Class-Based N-gram Language Difference Models for Data Selection

Amittai Axelrod
Yogarshi Vyas
Marianna Martindale
Marine Carpuat

University of Maryland
& Johns Hopkins

University of Maryland
Class-Based N-gram Language Difference Models for Data Selection

Amitai Axelrod
Yogarshi Vyas
Marianna Martindale
Marine Carpuat

University of Maryland & Johns Hopkins

University of Maryland
Outline

· Context: Domain adaptation + data selection
· Motivation: Inefficiency of cross-entropy difference
· Idea: Move external information into the model
· Implementation: Language difference models
· Results:

-35% OOV +1.5 BLEU -10% ppl -99% size

12,000 gb LM
0.126 gb
Domain* Adaptation

• Ideally:
 "Domain" = defined by some notion of language similarity: topic, lexical choice, style, genre, register, intent, etc.

• In practice:
 "Domain" = "particular contextual setting", defined empirically. "in corpus" = "in domain"

• For clarity, we use “domain” to mean “corpus".
Domain Adaptation

- Training data rarely matches desired tasks.

- Adaptation:
 - Build system on available training data
 - Adjust the system to new task
 [Often: retune parameters on new task’s data]

- Drawbacks:
 - Large systems can be expensive.
 - Out-of-domain systems can be very wrong.
Data Selection

- Insight: not all training examples are equally valuable.
Data Selection

- Insight: not all training examples are equally valuable.
- Use your regular pipeline, but improve the input!
- "filter Big Data down to Relevant Data"
Data Selection

· For a particular translation task:
 · Identify the most relevant training data.
 · Build a model on only this subset.

· Goal:
 · Better task-specific performance
 · Cheaper (computation, size, time)
Data Selection Algorithm

- Compute similarity of sentences in pool to the task corpus
- Sort pool sentences by score
- Select top n%
Data Selection Algorithm

- Compute similarity of sentences in pool to the task corpus
- Sort pool sentences by score
- Select top n%
- Use n% to build task-specific MT system
- Combine with system trained on task data (optional)
- Apply task-specific system to task.
Cross-Entropy Difference

- Cross-entropy H relates to perplexity by: $ppl = 2^H$

- Score and rank by cross-entropy difference:

$$\arg\min_{s \in \text{POOL}} H_{LM_{IN}}(s) - H_{LM_{POOL}}(s)$$

(Also called "XEDiff" or "Moore-Lewis")
Cross-Entropy Difference

- Cross-entropy H relates to perplexity by: $ppl = 2^H$

- Score and rank by cross-entropy difference:

$$\arg\min_{s \in \text{POOL}} H_{LM_{IN}}(s) - H_{LM_{POOL}}(s)$$

(Also called "XEDiff" or "Moore-Lewis")

- Prefers sentences that both:
 - Are like the target task
 - Are unlike the pool average.
Data Selection Performance

- Training on only the most relevant subset of training data (1%-20%) yields translation systems that are smaller, cheaper, faster, and (often) better.
Cross-Entropy Difference, Again

• Score from Moore & Lewis (2010):

\[
\arg\min_{s \in \text{Pool}} H_{LM_{Task}}(s) - H_{LM_{Pool}}(s)
\]

• Why does this work?

• "If score < 0, then s is like Task and unlike Pool."
Cross-Entropy Difference, Again

· Score from Moore & Lewis (2010):

\[
\arg\min_{s \in Pool} H_{LM_{Task}}(s) - H_{LM_{Pool}}(s)
\]

· Why does this work?

· "If score < 0, then s is like Task and unlike Pool."

--> this causality is backwards
Cross-Entropy Difference Trick!

- Moore-Lewis only works because we have outside information

\[\arg\min_{s \in \text{Pool}} H_{LM_{Task}}(s) - H_{LM_{Pool}}(s) \]

- If : Task and Pool corpora differ significantly
- Then : Task and Pool models disagree on what is "good"
Cross-Entropy Difference Trick!

- Moore-Lewis only works because we have outside information

\[
\underset{s \in \text{Pool}}{\text{argmin}} \ H_{LM_{\text{Task}}}(s) - H_{LM_{\text{Pool}}}(s)
\]

- If Task and Pool corpora differ significantly
- Then Task and Pool models disagree on what is "good"
- Else No adaptation needed = wrong scenario!
- Trick: Assume the disagreement exists! Then exploit it.
Cross-Entropy Difference Trick!

- Moore-Lewis only works because we have outside information

\[
\arg\min_{s \in Pool} H_{LM_{Task}}(s) - H_{LM_{Pool}}(s)
\]

not always!!!!

- If : Task and Pool corpora differ significantly

- Then : Task and Pool models disagree on what is "good"

- Else : No adaptation needed = wrong scenario!

- Trick : Assume the disagreement exists! Then exploit it.
The Only Math in this Talk

- From definition of cross-entropy difference:

\[
\text{score}(s) = H_{LM_{Task}} - H_{LM_{Pool}}
\]
The Only Math in this Talk

- From definition of cross-entropy difference:

\[
\text{score}(s) = H_{LM_{Task}} - H_{LM_{Pool}}
\]

\[
= -\frac{1}{N} \sum_{w \in s} \log LM_{Task}(w) - \frac{1}{N} \sum_{w \in s} \log LM_{Pool}(w)
\]

\[
= -\frac{1}{N} \sum_{w \in s} [\log LM_{Task}(w) - \log LM_{Pool}(w)]
\]
The Only Math in this Talk

- From definition of cross-entropy difference:

\[
\text{score}(s) = H_{LM_{Task}} - H_{LM_{Pool}}
\]

\[
= -\frac{1}{N} \sum_{w \in s} \log LM_{Task}(w) - \frac{1}{N} \sum_{w \in s} \log LM_{Pool}(w)
\]

\[
= -\frac{1}{N} \sum_{w \in s} [\log LM_{Task}(w) - \log LM_{Pool}(w)]
\]

\[
\propto \sum_{w \in s} \log \frac{LM_{Task}(w)}{LM_{Pool}(w)}
\]

\[
\text{score}(s) \propto \sum_{w \in s} \log \frac{P_{Task}(w)}{P_{Pool}(w)} \quad \text{unigram frequency ratio}
\]
Implication

• If : Task and Pool frequencies of a word w_1 differ

• Then : Task and Pool disagree whether w_1 is "good"

 \Rightarrow w_1 indicates either Task xor Pool -- not both!
Implication

- If : Task and Pool frequencies of a word w_1 differ
- Then : Task and Pool disagree whether w_1 is "good"
 \Rightarrow w_1 indicates either Task xor Pool -- not both!
- Else : Task and Pool frequencies of w_2 are similar
 \Rightarrow Corpora agree whether w_2 is "good" (or not!)
 \Rightarrow freq. ratio = 1, so log (freq. ratio) = 0
 \Rightarrow w_2 does not affect difference score
New Trick

\[
\text{score}(w) \propto \log \frac{P_{\text{Task}}(w)}{P_{\text{Pool}}(w)}
\]

- Old trick: Assume the domains and corpora disagree.
- New trick: Assume similarity score is cross-entropy difference.
- **Exploit**: Differentiate between biased and non-biased words.
New Trick

- Could build a classifier, but don't want to.
- Instead of a discriminative model on a standard representation, train a standard model on a discriminative representation.
- How?
New Trick

- Could build a classifier, but don't want to.

- Instead of a discriminative model on a standard representation, train a standard model on a discriminative representation.

- How?
 Mark words with suffix indicating how biased they are.

- Now each corpus includes information about the other one.
Choosing Parameters

- Marking bias is not change word statistics; does not do anything by itself.

- Collapse all non-contributing words together for the purpose of computing similarity:

 Replace words with POS tags (motivated in paper)

- Questions:

 - How to decide the threshold for replacing?

 - How granular should the bias suffix be?
Choosing Parameters

- Construct pathological case:
 - Ignore threshold. Just replace all words!
 - Bucket frequency ratio bias by powers of 10.
 - "supermassive black holes"
 \[\Rightarrow \text{JJ/+++ JJ/0 NNS/+} \]
 - These are not ideal settings!
Choosing Parameters

- Construct pathological case:
 - Ignore threshold. Just replace all words!
 - Bucket frequency ratio bias by powers of 10.
- "supermassive black holes"

 \[\Rightarrow \text{JJ/+++ } \text{JJ/0 } \text{NNS/+} \]
- These are not ideal settings!

 But if this works, anything should work.
Relevant Dimensions, not More

• In modern terms: projection into a discrete 2-D embedding:

<table>
<thead>
<tr>
<th>freq. ratio</th>
<th>10^{-3}</th>
<th>10^{-2}</th>
<th>10^{-1}</th>
<th>1</th>
<th>10^1</th>
<th>10^2</th>
<th>10^3</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>JJ</td>
<td>JJ/---</td>
<td>JJ/--</td>
<td>JJ/-</td>
<td>JJ/0</td>
<td>JJ/+</td>
<td>JJ/++</td>
<td>JJ/+++</td>
<td>JJ/low</td>
</tr>
<tr>
<td>NNS</td>
<td>NNS/---</td>
<td>NNS/--</td>
<td>NNS/-</td>
<td>NNS/0</td>
<td>NNS/+</td>
<td>NNS/++</td>
<td>NNS/+++</td>
<td>NNS/low</td>
</tr>
<tr>
<td>VBZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POS tags

- < .0001x
- 0.001 to .01x
- 0.1 to 10x
- 100 to 1000x
- count < 10

0.0001 to 10x

- 0.0001 to .001x
- 0.001 to .01x
- 10 to 100x
- 1000x <

Amittai Axelrod
Class-Based N-gram Language Difference Models
IWSLT 2015
Procedure

1. POS tag the corpora
 <!-- could try cluster labels

2. Compute vocab statistics and ratios
 <!-- unigram LM

3. Transform text
 <!-- perl script

4. Do cross-entropy difference
 <!-- reuse code

5. Put words back in
 <!-- perl script
Transformed Text

- Task corpus:
 - PRP/+ VBP/++ VBG/+ TO/0 VB/+ PRP/+ VB/0 NN/0 ./0
 - PRP/0 VBP/++ VBG/+ TO/0 VB/0 NN/0 ./0

- Pool corpus:
 - MD/0 CD/- NN/-- NN/low CD/0 VBZ/0 DT/0 JJ/low NNS/low IN/0 DT/0 VBN/0 NN/low ./0
 - MD/0 CD/0 NN/-- NNP/0 NNP/0 NNP/low VBZ/0 DT/0 JJ/0 RB/low VBN/0 NN/0 IN/0 NNP/low IN/0 RB/0 CD/0 NNS/0 ./0
Experimental Setup

- French --> English translation

- Task: TED, 207 k lines (4.2m tokens)
 Pool: LDC, 41 M lines (1.2b tokens)

- Vocab (En): 3.9m
 Vocab (Fr): 3.6m

- Penn POS tagset (43 tags)

- 344 possible tag/bias labels, only use < 200
In-Domain Lexical Coverage

- Using only selected data (orange)
- -35% OOV compared to Moore-Lewis (grey)
In-Domain Perplexity

- Using only selected data (orange)

- -10% ppl compared to Moore-Lewis (grey)

- Despite using zero words!
TED Fr-En Translation

- Using only selected data (orange)
- +1.85 BLEU compared to Moore-Lewis (grey)
Multi-Model System (2TM,2LM)

- TED + new selected data (orange)
- +1.3 BLEU compared to TED + Moore-Lewis (grey)
Summary

- Model each corpus relative to the other one.

- How: replace all words with POS tags, add discriminative suffixes, run regular Moore-Lewis data selection.

- Improves perplexity (-10%), BLEU (+1.5), OOV (-30%)

- Almost 100% reduction in active lexicon, to < 200 types with robust statistics.

- 99% reduction in LM size for selection process.
Thank You

- Questions?

- Sample implementation appearing soon:
 https://github.com/amittai/

- Contact: amittai@clsp.jhu.edu
[this slide intentionally left blank]
Domain Adaptation

• Training data doesn’t always match desired tasks.

• Have bilingual:
 • Parliament proceedings
 • Newspaper articles
 • Web scrapings

• Want to translate:
 • Travel scenarios
 • Facebook updates
 • Realtime conversations

• Sometimes want a specific kind of language, not just breadth!
Perplexity-Based Filtering

• A language model L_{MQ} measures the likelihood of some text by its perplexity:

$$ppl_{L_{MQ}}(s) = 2^{-\frac{1}{N} \sum_{i=1}^{N} \log L_{MQ}(w_i|h_i)} = 2^{H_{L_{MQ}}(s)}$$

• Intuition: Average branching factor of LM

• Cross-entropy H (of a text w.r.t. an LM) is $\log(\text{ppl})$.
Cross-Entropy Difference

• Perplexity-based filtering:
 • Score and sort sentences in pool by perplexity with in-domain LM.
 • Then rank, select, etc.

• However!
 The data pool does not match the target task.
Bilingual Cross-Entropy Diff.

- Extend the Moore-Lewis similarity score for use with bilingual data, and apply to SMT:

\[
H_{L1}(s_1, LM_{Task}) - H_{L1}(s_1, LM_{Pool}) + H_{L2}(s_2, LM_{Task}) - H_{L2}(s_2, LM_{Pool})
\]

- Training on only the most relevant subset of training data (1%-20%) yields translation systems that are smaller, cheaper, faster, and (often) better.
Are All Words Useful?

- How much can we trust rare words?
- If a word is seen 2 times in the general corpus and 3 in the in-domain one, is it really 50% more likely?
- Volatile difference in LM probabilities.
Using Fewer Words

- Low-frequency words often ignored (e.g. Good-Turing smoothing, singleton pruning, ...)

-

-

-
Using Fewer Words

• Low-frequency words often ignored (e.g. Good-Turing smoothing, singleton pruning, ...)

• ==> All words contribute, but not equally.

•

•

•
Using Fewer Words

- Low-frequency words often ignored (e.g. Good-Turing smoothing, singleton pruning, ...)

- ==> All words contribute, but not equally.

- However, "ignored" does not mean "deleted". (e.g. discounted counts, <unk> token, ...)
Using Fewer Words

• Low-frequency words often ignored (e.g. Good-Turing smoothing, singleton pruning, ...)

• ==> All words contribute, but not equally.

• However, "ignored" does not mean "deleted". (e.g. discounted counts, <unk> token, ...)

• ==> Aggregate rare words!
Hybrid word/POS Corpora

- In stylometry, syntactic structure = proxy for style.
- POS-tag n-grams used as features to determine authorship, genre, etc.
- Incorporate this idea as a pre-processing step to data selection:
Hybrid word/POS Corpora

- In stylometry, syntactic structure = proxy for style.
- POS-tag n-grams used as features to determine authorship, genre, etc.
- Incorporate this idea as a pre-processing step to data selection:

 Replace rare words with POS tags.
Hybrid word/POS Corpora

- Replace rare words with POS tags:
 - an earthquake in Port-au-Prince
 - an earthquake in NNP
Hybrid word/POS Corpora

- Replace rare words with POS tags:
 - an earthquake in Port-au-Prince
 - an NN in NNP
Hybrid word/POS Corpora

- Replace rare(?) words with POS tags:
 - an earthquake in Port-au-Prince
 - DT NN IN NNP
Hybrid word/POS Corpora

- Replace rare words with POS tags:
 - an earthquake in Port-au-Prince
 - an earthquake in NNP
 - an earthquake in Kodari
Hybrid word/POS Corpora

- Replace rare words with POS tags:
 - an earthquake in Port-au-Prince
 - an earthquake in NNP
 - an earthquake in Kodari
- Threshold: (if Count < 10) in either corpus
Using Fewer Words

- Use the hybrid word/POS texts instead of the original corpora.

- Train LMs on the corpora, compute sentence scores, and re-rank the original general corpus.

- This is just normal Cross-Entropy Diff scoring, but using a different corpus representation.

- It works!

 Results in Axelrod/Resnik/He/Ostendorf, WMT 2015.
Hybrid Word/POS Selection

- Must re-compute for every task/pool, but vocabulary statistics are easy.

- Aggregating the statistics for rare terms allows generalizing to other unseen words.

- Perhaps preserving sentence structure, picking up words that fill similar roles/patterns in the sentence?
• We used two kinds of models! (well, two kinds of representations)

• "Modeling" != "Modeling similarity":

"Characterizing a corpus" <-- fluency
vs.
"Matching a corpus" <-- relevance
TED Fr-En Translation

- +1.8 BLEU

Amittai Axelrod Class-Based N-gram Language Difference Models IWSLT 2015