied on all frames associated to a

speaker. It has been trained on the full 314.3 hours set. The

DNN was built following the approach described in [6] and

it was composed of 6 hidden layers with 2048 units, while

the output softmax layer had 4627 outputs. The second one

is based on the same fMLLR transforms as the GMM-HMM

models and on state-level minimum Bayes risk (sMBR) as

discriminative criterion. Again we use the full 314.3 hours

set as the training material. The resulting network is com-

posed of 6 hidden layers with 2 048 units, while the out-

put dimension is 7 827 units and the input dimension is 440,

which corresponds to an 11 frames window with 40 LDA

parameters each.

To speed up the learning process, each DNN is trained us-

ing general-purpose graphics processing units (GPGPU) and

the CUDA toolkit for computations.

2.2.2. Language modeling

For language modeling, we rely on the SRILM language

modeling toolkit [7] as well as the Continuous Space

Language Model toolkit. The vocabulary used in the LIUM

ASR systems is composed of 131 435 entries. The language

models are trained on the data presented in section 2.1.2 and

separate sets are trained for each system.

With the SRILM toolkit, a 2-gram LM is estimated

for each corpus source, with no cut-offs and the modified

Kneser-Ney discounting method. These 2-gram LM are

then linearly interpolated to produce the final 2-gram LM

which will be used in the final system, using the German

IWSLT 2013 test corpora. To rescore the word-lattices pro-

duced by Kaldi, a trigram and a quadrigram language mod-

els (namely 3G and 4G) are estimated with the same toolkit,

again by training one LM by corpus source and then linearly

interpolating them. A 5G continuous-space language model

(CSLM) is also estimated for the final lattice rescoring, with

no cut-offs and the same discounting method as for the bi-

gram language model. Table 3 and table 4 details the inter-

polation coefficients for the 2G, 3G and 4G language models

as well as the final perplexity for each final model used in

the two systems, respectively for the TRAP-based and the

fMLLR-based system.

Corpus
Coefficients

2G 3G 4G

manual transcriptions of speech 0.21 0.16 0.16

Common Crawl 0.03 0.05 0.05

News Crawl 0.21 0.18 0.17

Europarl 0.04 0.06 0.07

News-Comm. 0.51 0.55 0.0.55

Perplexity 379 279 264

Table 3: Interpolation coefficients and perplexities for the

bigram (2G), trigram (3G) and quadrigram (4G) language

models used in the LIUM ASR TRAP-based system.

2.3. Word-lattice merging

Both systems used the same audio segmentation, provided by

the LIUMSpkDiarization[8] speaker diarization toolkit. Us-

ing the same segmentation makes easier the merging between

the two ASR outputs: final outputs were obtained by merging

word-lattices provided by both ASR systems.

Both systems provide classical word-lattices with usual

information: words, temporal information, acoustic and lin-

guistic scores. Before merging lattices, for each edge, these

scores are replaced by its a posteriori probability. Posteriors

are computed for each lattice independently, then weighted



Corpus
Coefficients

2G 3G 4G

IWSLT14 0.016 0.014 0.012

Common Crawl 0.028 0.023 0.020

Europarl 0.075 0.090 0.097

News Crawl 0.872 0.866 0.865

News-Comm. 0.008 0.008 0.006

Perplexity 514 349 326

Table 4: Interpolation coefficients and perplexities for the

bigram (2G), trigram (3G) and quadrigram (4G) language

models used in the LIUM ASR fMLLR-based system.

by 1

n
, where n is the number of word-lattices to be merged

(here, n = 2). In our experiments, we did not find significant

improvements by using more tuned weights.

For each speech segment, the use of weighted posteri-

ors allows to merge starting (respectively ending) nodes from

both lattices together into a single lattice in order to process

directly with an optimized version of the consensus network

confusion algorithm. This optimization reduces very signifi-

cantly the computation time by managing temporal informa-

tion during the clustering steps.

2.4. Results

The LIUM ASR system officialy achieved a Word Error Rate

score of 17.8 on the 2015 test set, however, at this time of

writing, ranks for each participant and full results have not

been disclosed, thus we are not able to provide comparisons.

3. Spoken Language Translation Task

In this section, the architecture of our Statistical Machine

Translation (SMT) system used in the SLT task is described.

3.1. Architecture of the LIUM SLT system

The SMT system is based on the Moses toolkit [9]. The

standard 14 feature functions were used (i.e. phrase and lexi-

cal translation probabilities in both directions, seven features

for the lexicalized distortion model, word and phrase penalty

and target language model (LM) probability). In addition to

these, a 5-gram Operation Sequence Model (OSM) [10] have

been trained and included in the system.

3.2. Data processing and selection for the SLT task

All available corpora have been used to train the different

components of the SMT system. The source side of the bi-

texts have been processed in order to make it more similar to

speech transcriptions. After a standard tokenization, the pro-

cessing mainly consisted in applying regular expressions to

delete punctuations and unwanted characters, convert capital

letters in lowercase and rewrite numbers in letters.

Once the processing performed, monolingual and bilin-

gual data selection has been applied using XenC [2]. For this

purpose, the TED corpus has been used as in-domain cor-

pus (to compute in-domain cross-entropy). The development

corpus (named liumdev15 ) was used to determine the quan-

tity of data by perplexity minimization. It is composed of the

following corpora : dev2010, tst2010 tst2013.

3.2.1. Translation model

The translation models have been trained with the standard

procedure. First, the bitexts are word aligned in both direc-

tions with GIZA++ [11]. Then the phrase pairs are extracted

and the lexical and phrase probabilities are computed. The

weights have been optimized with MERT.

3.2.2. Language modeling

The language model is an interpolated 4-gram back-off LM

trained with SRILM [7] on the selected part of the French

corpora made available. The vocabulary contains all the

words from the development sets, the target side of bitexts

and only the more frequent words from the large monolin-

gual corpora. The interpolation coefficient have been opti-

mized using the standard EM procedure. The perplexity of

this model on liumdev15 was 67.02.

Besides, two large context CSLM [12] have been trained,

each with a different architecture. Those models are used to

rescore the n-best list of SMT hypotheses. Table 5 shows

Name Order Proj. size #hidd. x size PPL

CSLM11 11 512 3 x 1024 41.98

CSLM19 19 320 3 x 1024 41.38

Table 5: Architecture of the CSLM trained for rescoring the

n-best list of SMT hypotheses. The third and fourth columns

show the projection layer size and the number and size of the

hidden layers, respectively. The last columns contains the

perplexities obtained with each model on liumdev15.

the details of the architectures of the CSLMs as well as the

perplexities obtained on the development corpus liumdev15.

3.2.3. Neural network machine translation system

In addition to the phrase-based SMT system, we trained a

neural network machine translation (NNMT) system based

on [13] during 4 days. It is implemented in the Groundhog

framework. It consists in a bidirectionnal encoder-decoder

deep neural network equiped with an attention mechanism,

as described in Figure 1.

We performed the translation with different values for the

beam size. We can observe in Table 6 that the more the beam

size is increased, the lower the results in BLEU.

An explanation to this is that the BLEU score differs from

the internal score calculated by the model (at the output of

the softmax layer). Consequently, a partial hypothesis with
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Figure 1: Architecture of the encoder-decoder deep neu-

ral network machine translation system equiped with an

attention-based mechanism. Taken from [13].

Corpus
Beam size

10 100 1000

liumtst15 36.79 36.1 35.24

liumdev15 31.62 30.95 30.12

Table 6: Results obtained with the deep NNMT system with

different values of beam size.

a low score which is pruned with a small beam size, is kept

and extended when the beam size is greater. Moreover, the

NN output probability distributions are known to be sharp,

giving a high probability to a small number of outputs and a

low probability to the rest. This can lead to worse hypotheses

having higher results in final. This is an undesirable behavior,

which a deeper analysis of the correlation between BLEU

score and NN outputs probabilities could explain.

We used the trained NNMT model to rescore the 1000-

best list produced by the previously trained SMT model.

3.2.4. Submitted systems

A total of six systems were submitted for evaluation. Sev-

eral rescoring process have been performed. For the sake

of comparison, our best single SMT system has been sub-

mitted as contrastive2 as well as our best NNMT system

based on Groundhog (contrastive5). This SMT system has

been rescored with the two CSLM presented in previous sec-

tion. contrastive3 and contrastive4 correspond to the rescor-

ing with CSLM11 and CSLM19, respectively. Those two

systems have also been rescored with the NNMT model ob-

tained with Groundhog. The primary system corresponds to

the contrastive3 rescored with Groundhog deep neural net-

work and the contrastive1 corresponds to the contrastive4

rescored with the same deep neural translation model.

The results and discussion are presented in the next sec-

tion.

3.3. Results and discussion

The results obtained on the development and test data are

presented in Table 7.

The main observation that we can make is that all the re-

sults are coherent. Improvement obtained by rescoring with

the CSLM and the NN model on the development corpus are

reflected on the internal test (liumtst15) and the official eval-

uation test corpus (test2015). The gains observed by rescor-

ing the 1000-best list of hypotheses with a high order CSLM

are along previous results in the literature (around +1 BLEU

point on development and test data). One can notice that the

two different CSLM provide very similar results (in terms of

perplexity during training and in terms of BLEU after rescor-

ing).

During system development, we were surprised by the

gains observed when rescoring with the NNMT system com-

pared to the lower results obtained (on liumdev15 and li-

umtst15). An interesting result is that the rescoring with the

NNMT model provides similar results on the official test set.

A key point when applying a rescoring process is the op-

timization of the feature functions weights. The weights for

the CSLM and the NNMT model have been optimized with

CONDOR [14], a numerical optimizer, with -BLEU as the

objective function to minimize. The initial weights are set

to those obtained with MERT during the SMT system tuning

phase. The initial weights for the CSLM and NNMT features

are set to the backoff LM weight (e.g. 0.0357). This is moti-

vated by the fact that the LM and CSLM features have a sim-

ilar distribution. After optimization, the LM had its weights

decreased to 0.0314, the CSLM weight increased to 0.0391

while the NNTM feature function saw its weight highly in-

creased (0.0486).

4. Conclusion

We presented the LIUM’s ASR and SMT systems which par-

ticipated in the ASR and SLT tracks of the IWSLT’15 evalu-

ation campaign.

For ASR, we participated to the German transcription

task, which is a new challenge to us since we built our first

German systems for the campaign. We achieved an official

WER of 17.8 of the 2015 test set which seems consistent with

our experiments on previous development and test sets.

By rescoring with a continuous space language model,

we obtained a gain of about 0.6% BLEU on the SLT test

data. On top of that, an additional gain of almost %1 BLEU

point is obtained by rescoring with a neural network trans-

lation model. The latter result is more surprising since the

translation score of the NNMT system is significantly lower

than the SMT systems.
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Name CSLM NNMT liumdev15 liumtst15 test2015

rescoring rescoring Case No-Case

%BLEU %BLEU %BLEU %TER %BLEU %TER

Primary CSLM11 yes 33.81 39.61 18.51 79.06 20.02 76.41

Contrast1 CSLM19 yes 33.82 39.65 18.53 78.96 20.10 76.29

Contrast2 - no 31.81 37.35 16.95 80.61 18.36 78.01

Contrast3 CSLM11 no 32.81 38.36 17.54 80.04 19.02 77.31

Contrast4 CSLM19 no 32.70 38.28 17.56 80.07 19.03 77.45

Contrast5 - - 31.62 36.79 14.88 84.69 16.98 80.38

Table 7: Results obtained with the submitted systems on internal dev and test corpora and the official evaluation test corpus.
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